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ABSTRACT In this paper, we study the reliability of a novel deep learning framework for internal gross target
volume (IGTV) delineation from 4-D computed tomography (4DCT), which is applied to patients with lung
cancer treated by stereotactic body radiation therapy (SBRT). Seventy seven patients who underwent SBRT
followed by 4DCT scans were incorporated in this retrospective study. The IGTV_DL was delineated using
a novel deep machine learning algorithm with a linear exhaustive optimal combination framework. For the
purpose of comparison, three other IGTVs based on commonmethods was also delineated.We compared the
relative volume difference (RVI), matching index (MI), and encompassment index (EI) for the above IGTVs.
Then, multiple parameter regression analysis was performed to assess the tumor volume and motion range
as clinical influencing factors in the MI variation. The results demonstrated that the deep learning algorithm
with linear exhaustive optimal combination framework has a higher probability of achieving optimal MI
compared with other currently widely used methods. For patients after simple breathing training by keeping
the respiratory frequency in 10 breath per minute (BPM), the four phase combinations of 0%, 30%, 50%
and 90% can be considered as a potential solution for an optimal combination to synthesize IGTV in all
respiration amplitudes.

INDEX TERMS Deep learning, computed tomography, algorithm, stereotactic ablative radiotherapy, internal
gross target volume, lung cancer.

I. INTRODUCTION
Surgical resection has been accepted as a standard of care for
early stage of non-small cell lung cancer (NSCLC) with a
5-year survival rate of 50-80% [1], [2]. For patients having
NSCLC who are unable or unwilling to receive surgery,
SBRT has become one of the best alternative treatment
options. Recently, a randomized phase III trial of SBRT
for patients with operable stage I NSCLC showed a bet-
ter overall and recurrence-free survival rate at 3 years with
an acceptably reasonable relevant treatment-related adverse

events as compared to the surgery group [3]. However, precise
delineation of the tumor volume in an efficient way still
poses a major challenge in these SBRT cases, especially for
institutions that were not equipped with deformable image
registration systems. One of the crucial factors that cause
problems in the accurate delineation of the target volume
is tumor movement-induced geometric uncertainties due to
irregular respiration patterns [4].

To compensate the geometric and motion deviation from
target, a larger target volume is usually contoured, thus
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hindering the delivery of the optimal SBRT dose due to the
unnecessary partial volumes of surrounding organs-at-risk
involved inside the treatment fields [3]. In the past ten years,
four-dimensional computed tomography (4DCT) scanning
technique has been used to acquire the information of motion
induced organ distortion related to respiration. Various meth-
ods to delineate the tumor target on the 4DCT datasets in
planning process have been investigated [7]–[11].

The relatively accurate and well-accepted method for
determining internal gross target volume (IGTV) is to inte-
grate contours from all 10 phases of the 4DCT dataset.
However, this method is time consuming and requires great
effort due to the workload incurred on the radiation oncolo-
gists. In contrast, the commercial packages offer much faster
approaches that are routinely utilized, e.g. contouring onMIP
(maximum intensity projection) images and validating the
contours with fly-through movie, or contouring on one phase
and applying this contour to other phases via deformable
registration (based on the MIM_SOFTWARETM). However,
the so-called rapid commercial software processing method
cannot be applied to all kinds of respiratory motion patterns,
such as in some irregular motion pattern cases even at the
expense of the delineation accuracy.

