
SPECIAL SECTION ON CHALLENGES AND OPPORTUNITIES
OF BIG DATA AGAINST CYBER CRIME

Received May 31, 2018, accepted June 27, 2018, date of publication July 9, 2018, date of current version July 30, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2854599

Deep Learning-Based Intrusion Detection
With Adversaries
ZHENG WANG
National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

(e-mail: zhengwang98@gmail.com)

ABSTRACT Deep neural networks have demonstrated their effectiveness in most machine learning tasks,
with intrusion detection included. Unfortunately, recent research found that deep neural networks are
vulnerable to adversarial examples in the image classification domain, i.e., they leave some opportunities
for an attacker to fool the networks into misclassification by introducing imperceptible changes to the
original pixels in an image. The vulnerability raises some concerns in applying deep neural networks in
security-critical areas, such as intrusion detection. In this paper, we investigate the performances of the
state-of-the-art attack algorithms against deep learning-based intrusion detection on the NSL-KDD data
set. The vulnerabilities of neural networks employed by the intrusion detection systems are experimentally
validated. The roles of individual features in generating adversarial examples are explored. Based on our
findings, the feasibility and applicability of the attack methodologies are discussed.

INDEX TERMS Intrusion detection, neural networks, classification algorithms, data security.

I. INTRODUCTION
Today’s Internet is growingly endangered by various cyber
threats. Hackers are inventing new techniques on a daily
basis to bypass security layers and avoid detection. Intrusion
Detection Systems (IDS) are playing an indispensable role
in defending against intrusions and malicious activities. IDS
can be considered as two main categories based on oper-
ational logic: (1) signature-based IDS where the traffic is
compared against a database of signatures of known threats;
(2) anomaly-based IDS which inspects the traffic based on
the behavior of activities.

Machine Learning (ML) techniques are changing our view
of the world and they are impacting all aspects of our daily
life. It is envisioned to change the landscape of information
security, with intrusion detection included. In the past decade,
a number of machine learning techniques have been applied
to intrusion detection with the hope of improving detection
rates and adaptability. However, most systems built based
on such techniques suffer from the dependency on domain
knowledge, insufficient learning capability with big data,
and lack of modularity and transferability. To address those
challenges in intrusion detection, deep neural networks (deep
learning) recently found their success.

Deep learning requires less hand engineered features and
expert knowledge. Driven by the emergence of big data and
hardware acceleration, the intricacy of data can be extracted
with higher and more abstract level representation from raw

input features. Some recent work showed that deep learning
based IDS has striking learning capability or outperforms
traditional ML-based counterparts.

However, deep learning in an adversarial environment
requires us to anticipate that an adversarial opponent will try
to cause deep learning to fail in many ways. In many cases,
the adversary is able to poison the learner’s classifications,
often in a highly targeted manner. For instance, an adversary
can craft input data with imperceptible deviations in order
to cause the learner to learn an incorrect decision-making
function such as avoiding detection of attacks or causing
benign input to be classified as attack input.

Recent studies confirmed that deep learning is vulnera-
ble against well-manipulated adversarial samples in image-
based datasets. While there was some pioneering work on the
application of deep learning to intrusion detection, we still
hardly know the vulnerability of deep learning in the intrusion
detection domain against adversarial examples. In this paper,
we will present a comprehensive study of the deep learning
based intrusion detection with adversaries. We will evaluate
the state-of-the-art attack algorithms against deep learning
based intrusion detection on the NSL-KDD dataset. Based
on the implementation of deep neural networks using Tensor-
Flow, we will validate the vulnerabilities of neural networks
under attacks on IDS. To gain insights into the nature of intru-
sion detection and its attacks, we will also explore the roles
of individual features in generating adversarial examples.

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

38367

https://orcid.org/0000-0003-2744-9345

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

II. RELATED WORK
It is demonstrated that the deep learning based approaches are
helpful to overcome the challenges of developing an effective
IDS such as the difficulty of feature selection and represen-
tation, and the limited availability of labeled traffic dataset.
For example, Shone et al. [1] proposed a new deep learning
classification model, Yin et al. [2] proposed to use recurrent
neural networks for intrusion detection tasks, Javaid et al. [3]
developed a deep learning based technique for self-taught
learning in the IDS classification, and Tang et al. [4] applied
a deep learning approach for flow-based anomaly detection.
However, little attention in previous work was given to the
risks posed by the emerging adversarial deep learning against
IDS. The vulnerability discovered in recent years greatly limit
the application of deep neural networks in security-critical
areas such as self-driving, safety-critical voice-controllable
systems, and IDS.

Szegedy et al. [6] first revealed in 2014 the intrigu-
ing discovery that deep neural networks are vulnerable
to adversarial examples. They also successfully generated
adversarial examples through the use of the box-constrained
Limited memory approximation of Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) optimization algorithm. Since
then, the profound implications of the findings triggered
a wide interest of academia and industry in developing
adversarial attacks and studying their defenses. To ease
the high computational cost of the LBFGS approach,
Goodfellow et al. [7] proposed the Fast Gradient Sign
Method (FGSM). FGSM generates adversarial perturbations
based on the gradient of the loss function relative to the input
image and thus enables computational efficiency through
backpropagation. Kurakin et al. [8] extended the fast gradient
sign method by running a finer optimization (smaller change)
for multiple iterations. Papernot et al. [9] created adversarial
saliency maps by computing forward derivatives which are
used to identify the input feature to be perturbed towards
the target class. Moosavi-Dezfooli et al. [10] proposed an
approach to find the closest distance from original input
to the decision boundary of adversarial examples. Carlini
and Wagner [11] introduced three new gradient-based attack
algorithms (L2, L∞, and L0) that are more effective than
all previously known methods in terms of the adversarial
success rates achieved with minimal perturbation amounts.
Their L2 attack uses a logits-based objective function which
is different from all existing L2 attacks, and avoids the box
constraint by changing variables. Their L∞ and L0 are based
on the L2 attack and tailored to different distance metrics.
The existing literature mainly deals with the art of fooling the
deep neural networks for the typical computer vision tasks,
e.g. recognition, and their effectiveness is demonstrated using
standard image datasets, e.g. MNIST [5].