At present, with the development of computer aided image
processing technology, the main methods of image segmenta-
tion are as follows: (1) Threshold based segmentation method
(Threshold) [12]; (2) Edge based segmentationmethod (edge-
detecting) [13]; (3) Region based segmentation method [14];
(4) Image segmentation method based on clustering anal-
ysis (Clustering) [15]; (5) Segmentation method based on
Wavelet Transform [16]; and (6) Segmentation method based
on mathematical morphology [17]. The advantage of the
aforementioned non machine learning algorithms are that
they can achieve more accurate segmentation by adjusting the
computing parameters. Obviously, the drawback is that the
segmentation parameters need manual adjustment because
of different image contents involved. As such, it is difficult
to achieve fully automatic streamlined process. Therefore,
we proposed that the transfer learning in a machine learning
framework can be adopted to improve the accuracy and effi-
ciency of the tumor delineation in 4DCT. The development of
convolutional neural network layers has achieved significant
performance in image classification and tumor segmentation
for a given DICOM image [18], [19]. In these methods,
multiple neural layers with image analysis filters, or convo-
lutions, are applied. The abstracted features of images within
each neural layer are extracted by systematically constructing
multiple filters across the image. A feature map generated can
be used as new input to the following layer. In this study, a
convolutional neural network trained on the ImageNet dataset
of 20,000 categories was adapted to significantly increase
the accuracy of tumor delineation and shorten the training
duration of same network trained on the dataset of 4DCT
images using the TensorflowTM. Firstly, we adopted an incep-
tion V3 architecture to pre-train on the ImageNet dataset [20].
Secondly, we investigated whether or not the discrete linear

exhaustionmethod can achieve an optimal phase combination
for delineation of IGTV in a more efficient and accurate
way. In summary, this study demonstrated the reliability and
feasibility of this framework from a perspective of clinical
practice.

II. MATERIAL AND METHODS
A. PATIENTS DEMOGRAPHICS
A total of 77 patients with NSCLC (42 males and 35 females;
average age: 58 years, range: 41-76 years) who received
SBRT were included in this retrospective study. According
to the TNM staging system of Union for International Cancer
Control, 37 patients were diagnosed at stage I and 40 patients
were at stage II (Table 1). Patients with tumors having a
diameter of the transverse cross section larger than 6 cm were
excluded from this study. All clinical treatment protocols
were approved by the ethics committee of the hospital and
informed consents were obtained from the patients or their
authorized family members. Computer aided lung boundary
extraction and automatic segmentation was implemented in
each transverse section for each patient. This work was done
in 10 phases from 0% to 90% phases and the minimum length
of the tumor was more than 2 cm in the research cohort.
All patients underwent respiratory training before 4D CT
Scanning, and the respiratory frequency was controlled at
about 10 breaths per minute (BPM). This stems from the fact
the frequency is easier to train, whereas amplitude training is
more difficult for patients with poor lung function.

TABLE 1. Clinical characteristics of patients in research cohort.

B. COMPUTED TOMOGRAPHY (CT) SIMULATION
Prior to treatment planning, all patients underwent 4D CT
imaging acquisition. Before scanning, patients were
positioned head-first and supine in a customized hot plastic
immobilization device. They were subsequently trained to
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breathe normally within a relatively consistent respiration
frequency under the assistance of our in-house developed
Respiration Training and Monitoring System (RTMS). The
respiration of the patients was registered with a special
bellyband tied around the upper abdomen near the cartilage
ossiform, which measured the stretching force changes dur-
ing inhalation and exhalation. The CT scanner (Brilliance CT
Big Bore; Philips Medical Systems, Cleveland, OH, USA)
acquired the images in the helical scanning mode with the
parameters of 130 kV, 240 mA, 3-mm slice thickness, and
0.5s gantry rotation. The scanning pitch was computed based
on a well-established formula [21].