III. BACKGROUND
A. NEURAL NETWORKS AND NOTATION
Deep neural network is a machine learning algorithm pow-
ered by many layers (‘‘deep’’) of connected networks.

It is often called end-to-end machine learning where sophis-
ticated patterns are extracted from the representation of mul-
tiple simple features with limited prior knowledge. Therefore
deep learning models are increasingly used to solve compli-
cated big data problems which are often not well addressed
by conventional machine learning algorithms.

A deep neural network is formed as a function f (·), f ∈
F : Rn

→ Rm. The parameters of deep learning model f is
θ which is often subject to training for the objective results.
The most common training process of deep learning model f
aims at minimizing a loss function (e.g., cross-entropy) J .
As supervised machine learning, deep learning has two

most common tasks: classification or regression. In classi-
fication problems, a discrete number of values is predicted.
In regression problems, continuous valued output is pre-
dicted. In the paper, deep neural networks are used as a
m-class classifier with its outputs as label of class in the clas-
sification problem, l = 1, 2, . . . ,m. The output of the net-
work is computed using the softmax function, which ensures
that the output vector y satisfies 0 ≤ yi ≤ 1 and y1 + . . . +
ym = 1. The output vector y is thus treated as a probability
distribution, i.e., yi = f (x)i is treated as the probability that
input x has class i. The classifier assigns the label C(x) =
argmaxif (x)i to the input x. Let C∗(x) be the correct label
of x. The inputs to the softmax function f (x) are called logits.
We define F to be the full neural network including the

softmax function, Z (x) = z to be the output of all layers
except the softmax (so z are the logits), and

F(x) = softmax(Z (x)) = y (1)

A neural network layer consists of a set of perceptrons.
Each perceptron transforms a set of inputs with linear
weights (and biases) and then a non-linear activation function.
The multiple layers of a deep neural network are chained:

F = softmax ◦ Fn ◦ Fn−1 ◦ . . . ◦ F1 (2)

Where

Fi(x) = σ (θ̃i · x)+ θ̂i (3)

For some non-linear activation function σ , some matrix θ̃i
of model weights, and some vector θ̂i of model biases. As the
model parameters, θ = {θ̃i, θ̂i} are tunable and trainable
in the machine learning process. Common choices of σ are
ReLU, tanh, and sigmoid. In this paper we focus primarily on
networks that use a ReLU activation function, as it currently
is the most widely used activation function.

B. ADVERSARIAL EXAMPLES
We categorize the methodologies for generating adversarial
examples in two dimensions in this section.

Target of adversarial examples:
• Targeted attacks. Considering an original input x and its
target class l = C∗(x), the objective of adversaries is
to find a perturbed input x ′ satisfying C(x ′) = l yet
x, x ′ are very similar to each other according to some

38368 VOLUME 6, 2018

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

distance metric. Such an example x ′ is defined as a
targeted adversarial example (for a target class l).

• Untargeted attacks. Instead of classifying x as a given
target class, we only search for an input x ′ so that
C(x ′) 6= C∗(x) and x, x ′ are close. Non-targeted attacks
are strictly less powerful than targeted attacks.

Knowledge about the target model:
• White-box attacks. It assumes the adversary knows
everything related to the trained neural network model:
training data, network architectures, hyper-parameters,
numbers of layers, functions of activations, network
weights, etc. Many adversarial examples are generated
by calculating network gradients. Since deep neural
networks tend to require only raw input data without
handcrafted features and to deploy end-to-end structure,
feature selection is not necessary compared to adversar-
ial examples in machine learning.

• Black-box attacks. It assumes the adversary has no
access to the trained neural network model. The adver-
sary, acting as a standard user, only knows the output of
the model (label or confidence score). This assumption
is common for attacking online Machine Learning ser-
vices. Most adversarial example attacks are white-box
attacks. However, they can be transferred to attack black-
box services due to the transferability of adversarial
examples.

C. DISTANCE METRICS
In our definition of adversarial examples, similarity between
an adversarial example and its original counterpart is mea-
sured using a distance metric. There are three widely-used
distance metrics in the literature for generating adversarial
examples, all of which are Lp norms.
The Lp distance is written as ‖ x−x ′ ‖p, where the p-norm
‖ · ‖p is defined as

‖ v ‖p= (
∑n

i=1
|vi|p)

1
p (4)

Specifically,
• L0 distance measures the number of features i such that
xi 6= x ′i . Therefore the L0 distance means the number
of features that have been perturbed between the two
samples.

• L2 distance measures the standard Euclidean (root mean
square) distance between x and x ′. A large L0 deviation
may maintain a small L2 when slight changes are intro-
duced to many samples.

• L∞ distance measures the maximum change to any of
the features:

‖ x − x ′ ‖∞= max(|x1 − x ′1|, . . . , |xn − x
′
n|) (5)

A large L∞ does not necessarily cause a large L2 if, e.g.,
the L∞ is exclusively caused by a dramatic change to a
single feature out of a large set of features which have
minor enough perturbations. Similarly, a large L∞ may
co-exist with a small L0 considering the case that a single

feature is changed significantly while the other features
remain unchanged.

IV. ATTACK ALGORITHMS
A. FAST GRADIENT SIGN METHOD (FGSM)
While there was an early proposal to use linear search method
to find adversarial examples [6], the linear search method was
often too computation intensive to be affordable in practice.
To ease the search for adversarial examples, Goodfellow et al.
proposed a fast method for generating adversarial examples
called Fast Gradient Sign Method (FGSM) [7]. They only
performed one step gradient update along the direction of
the sign of gradient at each pixel. Their perturbation can be
expressed as:

η = εsign(∇xJθ (x, l)) (6)

where ε is the magnitude of the perturbation which is
small enough to be imperceptible, and l is the target label.
Thus the generated adversarial example x ′ is calculated as:
x ′ = x + η. This perturbation can be computed simply
using backpropagation. The fast gradient sign method uses
the gradient of the loss function to determine in which direc-
tion the input data should be changed (whether it should be
increased or decreased) to minimize the loss function.

The fast gradient sign method optimizes the networks in
terms of the L∞ distance metric. While it is fast in speed,
it is not designed primarily aiming at finding the optimal
adversarial examples.