C. TRANSFER LEARNING METHODS
Using TensorflowTM, we implemented an inception V3
architecture pre-trained on the ImageNet dataset. Retraining
process consisted of initializing the convolutional layers with
loaded pre-trained weights and retraining the final layers.
The newly initialized network then takes the DICOM images
of the patients with NSCLC as input and retrains layers
in order to delineate the IGTV. Attempts to ‘‘fine-tuning’’
the convolutional layers were conducted by unfreezing and
updating the pre-trained weights on our medical images using
backpropagation tended to decrease model performance due
to overfitting. The Inception model was implemented on an
Ubuntu 16.04 computer with 28 Intel Xeon Core i7 CPUs,
utilizing a 2 NVIDIA Geforce GTX 1080980 Ti 8Gb GPU
for training and testing, with 256Gb available in RAM mem-
ory. Training of layers was performed by stochastic gradi-
ent descent in batches of 20,000 images per step using an
AdamOptimizer with a learning rate of 0.001. By interpreting
the output of the convolutional network as a model for the
distribution over segmentation labels, the pixel of the tumor
region is defined as 1, and the other regions are defined as 0,
a natural training criterion is to maximize the probability of
all labels in our training set or, equivalently, to minimize
the negative log-probability −log p(Y | X ) =

∑
ij −log

p(Yij | X ) for each labeled lung tumor, where ‘‘ij’’ was
the coordinate of the pixel, X stands for the golden margin
randomly pre-delineated by one of the senior radiologists
(n = 17). Y is the contour outlined by the trained machine,
if the machine learned contour is consistent with the golden
margin, the according pixel value, the output of the function
is 1, otherwise, if the result is inconsistent, the output is 0.
Training on all categories of ROI segmentation was run for
120,000 steps, or 100 epochs.

Iterations were run through the entire training dataset.
The process was demonstrated in Fig.1. The training of
the final layers were converged for all classes. Hold-
out method testing was performed after each step using
a partitioning test containing images from subjects inde-
pendent of the patients, which represented in the train-
ing partition by passing each image through the net-
work without performing gradient descent and backpropa-
gation. Finally, the best performing model was retained for
analysis.

FIGURE 1. Demonstration of the trained neural network for delineation
of GTV in 4DCT.

D. TARGET VOLUME DELINEATION
A training set comprising 45 patients is based on the GTVs
that have been pre-delineated manually in each phase as
the tumor margin by senior radiologists (n=17) with more
than 10 years’ experience in radiotherapy. Meanwhile, tumor
boundary extraction and delineation of GTVAI was per-
formed in the same transverse slice and small pulmonary
nodules and bronchial images were excluded by the com-
puter automatically. All the GTV delineation was done in
the same window width and level according to the tumor
location: Lung window width: 1500-2000HU, window level:
450-600HU (tumor in the lung lobe); mediastinum window
width:250-350HU window level: 30-50HU (tumor near the
mediastinum or diaphragm and liver). In order to evaluate our
trained model in the context of clinical experts, a validation
group of 20 NSCLC patients with more than 15,000 images
independent of the patients in the training set was also used
to compare our machine learning delineation with the con-
touring delineated by human experts. Note that the experts
‘‘A’’ and ‘‘B’’ were randomly selected from 17 radiologists,
and was assigned to re-delineate the GTV for patients in the
validation cohort. MI was also used to reflect the accuracy of
trained model by comparing GTVs contoured by the machine
with human being (experts ‘‘A’’ and ‘‘B’’). Only when the
MI >= 0.95 was satisfied, the model was considered to meet
the requirements of clinical utilities. Finally, four IGTVswere
generated for analysis as follows:

(1) IGTV10_DL formed from GTVAI by machine learn-
ing with linear exhaustive optimal combination framework.
To evaluate the accuracy of IGTV10_DL, three additional
IGTVs were also delineated for comparison purpose.

(2) IGTV10_E1 (experts A) was contoured on all 10 respi-
ratory phases of the 4DCT images by a senior radiologist with
10 years of experience in radiotherapy and target delineation.

(3) IGTV10_E2 (experts B) was also delineated in all
10 respiratory phases by another senior radiologist with
20 years of experience in lung tumor diagnosis and target
countering.

(4) IGTV10_DEF (deformable) was automatically formed
via elastic deformation registration technique using MIM
SOFTWARETM.
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(5) IGTV10_HB was defined in the following manner:
the average volume and tumor boundary of IGTV10_E1 and
IGTV10_E2 that are delineated as IGTV10_HB (Human
Being) were used as reference volumes.

E. DISCRETE LINEAR EXHAUSTION METHOD (DLEM)
DLEM is a key algorithm in linear exhaustive optimal combi-
nation framework, theoretically, the IGTV can be combined
with 1 to 10 phases. According to the principle of permu-
tation and combination, a total of 1023 combinations can be
formed, so there are 1023 IGTV possibilities for each patient.
In order to facilitate the statistical analysis, a 32 × 32 matrix
is constructed, and 10 regions were carved up according
to the amount of phase combination for each patient. Each
element in the matrix is corresponding to a certain IGTV
with a specific combination of 10 phases to ensure that each
patient’s IGTV have the same coding order. The coordinate of
each element in a matrix and the region in which it is located
are fixed for each patient (Table.2).

TABLE 2. Demonstration of DLEM for IGTV delineation.

F. TUMOR MOTION RANGE AND THREE DIMENSIONAL
TUMOR MOTION RANGE (R3D)
The tumor motion range in one direction was designated as
the differences between the maximum and minimum coordi-
nate values of the target center in 10 respiration phases. Three
directions of the tumor motion ranges were used includ-
ing left-right (LR; RLR), anterior-posterior (AP, RAP), and
cranio-caudal (CC; RCC) orientations; R3D = (R2

LR + R2
AP +

R2
CC)

1/2 was computed to evaluate the three-dimensional
motion results of the target affected by respiration
movements.

G. RELATIVE VOLUME INDEX, ENCOMPASSMENT
INDEX AND MATCHING INDEX
Relative volume index (RVI) was defined as the ratio of
IGTVs volume to IGTV10_HB volume. The value of RVI
equals to 1 if the two volumes were fully matched. Encom-
passment index (EI) EI = IGTVX ∩ IGTV10_HB/IGTVX
was computed according to Seppenwoolde et al. [22]. The
concept of EI(x in y) is defined as the percentage of

volume x which was encompassed by y. In our study,
IGTV10_HB was defined as a reference volume. In a free-
breathing respiration status, a lower value of the EI of
IGTVs indicates that there is a higher opportunity that the
target would be missed during treatment. Accordingly, 1-
[EI(x in y)] defines the portions of the target missed during
radiotherapy. The demonstration of the EI was illustrated
in Figure 2. Matching index (MI) was defined as MI =
(IGTVs ∩ IGTV10_HB IGTVs ∪ IGTV10_HB). Computa-
tion of the average MI was performed between each IGTVs
and IGTV10_HB in order to evaluate the relative volumet-
ric comparability of IGTV10_HB for target delineation and
clinical feasibility of individualizing IGTVs.

FIGURE 2. Demonstration of the difference between EI and MI, whereby
the shadow area represents the intersection of the two circles. For
instance, the diameter of the bigger and smeller circle is 3cm and 2 cm,
respectively, accordingly, the MI for (c) is 0.44, whereas the EI
equals to 1.

H. DATA ANALYSIS AND STATISTICAL ANALYSES
All patients’ respiration induced tumor motions were sum-
marized and evaluated, and the volumes of IGTV10_DL,
IGTV10_DEF relative to IGTV10_HB were assessed by
comparing the MI, EI and RVI. The statistical analyses were
performed using SPSS v21 package (IBM, Armonk, NY,
USA) in order to estimate any statistically significant dif-
ferences between the IGTVs determined using each volume
(IGTV10_DL, IGTV10_DEF, IGTV10_E1, IGTV10_E2) as
compared to the IGTV10_HB. The paired-sample t-test was
used in each case, with P < 0.05 being considered sig-
nificant. In addition, multiple parameter regression analy-
sis was used to evaluate whether the tumor volume, loca-
tion, and motion range are clinical influencing factors for
MI differences.