Kurakin et al. [8] extended the fast gradient sign method
by running a finer optimization (smaller change) for multiple
iterations. In each iteration, pixel values are clipped to avoid
large change on each pixel:

clipx,ξ {x ′} = min{255, x + ξ,max{0, x − ε, x ′}} (7)

Where clipx,ξ {x ′} is the clipping value in each iteration
limited by ξ . The adversarial examples were generated in
multiple iterations:

x0 = x (8a)

xn+1 = clipx,ξ {xn + εsign(∇xJθ (xn, y))} (8b)

Iterative gradient sign was found to produce superior
results to fast gradient sign.

To attack a specific class with enhanced capability,
an alternative version of FGSM was proposed to select the
least-likely class of the prediction and try to maximize the
cross-entropy loss. This method is known as Iterative Least-
Likely Class method:

x0 = x (9a)

yLL = argmin
y
{p(y|x)} (9b)

xn+1 = clipx,ξ {xn + εsign(∇xJθ (xn, yLL))} (9c)

As another variation, the Target Class Gradient Sign
Method (TGSM) can be extended to a more general case
where the yLL in 9(b) could be any desired target class.

VOLUME 6, 2018 38369

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

B. JACOBIAN-BASED SALIENCY MAP ATTACK (JSMA)
Papernot et al. [9] designed an efficient saliency adversarial
map under L0 distance, called Jacobian-based Saliency Map
Attack (JSMA). JSMA computes the Jacobian matrix of a
given sample x which is expressed as:

Jf (x) =
∂f (x)
∂x
= [

∂fj(x)
∂xi

]i×j (10)

In this way, the input features of x that made most sig-
nificant changes to the output can be identified. Those most
influential features are employed where some small input
deviations trigger large output variations.

C. DEEPFOOL
Moosavi-Dezfooli et al. [10] proposed DeepFool to find the
closest distance from original input to the decision boundary
of adversarial examples. DeepFool is an untargeted attack
technique optimized for the L2 distance metric. An iterative
attack by linear approximation is proposed in order to over-
come the non-linearity in high dimension. Starting from an
affine classifier, it is found that the minimal perturbation of
an affine classifier is the distance to the separating affine
hyperplane F = {x : wT x + b = 0}. The perturbation of
an affine classifier f can be η∗(x) = − f (x)

‖w‖2
w.

If f is a binary differentiable classifier, an iterative method
is used to approximate the perturbation by considering f is
linearized around xi at each iteration. The minimal perturba-
tion is given by:

argmin
ηi

‖ ηi ‖2 (11a)

s.t. f (xi)+∇f (xi)Tηi = 0 (11b)

This result can also be extended to the multi-class classifier
by finding the closest hyperplane. It can also be extended to
more general `p norm, p ∈ [0,∞).

D. CW ATTACK
Carlini and Wagner [11] invented a targeted attack to defeat
defensive distillation. CW attack is effective for most of
existing adversarial detecting defenses.

A new objective function g is defined so that:

min
η
‖ η ‖p + c · g(x + η) (12a)

s.t. x + η ∈ [0, 1]n (12b)

Where g(x ′) ≥ 0 if and only if f (x ′) = l ′, and l ′ is the
label of the adversarial class in targeted adversarial examples.
In this way, the distance and penalty term can be better opti-
mized. Among example objective functions g, an effective
function evaluated by the authors’ experiments can be:

g(x ′) = max(max
i6=l′

Z (x ′)i − Z (x ′)t − κ) (13)

Where κ is a constant to control the confidence.
A new variant w was proposed to avoid the box constraint,

where w satisfies η = 1
2 (tanh(w)+ 1)− x. General optimiz-

ers in deep learning were employed to produce adversarial

examples and conducted 20 iterations to reach an optimal c
by binary searching. However, they found that if the gradients
of ‖ η ‖p and g(x + η) are not in the same scale, it is hard to
find a suitable constant c in all of the iterations of the gradient
search and then get the optimal result. Due to this reason, two
of their proposed functions did not find optimal solutions for
adversarial examples.

The authors proposed `2 attack which can be given by:

min
w
‖
1
2
(tanh(w)+ 1) ‖2 + c · g(

1
2
(tanh(w)+ 1)) (14)

`∞ attack was also an iterative attack, which replaced the
`2 term with a new penalty in each iteration:

minc · g(x + η)+
∑
i

[(ηi − τ)+] (15)

For each iteration, they reduced τ by a factor of 0.9, if all
ηi < τ . `∞ attack considered τ as an approximate measure-
ment of `∞.

V. EVALUATION METHODOLOGY
A. NSL-KDD DATASET
One of the most used dataset to test intrusion detection algo-
rithms is the KDD’99 dataset [13] which was used from the
DARPA’98 IDS evaluation program. Researchers identified
two major drawbacks with the KDD’99 dataset [12]: an enor-
mous amount of redundant records are found both in the train-
ing and test data; some classes of attacks are too readily to
detect due to dataset imbalance. The NSL-KDD dataset [14],
which was an improved version of the KDD’99 dataset, was
proposed to overcome the limitation of the KDD’99 dataset
in two ways: all the redundant records from the training and
test data are removed; the records in the KDD’99 dataset are
rebalanced according to their difficulty levels of classifica-
tion, making it more reasonable and realistic for benchmark-
ing learning algorithms.

Each record in the NSL-KDD dataset has 41 features. The
detailed list of features is presented in Table 1. The features
belong to three major families [12]:
• Basic features are the ones related to connection infor-
mation such as hosts, ports, services used and protocols.

• Traffic features are the ones that are calculated as an
aggregate during a window interval. These are further
categorized as aggregates based on the same host and
aggregates over the same service. A notable difference
between KDD’99 and NSL-KDD dataset is that in the
latter, the time window was substituted with a connec-
tion window of the last 100 connections.

• Content features are extracted from the packet
data or payload and they are related to the content of
specific applications or the protocols used.

Each record in the NSL-KDD dataset is labeled with either
normal or a particular class of attack. The training data con-
tains 23 traffic classes that include 22 classes of attack and
one normal class. The test data contains 38 traffic classes that
include 21 attacks classes from the training data, 16 novel
attacks, and one normal class.