III. RESULTS
A. TUMOR MOTION RANGE AND THREE DIMENSIONAL
TUMOR MOTION RANGE (R3D)
The mean R3D was 12.3mm (range, 2.5-55.3mm). To study
the influence of magnitude of tumor motion based on the
accuracy of IGTV delineation, the patients was divided into
three groups: those with tumor motion range>= 10mm,
those with tumor motion in 5∼ 10mm, and those with tumor
motion range < 5mm. Tumor motion ranges smaller than
5mm were observed in only 27.3% of the study group in
CC direction, whereas ranges greater than or equal to 10mm
were found in 33 patients with a maximal range of 53.7mm.
However, 45.5% and 50.6% of the patients were observed to
have less motion range (R < 5mm) in AP and LR directions,
respectively. All measurement results of tumor motion are
summarized in Table 3.
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TABLE 3. Measurement of tumor motion (mm) in normal respiration
pattern.

B. RVI OF IGTVs COMPARED WITH IGTV10_HB
Table 4 shows the RVI values for each of the IGTVs. To inves-
tigate RVI of IGTVs compared with IGTV10_HB for all
patients, the delineated volume of IGTVs was normalized
to IGTV10_HB, and comparisons were performed using
paired-sample t-test. In general, we found that the range of
IGTV10_E1 (mean ± SD: 0.82 ± 0.51) were smaller than
that of IGTV10_HB, whereas the range of IGTV10_E2 was
slightly larger than that of IGTV10_HB. On the contrary, the
ranges of IGTV10_DEF and IGTV10_DL (mean± SD: 0.97
± 0.02 and 0.95 ± 0.04, respectively) were very close to that
of the reference volume. The paired sample t-test revealed
that the ranges of IGTV10_E1, IGTV10_E2 significantly dif-
fered from that of the reference volume (P = 0.00), whereas
the range of IGTV10_DEF and IGTV10_DL did not have a
significant difference as compared to that of the IGTV10_HB
(P = 0.63 and 0.57 respectively).

TABLE 4. Summary of the relative volume index (RVI).

C. MI and EI COMPARISONS BETWEEN
IGTVs AND IGTV10_HB
To compare the differences of MI and EI between IGTVs
and IGTV10_HB, all statistical results were collected
in Table 5 with the paired-sample t-test performed. For MI,
the IGTV10_DL (mean± SD: 0.92± 0.07) closely matched
the IGTV10_HB, followed by IGTV10_DEF (mean ± SD:
0.83± 0.14), whereas the IGTV10_E1 and IGTV10_E2 have
a lower MI (mean ± SD: 0.82 ± 0.07, 0.86 ± 0.11). There
were significant differences (P = 0.003) among different
IGTV delineation methods. For EI, there was no significant
difference between any IGTVs and the reference volume.
Also, no statistical significance was found among different
IGTV delineation methods (P = 0.224).
The MI between the delineated target volume and refer-

ence volume is the main index to determine the accuracy

TABLE 5. Summary of the MI and EI comparisons between IGTVs and
IGTV10_HB.

FIGURE 3. MI distribution of IGTV10_DL in three subgroups with different
tumor 3D motion range. (a) MI_IGTV10_DL R3D<5mm. (b) MI_IGTV10_DL
R3D: 5∼10mm. (c) MI_IGTV10_DL R3D>10mm. (d) MI_IGTV10_DL
R3D<5mm with optimal MI displayed. (e) MI_IGTV10_DL R3D:5∼10mm
with optimal MI displayed. (f) MI_IGTV10_DL R3D>10mm with optimal MI
displayed.

of targeting during radiotherapy. The EI is the inclusion
degree of the newly built volumewithin the reference volume,
which mainly evaluates the missing probability of the newly
built volume targeted by treatment beam during radiotherapy.
Because there is no statistical difference in the EI between dif-
ferent methods, a further analysis of the correlation between
MI and tumor motion range was investigated. A subgroup
analysis of different respiratory amplitude of IGTV10_DL
and IGTV10_DEF was conducted. An optimal combination
of block was defined and displayed with color if the corre-
sponding MI value was more than 0.95 in that block, other-
wise, it was suppressed using representation of a white color
(Fig.3 ∼ 5).