38370 VOLUME 6, 2018

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

TABLE 1. List of the NSL-KDD dataset.

B. NSL-KDD DATASET
1) ONE-HOT ENCODING
The features in the NSL-KDD dataset have three data types:
nominal, binary, and numeric. Binary data can be viewed
as variables that contain numeric values since a numeric
value is enough to indicate the presence (1) or absence (0)
of a specific status. Nominal data are variables that contain
categorical values rather than numeric values. Many machine
learning algorithms including neural networks cannot operate
on nominal data directly. So we use one-hot encoding to con-
vert nominal features to numeric feature. In the NSL-KDD
dataset, there are three nominal features: ‘‘protocol_type’’,
‘‘service’’, and ‘‘flag’’. We take the feature ‘‘protocol_type’’
as an example. It has three categorical values: ‘‘tcp’’, ‘‘udp’’,
and ‘‘icmp’’. By one-hot encoding, three new numeric fea-
tures are created to replace the original feature ‘‘proto-
col_type’’: ‘‘protocol_type_tcp’’, ‘‘protocol_type_udp’’, and

‘‘protocol_type_icmp’’. The binary value for each new
feature is an indicator of that corresponding protocol
type’s presence. Of the three new columns produced from
‘‘protocol_type’’, only one could take on the value 1 for
each sample. For example, the list of feature ‘‘proto-
col_type’’ for four samples [tcp, udp, icmp, udp] becomes
[[1,0,0,0],[0,1,0,1],[0,0,1,0]] in the one-hot

encoded form. Using one-hot encoding, the feature ‘‘ser-
vice’’ is transformed to 70 new features, and the feature
‘‘flag’’ to 11 new features. In this way, the 41-feature dataset
is mapped to a 122-feature dataset.

2) NORMALIZATION
After numericalization using one-hot encoding, the dataset
consists of numeric features whose values can be drawn from
different distributions, have different scales and, sometimes,
contaminated by outliers. If there are big differences in the

VOLUME 6, 2018 38371

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

TABLE 2. Classification of attack types.

ranges of different features and no outliers, features with
very large values may cause imbalanced results by some
classifiers. So we simply apply the min-max scaling to each
feature column, where the new normalized value xnorm can be
calculated as follows:

xnorm =
x − xmin

xmax − xmin
(16)

Here, x is a particular sample, xmin is the smallest value in a
feature column, and xmax the largest value, respectively. The
rescaling maps the features to a range of [0, 1].

3) CLASSIFICATION OF ATTACK TYPES
The attack types in the NSL-KDD dataset are classified into
four major families: Denial of Service (DOS), Probe, Remote
to Local (R2L), and User to Root (U2R) attacks:
• DOS attacks are attacks that target availability or prevent
legitimate users from accessing information or services.

• Probe attacks are attacks that aim at gathering informa-
tion by scanning or probing the network.

• R2L attacks are attacks that attempt to gain unauthorized
remote access to a local machine.

• U2R attacks are attacks that attempt to access normal
user account and exploit vulnerabilities in the system for
privilege escalation.

The detailed list of classified attack types is presented
in Table 2. After the classification, the 39 attack types are
transformed to the 4 attack labels.

4) PRE-PROCESSED DATASET SUMMARY
After one-hot encoding, normalization, and classification of
attack types, the problem was transformed to a 5-class classi-
fication problem where the 5 labels are ‘‘Normal’’, ‘‘DOS’’,
‘‘Probe’’, ‘‘R2L’’, and ‘‘U2R’’, and the 122 numeric features
fall into the range between 0 and 1. The dataset have the
training set and the test sets. The number of samples in the
training set is 125,973 and in the test set 22,544.

C. METHODOLOGY
Given that the number of samples in the dataset can
be considered sufficient, we use the simple holdout
cross-validation method to assess the model performance.
Specifically, we split the original training data into the train-
ing set which account for 90% of the original training set and

the validation set which for 10%. That is, the number of the
sample in the training set is 113,375 and in the validation
set 12,598.

Similar to most existing deep learning research, our
models and attack algorithms were implemented using
TensorFlow [15]. The experimental results were parsed and
analyzed in Python. All of our evaluations were performed on
a personal desktop without GPU acceleration.

In this paper, we only consider white-box attacks where
the target deep neural networks are known by the adver-
sary. We use multilayer perceptrons (MLPs) as the neural
network architecture for intrusion detection. The MLPs are
constructed with two hidden layers and each layer contains
256 neural units. The activation function of each hidden unit
is Rectified Linear Unit (ReLU). For regularization, a dropout
layer with the dropout rate of 0.4 is adopted after each hidden
layer. The dropout layers are applied to control over-fitting
by removing an individual unit with an arbitrary probability
while training the network. A softmax layer is employed
after the logits layer as the output of the classifier. The
optimizer, the batch size, and the learning rate used in training
the networks is ADAM, 128, and 0.001 respectively. The
cross-entropy cost function is used as the loss function to be
minimized by training.

First, we feed the training dataset to the deep neural net-
works and allow enough epochs to obtain the well-trained
deep neural networks. The deep neural networks are used as
the target of attacks as well as the baseline of our evaluations.
Then we implement the four attack algorithms and use them
respectively to generate the adversarial examples from the test
dataset based on the deep neural networks. Finally, we evalu-
ate the performance of the classifier using both the test dataset
and the adversarial examples.

D. METRICS
The performance evaluation is conducted based on the fol-
lowing metrics:

• True Positive (TP) - Attack data that is correctly classi-
fied as an attack.

• False Positive (FP) - Normal data that is incorrectly
classified as an attack.

• True Negative (TN) - Normal data that is correctly clas-
sified as normal.

38372 VOLUME 6, 2018

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

• False Negative (FN) - Attack data that is incorrectly
classified as normal.

The confusion matrix of a binary classifier is defined
in Table 3, which can be generalized to the confusion matrix
of a multi-class classifier.

TABLE 3. Confusion matrix of a binary classifier.

The following measures are used to evaluate the perfor-
mance of the classifier:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(17)

The accuracy measures the proportion of the total number
of correct classifications.

Precision =
TP

TP+ FP
(18)

The precision measures the number of correct classifica-
tions penalized by the number of incorrect classifications.

Recall =
TP

TP+ FN
(19)

The recall measures the number of correct classifications
penalized by the number of missed entries.

FalseAlarm =
FP

FP+ TN
(20)

The false alarm measures the proportion of benign events
incorrectly classified as malicious.

F − score = 2 ·
Precision · Recall
Precision+ Recall

(21)

The F-score measures the harmonic mean of precision and
recall, which serves as a derived effectiveness measurement.

VI. RESULTS AND DISCUSSION
A. CLEAN DATA
We start with the performance of deep neural networks whose
input is the clean data. The count of samples belonging to
each label is summarized in Table 4. The metrics for the MLP
classifier on the clean dataset are presented in Table 5.

ROC curves are typically used in binary classification to
study the output of a classifier. In order to extend ROC curve
and ROC area to multi-class or multi-label classification,
it is necessary to binarize the output. One ROC curve can
be drawn per label, but one can also draw a ROC curve
by considering each element of the label indicator matrix
as a binary prediction (micro-averaging). Another evaluation
measure for multi-class classification is macro-averaging,

TABLE 4. Number of samples in the training and test set.

TABLE 5. Metrics for the MLP classifier on the clean dataset.

which gives equal weight to the classification of each label.
The ROC curves for the MLP classifier on the clean dataset
are shown in Fig. 1.

FIGURE 1. ROC curves for the MLP classifier on the clean dataset.

B. JSMA ATTACKS
1) ATTACKS FROM SCRATCH
We first investigate the performance of JSMA attacks from
scratch. During each iteration, the JSMA method finds the
feature that has the most influence on the result (most salient
feature) and add noise to the feature. We set the maximum
epochs to 100 and the noise added to input per epoch to 0.5.
Theminimum andmaximum values in output tensor are set to
0.0 and 1.0 respectively.We let the original sample be a single

VOLUME 6, 2018 38373

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

TABLE 6. Adversarial samples produced by JSMA from scratch.

TABLE 7. Metrics for the MLP classifier on the JSMA-generated dataset.

sample whose features are all set to zero. The adversarial
samples produced by JSMA for each target label have their
probability and altered features listed in Table 6. We can see
that only 9 out of the 122 features are needed to ensure 100%
probability ofmisguiding the deep neural networks to the four
target classes: ‘‘Normal’’, ‘‘DOS’’, ‘‘Probe’’, and ‘‘R2L’’.
However, it is not so easy to fool the deep neural networks
into the ‘‘U2R’’ class as the success rate is 0.44 with the min-
imum L0 constraint. We find that three basic features (namely
‘‘Duration’’, ‘‘Wrong_fragment’’, and ‘‘Service_IRC’’), four
content features (namely Num_compromised, Su_attempted,
Num_root, and Num_access_files), and two traffic fea-
tures (‘‘Srv_count’’ and ‘‘Diff_srv_rate’’) count for JSMA
attacks. Note that no host based traffic features are exploited
and that seems to indicate that host based traffic features
weight less in the deep neural network based classifiers.

2) ATTACKS FROM ORIGINAL SAMPLES
We set the test set as the original samples and use the JSMA
algorithm to generate the adversarial samples. To evaluate
the overall performance of the JSMA attacks, we choose a
random target label for each adversarial sample. During each
iteration, the JSMAmethod finds the feature that has the most
influence on the result (most salient feature) and add noise to
the feature. We set the maximum epochs to 30 and the noise

FIGURE 2. ROC Curves for the MLP classifier on the JSMA-generated
dataset.

FIGURE 3. L0 norm for the JSMA-generated dataset.

added to input per epoch to 1.0. The minimum and maximum
values in output tensor are set to 0.0 and 1.0 respectively.

The metrics for the MLP classifier on the JSMA-generated
dataset are presented in Table 7.We can see that JSMAattacks
successfully degrade the performance of MLP classifier.

38374 VOLUME 6, 2018

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

FIGURE 4. Top 60 features altered for the JSMA-generated dataset.

The ROC curves for the MLP classifier on the JSMA-
generated dataset are shown in Fig. 2. The values of AUC
(Area Under Curve) for all classes are suppressed to around
0.5 under JSMA attacks. The distribution of the L0 norm
is shown in Fig. 3. The mean L0 norm is 27.36 while the
number of unique features changed over all samples is 119.
The top 60 features that are frequently chosen by adversarial
examples are depicted in Fig. 4. The hit rate in Fig. 4 is highly
skewed towards a small set of features. Note that 18 out of the
top 60 features are virtually derived from one original feature
‘‘service’’ (before being one-hot encoded).

C. FGSM ATTACKS
1) UNTARGETED ATTACKS
Wefirst consider the untargeted version of the FGSM attacks.
The scale factor for noise is set to 0.02. The maximum epoch
is set to 12. We use gradient sign to generate the adversarial
examples. The minimum and maximum values in output
tensor are set to 0.0 and 1.0 respectively.

The metrics for the MLP classifier on the untargeted
FGSM-generated dataset are presented in Table 8. A great
performance degrading can be found in Table 8 compared
with the clean dataset shown in Table 5. Fig. 5 illustrates
the ROC curves for the MLP classifier on the untargeted

FIGURE 5. ROC curves for the MLP classifier on the untargeted
FGSM-generated dataset.

FGSM-generated dataset. We can find in Fig. 5 that the
values of AUC for class normal and class dos are even fur-
ther decreased to 0.21 and 0.15 respectively while average
AUC and the AUCs for the remaining classes stay at around
0.5. The L∞ for which the MLP classifier are optimized by
the FGSM attacks has its mean as 0.2401 and its variance
as 0.00015. That result means that all samples are evenly

VOLUME 6, 2018 38375

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

FIGURE 6. Top 60 features altered for the untargeted FGSM-generated dataset.

perturbed by the untargeted FGSM attacks in terms of L∞.
The number of unique features changed is 122 and the num-
ber of average features changed per datapoint is 74.80. The
top 60 features that are frequently chosen by adversarial
examples are presented in Fig. 6.We find that 45 out of the top
60 features are those generated by one-hot encoding from the
original feature ‘‘service’’. That indicates a greater weight of
feature ‘‘service’’ in generating adversarial examples by the
untargeted FGSM attacks than by the JSMA attacks shown
in Fig. 4. Besides, the choice rate of top features are more
evenly distributed in Fig. 6 than in Fig. 4.