As shown in Fig. 3∼ 5, there was no difference in the opti-
mal MI ratio between IGTV10_DL and the reference volume
as well as between IGTV10_DEF and the reference volume
if the breathing amplitude less than 5mm (Fig 5.(a)). When
the breathing amplitude is more than 10mm, the probability
of optimal MI can reach its maximum point of 28.6% by
using 4 phases for IGTV synthetics based on the machine
learning method (Fig 5. (c)). Furthermore, through position
decoding of the combination sequence, it can be detected
that the corresponding phase combination at that point was
0%, 50%, 30%, and 90% (MI=0.971), However, when the
breathing amplitude is between 5mm ∼ 10mm, the prob-
ability of optimal matching index (MI) of IGTV based on
machine learning exceeds that of IGTV synthesized by elastic
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FIGURE 4. MI distribution of IGTV10_DEF in three subgroups with
different tumor 3D motion range. (a) MI_IGTV10_DEF R3D<5mm.
(b) MI_IGTV10_ DEF R3D: 5∼10mm. (c) MI_IGTV10_DEF R3D>10mm.
(d) MI_IGTV10_DEF R3D<5mm with optimal MI displayed.
(e) MI_IGTV10_DEF R3D: 5∼10mm with optimal MI displayed.
(f) MI_IGTV10_DEF R3D>10mm with optimal MI displayed.

FIGURE 5. Increment of the respiratory amplitude corresponding to the
changes in optimal MI ratio of IGTV10_DL and IGTV10_DEF. (a) Illustration
of the optimal MI ratio of IGTV10_DL and IGTV10_DEF when R3D < 5mm.
(b) Demonstration of the optimal MI ratio of IGTV10_DL and IGTV10_DEF
when R3D in range 5 ∼ 10mm. (c) Display of optimal MI ratio of
IGTV10_DL and IGTV10_DEF when R3D > 10mm.

deformation registration technology, which comes with an
average improvement of 36.1%, When 3 phases were cho-
sen for IGTV combination, the probability of optimal MI
was only 21.3%. In contrast, it may need more computing
time and the optimal MI probability will not significantly
improved if 5 phases were selected to form the IGTV. As
such, 4 phases of IGTV combination can balance the optimal
MI probability and contouring delineation efficiency (Fig 5.
(b)). In the following decoding of the location in the MI
matrix, we found that the combination sequence were: 0%,
30%, 50%, and 90% (MI = 0.967); 0%, 30%, 60% and
P_90% (MI= 0.955); 0%, 40%, 60%, and 90% (MI= 0.981).

D. CORRELATIONS MI OF IGTVs WITH TUMOR
MOTION RANGE AND THE TARGET VOLUME
Generally, larger tumor motion range and smaller tumor
volume lead to a larger percentage of difference between
IGTVs and IGTV10_HB. To study the correlation between
MI of IGTVs and the magnitude of tumor motion, several
subgroupswere created. All discrete variables were converted
into four groups of rank variables for the purpose of com-
paring the comparability of the magnitude as statistically
presented in Table 6. Multivariate linear regression showed
that a significant difference was observed in MI_IGTV_E1,

MI_IGTV_E2, andMI_IGTV10_DEF (P= 0.013, 0.033 and
0.012, R2 = 0.793, 0.765 and 0.713 respectively, refer to
Table 7). TheMI has a positive correlation with tumor volume
whereas it has a negative correlation with the magnitude of
tumor motion in three directions.

TABLE 6. The rule of classification of dispersed data.

TABLE 7. The multivariate linear regression results of MI.