2) LEAST-LIKELY ATTACKS
For the targeted FGSM attacks, we first examine the attacks
which set the desired target label to the least-likely class. The
scale factor for noise is set to 0.02. The maximum epoch is
set to 12. We use gradient sign to generate the adversarial
examples. The minimum and maximum values in output
tensor are set to 0.0 and 1.0 respectively.

The metrics for the MLP classifier on the least-likely
targeted FGSM-generated dataset are presented in Table 9.
Fig. 7 illustrates the ROC curves for the MLP classifier on
the least-likely targeted FGSM-generated dataset. Comparing
Fig. 7 against Fig. 5, we can see the least-likely targeted

FIGURE 7. ROC curves for the MLP classifier on the least-likely targeted
FGSM-generated dataset.

FGSM attacks demonstrate greater overall adversarial power
than the untargeted FGSM attacks in terms of the average
AUC. The L∞ optimized by the least-likely targeted FGSM
attacks has its mean as 0.240 and its variance as 0.00013 both
of which are almost equivalent to those of the untargeted
FGSM attacks. That result means that all samples are evenly
perturbed by the untargeted FGSM attacks in terms of L∞.

38376 VOLUME 6, 2018

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

FIGURE 8. Top 60 features altered for the least-likely targeted FGSM-generated dataset.

The number of unique features changed is 122 and the num-
ber of average features changed per datapoint is 76.85. They
are also very close to or even the same as those of the untar-
geted FGSM attacks. The top 60 features that are frequently
chosen by adversarial examples are presented in Fig. 8. The
features listed in Fig. 8 and those in Fig. 6 have much overlap.

3) RANDOM-TARGET ATTACKS
We then consider the attacks which randomly select the
desired target label. The scale factor for noise is set to 0.02.

The maximum epoch is set to 8. We use gradient sign
to generate the adversarial examples. The minimum and
maximum values in output tensor are set to 0.0 and 1.0
respectively.

The metrics for the MLP classifier on the random-
targeted FGSM-generated dataset are presented in Table 10.
Fig. 9 illustrates the ROC curves for the MLP classifier on
the random-targeted FGSM-generated dataset. Comparing
Fig. 9 against Fig. 7, we can identify obvious better perfor-
mance of the MLP classifier in Fig. 9 than that in Fig. 7 since
all AUC values in Fig. 9 are improved. That is because a
random target label is not always the least-likely label which
is the best target label used to fool the classifier. The L∞
optimized by the random-targeted FGSM attacks has its mean

FIGURE 9. ROC curves for the MLP classifier on the random-target
FGSM-generated dataset.

as 0.16 and its variance as 0.00016. The number of unique
features changed is 122 and the number of average features
changed per datapoint is 76.70.

They are also very close to or even the same as those
of both the untargeted and the least-likely targeted FGSM
attacks. The top 60 features that are frequently chosen by
adversarial examples are presented in Fig. 10. The features

VOLUME 6, 2018 38377

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

FIGURE 10. Top 60 features altered for the random-target FGSM-generated dataset.

TABLE 8. Metrics for the MLP classifier on the untargeted
FGSM-generated dataset.

listed in Fig. 8 and those in both Fig. 6 and Fig. 10 have much
overlap.

D. DEEPFOOL ATTACKS
In our evaluation of DeepFool attacks, we set the small over-
shoot value to cross the boundary to 0.01. The maximum
epoch is set to 3. The minimum and maximum values in
output tensor are set to 0.0 and 1.0 respectively. Theminimum
probability for adversarial samples is set to 0.

TABLE 9. Metrics for the MLP classifier on the least-likely targeted
FGSM-generated dataset.

The metrics for the MLP classifier on the DeepFool-
generated dataset are shown in Table 11. Fig. 11 illustrates
the ROC curves for the MLP classifier on the DeepFool-
generated dataset. In Fig. 11, the AUCs for both class normal
and class dos are very small compared with the average AUC
and the AUCs for the other classes. The L2 optimized by
the DeepFool attacks has its mean as 0.773 and its variance
as 0.0376. Its distribution is shown in Fig. 12 The number of
unique features changed is 122 and the number of average

38378 VOLUME 6, 2018

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

TABLE 10. Metrics for the MLP classifier on the random-target
FGSM-generated dataset.

TABLE 11. Metrics for the MLP classifier on the deepfool-generated
dataset.

FIGURE 11. ROC curves for the MLP classifier on the DeepFool-generated
dataset.

features changed per datapoint is 62.31. The top 60 features
that are frequently chosen by adversarial examples are pre-
sented in Fig. 13.

E. CW ATTACKS
In our evaluations of CWAttacks, we set the scaling factor for
the second penalty term to 3.0. The p− norm is set to 2. The
temperature for sigmoid function is set to 2.We use the Adam
optimizer with learning rate 0.1 to minimize the CW loss. The
minimum confidence of adversarial examples is set to 0. The
maximum epoch is set to 100. To facilitate the evaluation of

FIGURE 12. L2 norm for the DeepFool-generated dataset.

overall performance of the CW attacks, we randomly choose
a target label for each adversarial example.
L0 Norm:
For the L0-norm CW attacks, we set the decreasing factor

for the upper bound of noise to 0.9.
The metrics for the MLP classifier on the L0-norm

CW-generated dataset are shown in Table 12. Fig. 14 illus-
trates the ROC curves for the MLP classifier on the L0-norm
CW-generated dataset. Table 12 and Fig. 14 show lim-
ited adverse impacts of the L0-norm CW attacks on the
MLP classifier, especially compared with other attacks dis-
cussed above. The L0 optimized by the CW attacks has its
mean as 115.10 and its variance as 1.655. Its distribution is
shown in Fig. 15. The number of unique features changed is
122 and the number of average features changed per datapoint
is 115.10. The top 60 features are chosen by all adversarial
examples.
L2 Norm:
The metrics for the MLP classifier on the L2-norm

CW-generated dataset are shown in Table 13. Fig. 16 illus-
trates the ROC curves for the MLP classifier on the L2-norm
CW-generated dataset. Table 13 and Fig. 16 indicate similar
performance of the L2-norm CW attacks with the L0-norm
CW attacks. The L2 optimized by the CW attacks has its
mean as 1.09 and its variance as 0.499. Its distribution is
shown in Fig. 17. The number of unique features changed is
122 and the number of average features changed per datapoint
is 115.10. The top 60 features are chosen by all adversarial
examples.
L∞ Norm:
The metrics for the MLP classifier on the L∞-norm

CW-generated dataset are shown in Table 14. Fig. 18 illus-
trates the ROC curves for the MLP classifier on the L∞-norm
CW-generated dataset. The L∞ optimized by the CW attacks
has its mean as 0.70 and its variance as 0.161. Its distri-
bution is shown in Fig. 19. The number of unique features
changed is 122 and the number of average features changed
per datapoint is 115.10. The top 60 features are chosen by all
adversarial examples.

VOLUME 6, 2018 38379

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

FIGURE 13. Top 60 features altered for the DeepFool-generated dataset.

TABLE 12. Metrics for the MLP classifier on the L0-norm CW-generated
dataset.

F. DISCUSSION
Besides the detailed analysis above, we can reach the fol-
lowing key findings when comparing the results among all
attacks examined:
• CW attacks seem to be less devastating than the other
three attacks. However, it was reported to be more robust
against some state-of-the-art defenses.

• The use of features in generating adversarial examples
are comparatively more imbalanced by JSMA attacks
than by the other three attacks. In particular, CW attacks
tend to indiscriminately use all features even if they

FIGURE 14. ROC curves for the MLP classifier on the L0-norm
CW-generated dataset.

are optimized for L2. Consider the fact that it would
generally be easy for attackers to manipulate a small
subset of features than a large one. In this way, JSMA
attacks are more attractive for attackers.

• To illustrate the most used features across different
attacks, we compute the intersections of all combina-
tions of at least two attacks in Table 15. As the CW
attacks do not select features, we do not show the CW

38380 VOLUME 6, 2018

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

FIGURE 15. L0 norm for the L0-norm CW-generated dataset.

TABLE 13. Metrics for the MLP classifier on the L2-norm CW-generated
dataset.

FIGURE 16. ROC curves for the MLP classifier on the L2-norm
CW-generated dataset.

attacks In Table 15. In Table 15, the upper right cells
which are colored in yellow are the intersection of the
corresponding two attacks, the lower left cells which are
colored in blue are the intersection of the three attacks
excluding the corresponding two attacks, and the trian-
gle cells which are colored in green are the intersection
of the four attacks excluding the corresponding attacks.
The commonly used features for all the five attacks
include ‘‘dst_bytes’’, ‘‘dst_host_same_src_port_rate’’,
‘‘dst_host_srv_count’’, ‘‘src_bytes’’, ‘‘srv_count’’,

FIGURE 17. L2 norm for the L2-norm CW-generated dataset.

TABLE 14. Metrics for the MLP classifier on the L∞-norm CW-generated
dataset.

FIGURE 18. ROC curves for the MLP classifier on the L∞-norm
CW-generated dataset.

‘‘dst_host_rerror_rate’’, and ‘‘dst_host_same_srv_rate’’.
The intersections in some way indicate the similarities
among different attacks. And the 7 common features
imply the intrinsic properties of any attacks targeting
deep neural networks. That is, the features can be con-
sidered as the major contributors when attackers attempt
to generate adversarial samples.

Among the commonly used features, we discuss how an
adversary can manipulate any of them. ‘‘dst_bytes’’ and
‘‘src_bytes’’ represent the traffic rate between the source and

VOLUME 6, 2018 38381

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

TABLE 15. Intersection matrix of top 60 features altered for different attacks. The upper right cells which are colored in yellow are the intersection of the
corresponding two attacks, the lower left cells which are colored in blue are the intersection of the three attacks excluding the corresponding two attacks,
and the triangle cells which are colored in green are the intersection of the four attacks excluding the corresponding attacks.

the destination. An adversary needs to suppress its traffic
rate in a limited degree in order to fool the deep neural
networks. ‘‘srv_count’’ represents the number of connections
to the same service. It implies that a slightly limited count
of connections is required for an adversary to generate the
misclassification results. Similarly, ‘‘dst_host_srv_count’’
which means the host based count of connections to
the same service is also subject to minor change in the
adversarial attempts. ‘‘dst_host_same_src_port_rate’’ and

‘‘dst_host_same_srv_rate’’ give the rate of connections
corresponding to the same service and port and the
same service respectively. Therefore an adversary needs to
slightly tweak the distribution of connections among ser-
vices and ports for a better success rate of misclassifica-
tion. ‘‘dst_host_rerror_rate’’ manifests the host based error
rate of connections. It means an adversary should mod-
estly constrain its error connections for a better chance of
misclassification.

38382 VOLUME 6, 2018

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

TABLE 15. (Continued.) Intersection matrix of top 60 features altered for different attacks. The upper right cells which are colored in yellow are the
intersection of the corresponding two attacks, the lower left cells which are colored in blue are the intersection of the three attacks excluding the
corresponding two attacks, and the triangle cells which are colored in green are the intersection of the four attacks excluding the corresponding attacks.

VOLUME 6, 2018 38383

Z. Wang: Deep Learning-Based Intrusion Detection With Adversaries

FIGURE 19. L∞ norm for the L∞-norm CW-generated dataset.

While we focus on adversarial examples against a constant
known model in this study, it is possible that adversarial
examples targeting one model will also mislead other models.
It was first reported by Szegedy et al. [6] that adversar-
ial examples generated based on a neural network can fool
the same neural networks trained by different datasets. The
property of transferring adversarial examples across different
models is called transferability. Papernot et al. [9] discovered
another sort of transferability which let adversarial examples
generated based on a neural network apply to other neural
networks with different architectures, even other classifiers
trained by different machine learning algorithms. In some
way, transferability can be leveraged to turn black-box attack
to white-box attacks. In the black-box attack setting, the
adversary has no knowledge of the target model (e.g. archi-
tecture and parameters) and no access to the training dataset.
Nevertheless, the adversary can construct adversarial exam-
ples based on a self-made model (which intends to mimic
the target model) and train the model using a dataset which
has some similarity with the training dataset used by the
target model. Then thanks totransferability, those adversarial
examples which are crafted targeting the self-made model are
also likely to fool the target model. Thus, the white-box attack
studied in this paper is also meaningful for a pure black-box
attack.