IV. DISCUSSION
In our study, we implemented an architecture pre-trained on
the ImageNet for 4D CT tumor delineation. However, in some
cases, the transfer learning method in deep learning has been
suspended in the application of medical image analysis. Due
to which, we have adopted a re-training process based on the
4DCT DICOM images as a remedial measure. Re-training
process consisted of initializing the convolutional layers with
loaded pre-trained weights and re-training the final layers.
We only use the weights in the pre-training section as an ini-
tial optimization starting points in the subsequent re-training
process. The newly initialized network then takes the 4D CT
DICOM image as input and re-trains layers in order to delin-
eate GTV.

Respiration during CT acquisition is expected to result in
distortion of the target volume in scanning process, which
may lead to inaccurate target volumetric delineation. This
is still a major barrier for the precise delineation of IGTV
in SBRT. Various attempts have been made to solve this
problem. MIP image has been extensively used in clinical
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practice to delineate IGTV when 4DCT was developed in
the first instance [23], [24]. However, it has been proven
that MIP-based IGTV can underestimate the true tumor vol-
ume when the adjacent structures have similar (or higher)
densities, which is the case for lesions located near the
mediastinum, diaphragm, liver, or chest wall [25], Our study
demonstrated that the elastic deformation registration-based
IGTV_DEF was slightly similar to pre-reported MIP-based
method which underestimated the target volume up to 18%
with an average of 9% compared to the IGTV_HB when the
lesions were closed to the diaphragm. In all locations, this can
potentially result in marginally under-dosing.

Other scholars have investigated the feasibility of a method
of using four phases to form IGTVyeo [26], [27]. They
reported that the ITV4Phases may be an efficient approach
alternative to optimal IGTV10 phases in SBRT for early-stage
NSCLC with less tumor motion. However, their research
did not include the tumors with significant motion and they
could not explain applicability of their method to different
motion patterns of the targets. Although it is not an optimal
technique, it may still be a reasonably alternative approach
when themagnitude of tumormotionwas smaller than 10mm.
The results deteriorated when tumor motion amplitude was
more than 10mm. However, in our study, there were only 8%
underestimation of volume with an average of 5% when the
IGTV_DL was applied even though the magnitude of tumor
motion was more than 10mm. In another study, there have
been reported that the uncertainties in individualized IGTVs
for SBRT can be further reduced through lumping all the
datasets together from 3D-CT, 4D-CT, and MIP [28]. It was
suggested that more information about the image sets have
to be taken into consideration of the combination of IGTV
so that uncertainties can be minimized [29]. Despite the
advantages proposed, their approach requires two times CT
scanning, thus introducing additional burdens in the equip-
ment abrasion, extra workload for radiation oncologists, and
the potential risk induced by the additional radiation dose to
the patients.

In this study, we did not investigate the relationship
between IGTV_DL, IGTV_DEF and MI in different breath-
ing ranges directly but delivered a more meaningful and sci-
entific for clinical practice. The probability of an optimal MI
was computed and evaluated for IGTV_DL and IGTV_DEF,
which were based on machine learning with DLEM and elas-
tic deformation registration algorithm, respectively. A higher
probability with an optimal MI achieved in this study leads to
better clinical applicability [30]. In addition, we found that
the higher probability of a better MI is not achievable by
using more phases. The best way to improve the probability
of optimal MI is to accurately outline the GTV of each slice
of the 10 phases in 4D CT. The reason why deep leaning
can synthesize IGTV_DLwith a higher probability to achieve
optimal MI in limited time is due to the fact that it has learned
from the huge volume of GTVs delineated by experts in the
process of training, which was determined in the validation
cohort. This is also the reason why the result of IGTV_DL is

better than the two radiologist experts in ourwork. In contrast,
elastic deformation registration technology adopts a nonlin-
ear image registration method. However, image processing
process is still based on the CT value and gray information of
the CT image [30], [31]. Once the GTV has a density or gray
scale near surrounding organs, this technique started to show
limitations that are similar to the MIP method. Therefore,
for some large breathing range or tumor close to the medi-
astinum, liver or diaphragm, the machine learning method
shows its merits in stability and accuracy of the delineation
results.

FIGURE 6. The variation trend of R3D and combined IGTVs in group of
R3D < 5 mm. (a) the inhomogeneity of tumor centroid with respiratory
motion. (b) Illustration of the differences between IGTV_E1 (red line),
IGTV_E2 (yellow line), and IGTV10_DL (blue line). (c) Demonstration of the
differences between IGTV_HB (light yellow line) and IGTV10_DEF
(green soil line).

In this study, due to the lack of careful training for the
respiration of patients, some tumor target centroid demon-
strated some spatial inhomogeneity with respiratory motion,
which may be a reason why the optimal phase combina-
tion have multiple solutions rather than a uniform solution
(Fig 6 (a)). The 10%, 20%, 30%, 40%, and 50% phases have
little change, so the difference between the sequences of these
phases will be relatively small. When the breathing amplitude
is in the region of 5 ∼ 10mm, the probability to achieve
optimal MI will decrease significantly when the number of
phase combinations is up to 7. This may be caused by cough-
ing of the patient or other abnormal breathing states that is
recorded by the 4DCT, which were made as a new phase into
the IGTV synthesis. As the data was averaged by the patients
in the group, it is more inclined to consider it was caused by
systematic deviation of 4DCT. This is shown in Fig.5(c) when
the respiratory amplitude is greater than 10mm. The reason
why optimal MI probabilities of IGTV_DL and IGTV_DEF
methods are quite different after adding new phase informa-
tion requires further investigation.

In general, patients have received respiratory training
before 4DCT scanning. Respiratory frequency remained rel-
atively stable in image acquisition process. For patients with-
out respiratory training, a further validation of our method
should be carried. The highlight of this paper is the applica-
tion of deep machine learning and linear exhaustive method
to improve the target delineation accuracy with respiratory
induced target motion involved. This framework can be fur-
ther applied to hepatocellular carcinoma and breast cancer to
resolve the problem of moving targets. It can also be used
to try to solve the optimal treatment plan selection and dose
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FIGURE 7. The variation trend of R3D and delineated IGTVs in subgroup
of 5≤ R3D < 10 mm. (a) Demonstration of the tumor centroid of
well-trained patient. (b) Illustration of the differences between
IGTV10_DL (red line), IGTV10_DEF (yellow line), and IGTV10_E1 (blue line).
(c) Demonstration of the differences between IGTV10_DL (red line),
IGTV10_E2 (green line), IGTV_HB (light yellow line).

FIGURE 8. The variation trend of R3D and contoured IGTVs in subgroup
of R3D ≥10mm. (a) Illustration of the motion of tumor centroid for a
patient whose tumor was located near the liver. (b) Illustration of the
differences between IGTV10_DL (light blue line), IGTV_HB (light Purple).
(c) Demonstration of the differences between IGTV_E1 (yellow line), and
IGTV_E2 (blue line) and IGTV_DEF (red line).

matching problem. In the follow-up studies, the framework
for arbitrary breathing pattern can be further investigated.

V. CONCLUSION
The deep learning algorithm with linear exhaustive opti-
mal combination framework has a higher probability to
achieve optimal MI compared to the other existing meth-
ods. For patients after simple breathing training (by keep-
ing the respiratory frequency in 10 BPM), the four-phase
combinations of 0%, 30%, 50% and 90% are recom-
mended as an optimal combination to form IGTV in all
respiration amplitude. For commercially used elastic defor-
mation registration algorithm, the probability of the optimal
MI to the reference volume decreases when the respiration
amplitude exceeds 10mm. As such, it should be used with
more care in clinical practice.
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