VII. CONCLUSION AND FUTURE WORK
In this paper, we evaluated the state-of-the-art attack algo-
rithms in the deep learning based intrusion detection domain.
We found the attack algorithms, which were originally
proposed to fool the deep learning based image classifier,
demonstrated different levels of effectiveness in the intrusion
detection domain. We identified the different feature usage
patterns for the attack algorithms. In practice, an adversary
has limited resources and capability to manipulate features.
So altering a large set of features is less practical for an
adversary in most cases. As JSMA attacks tend to heavily use
a limited set of features, they are relatively more attractive for
an adversary in terms of usability and applicability. We also
noted the varying degrees of significance across features in

terms of their rates of being selected to be perturbed by an
adversary. The most commonly used features indicate they
contributemore to the vulnerability of the deep learning based
intrusion detection and therefore they deserve more attention
and better protection in the detection and defense efforts.

As transferability is often fundamentally critical for black-
box attacks, the future work will focus on the transferabil-
ity of adversarial examples in deep learning based intrusion
detection. It will be studied in three dimensions: 1) transfer-
ability within the same neural network trained with different
inputs; 2) transferability among different neural networks;
3) transferability between well-known conventional machine
learning algorithms (i.e., random forest, SVM, decision tree)
and deep neural networks.

REFERENCES
[1] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, ‘‘A deep learning approach to

network intrusion detection,’’ IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 2, no. 1, pp. 41–50, Feb. 2018.

[2] C. Yin, Y. Zhu, J. Fei, and X. He, ‘‘A deep learning approach for intru-
sion detection using recurrent neural networks,’’ IEEE Access, vol. 5,
pp. 21954–21961, 2017.

[3] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, ‘‘A deep learning approach
for network intrusion detection system,’’ in Proc. 9th EAI Int. Conf. Bio-
Inspired Inf. Commun. Technol. (BICT), 2015, pp. 21–26.

[4] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
‘‘Deep learning approach for network intrusion detection in software
defined networking,’’ in Proc. Int. Conf. Wireless Netw. Mobile Com-
mun. (WINCOM), Oct. 2016, pp. 258–263.

[5] Y. LeCun et al., ‘‘Backpropagation applied to handwritten zip code recog-
nition,’’ Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[6] C. Szegedy et al. (2013). ‘‘Intriguing properties of neural networks.’’
[Online]. Available: https://arxiv.org/abs/1312.6199

[7] I. J. Goodfellow, J. Shlens, and C. Szegedy. (2014). ‘‘Explaining
and harnessing adversarial examples.’’ [Online]. Available: https://arxiv.
org/abs/1412.6572

[8] A. Kurakin, I. Goodfellow, and S. Bengio. (2016). ‘‘Adversarial
examples in the physical world.’’ [Online]. Available: https://arxiv.
org/abs/1607.02533

[9] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, ‘‘The limitations of deep learning in adversarial settings,’’ in
Proc. IEEE Eur. Symp. Secur. Privacy, Nov. 2015, pp. 372–387.

[10] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, ‘‘DeepFool: A simple
and accurate method to fool deep neural networks,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2574–2582.

[11] N. Carlini and D. Wagner, ‘‘Towards evaluating the robustness of neural
networks,’’ in Proc. IEEE Symp. Secur. Privacy, Mar. 2017, pp. 39–57.

[12] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, ‘‘A detailed analysis
of the KDD CUP 99 data set,’’ in Proc. IEEE Symp. Comput. Intell. Secur.
Defense Appl. (CISDA), Jul. 2009, pp. 1–6.

[13] KDD Cup 99 Dataset. Accessed: Apr. 21, 2018. [Online]. Available:
http://kdd.ics.uci.edu/ databases/kddcup99/kddcup99.html

[14] NSL-KDD Dataset. Accessed: Apr. 21, 2018. [Online]. Available:
http://www.unb.ca/cic/research/datasets/nsl.html

[15] TensorFlow. Accessed: Apr. 21, 2018. [Online]. Available:
https://www.tensorflow.org

ZHENG WANG received the Ph.D. degree in com-
puter science from the Computer Network Infor-
mation Center, Chinese Academy of Sciences,
in 2010. He is currently a Research Associate with
the Information Technology Laboratory, National
Institute of Standards and Technology, USA. He is
a Co-Inventor of six patents and had co-authored
over 30 academic papers. His research interests
include security and privacy, machine learning,
network measurement, and Internet naming and
addressing.

38384 VOLUME 6, 2018

	INTRODUCTION
	RELATED WORK
	BACKGROUND
	NEURAL NETWORKS AND NOTATION
	ADVERSARIAL EXAMPLES
	DISTANCE METRICS

	ATTACK ALGORITHMS
	FAST GRADIENT SIGN METHOD (FGSM)
	JACOBIAN-BASED SALIENCY MAP ATTACK (JSMA)
	DEEPFOOL
	CW ATTACK

	EVALUATION METHODOLOGY
	NSL-KDD DATASET
	NSL-KDD DATASET
	ONE-HOT ENCODING
	NORMALIZATION
	CLASSIFICATION OF ATTACK TYPES
	PRE-PROCESSED DATASET SUMMARY

	METHODOLOGY
	METRICS

	RESULTS AND DISCUSSION
	CLEAN DATA
	JSMA ATTACKS
	ATTACKS FROM SCRATCH
	ATTACKS FROM ORIGINAL SAMPLES

	FGSM ATTACKS
	UNTARGETED ATTACKS
	LEAST-LIKELY ATTACKS
	RANDOM-TARGET ATTACKS

	DEEPFOOL ATTACKS
	CW ATTACKS
	DISCUSSION

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	ZHENG WANG

