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ABSTRACT As a novel generalization of fuzzy cognitive map (FCM), interval-valued FCM (IVFCM)
can provide more flexibility in modeling that increasingly complex system with uncertainty. However,
the problem of aggregating IVFCMs has not been considered to this day. Concerning this key point,
we propose an ensemble IVFCMs via evidential reasoning (ER) approach. First, we give a detailed analysis
of IVIFS in terms of evidence theory and introduce the concept of augmented connection matrix within
the framework of IVFCMs. Second, we present a theory of ensemble IVFCMs using the former work and
ER approach, particular emphases are put on assessing the weights of different IVFCMs and aggregating
them. Both theoretical analysis and practical examples show that the ensemble IVFCMs not only reflects the
importance levels of different maps but also can achieve the goal of merging of information from different
maps in system modeling.

INDEX TERMS System modeling, ensemble interval-valued fuzzy cognitive maps, multi-objective opti-
mization, spectrum sensing.

I. INTRODUCTION
In 1948, Tolman [1] firstly introduced the concept of cog-
nitive map (CM). A CM can be regarded as a type of men-
tal expression of physical locations by processing relevant
information from daily life or some spatial environment. The
term was later generalized by some scholars, as a kind of
semantic network representing some knowledge systems [2].
In the past decades, CMs have been studied and utilized in
lots of aspects, such as political selection, planning, urban
planning, management and history [2]. However, CMs have a
limitation that the uncertainty in the inference process can not
be described accurately. To overcome the limitation of CM,
Kosko [3] introduced fuzzy cognitive map (FCM) as a gener-
alization of CM. FCM is a signed fuzzy digraph within which
the relations between the concepts of mental landscape can be
utilized to determine the strength of these concepts. The same
as CMs, FCMs have gained considerable research interest
due to their ability in representing structured knowledge and
systemmodeling in a number of fields including business [4],
ecological engineering [5], management [6], system model-
ing [7], risk assessment [8], machine learning [9], etc. More
information on FCMs, please refer to [10]–[14]. This growing
interest leads to the demand for establishing more effective
models which can better describe the complex real situations.

Regarding FCM and its generalizations, the existing
studies mainly include three aspects [10], i.e., generating

cognitive models from input historical data, quantifying the
state of concepts and the connections between concepts, and
combining multiple maps. For the first research point, a num-
ber of learning algorithms have been successfully utilized for
constructing maps including Hebbian learning, genetic algo-
rithms, memetic algorithms, imperialist competitive algo-
rithms, evolutionary algorithms [10], [16], etc. To satisfy
the demand of system modeling regarding complex situa-
tions, various extensions of FCMs have been presented one
after another from different perspectives including extended
FCMs [15], dynamic CMs [17], fuzzy grey cognitive
maps (FGCMs) [18], evidential cognitive maps (ECMs) [19],
intuitionistic fuzzy cognitive maps (IFCMs) [20], granular
cognitive maps (GCMs) [21], interval-valued fuzzy cog-
nitive maps (IVFCMs) [22], extended evidential cognitive
maps [24], etc. As pointed out by Pedrycz [23], most gen-
eralizations which apply information granules to depict the
state of concepts and the connection matrix can be regarded
as some special cases of GCMs. As system modeling goes,
combining knowledge plays an important role for whether
FCMs or high-order FCMs. As described in [3], any number
of FCMs can be naturally aggregated into a single FCM
through additively combining augmented connection matri-
ces. In contrast with the theory of FCMs, the problem of com-
bining knowledge has not been fully considered in a number
of GCMs. Among numerous GCMs, the theory of IVFCM
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was introduced in 2016 and offers much more flexibility
for representing the uncertainty from the state of concepts
and the connection matrices. For the actuality of IVFCMs,
the relevant study is still in the early stage, especially for
establishing ensemble IVFCMs. As proved in [18], [19],
and [24]–[26], the ensemble map not only plays a key role
to better model complex system or to reflect the inference
reasoning from multiple experts [19], [24]–[26], but also can
effectively avoid unreasonable fuzzy reasoning results which
may derived from individual cognitive model. By compar-
ison with the comprehensive theory of aggregating FCMs,
there are some key problems of establishing ensemble model
to be solved including constructing augmented connection
matrices, assessing the weights and determining the ensemble
model with respect to lots of high-order cognitive maps.

In order to develop and perfect the theory of IVFCMs,
we propose ensemble IVFCMs to satisfy the demand of
modeling complex systems. Simply stated, the main merits
of ensemble IVFCMs can be represented as below.
• We give a detailed analysis of interval-valued fuzzy sets
in terms of evidence theory.
As discussed in [27], an interval-valued fuzzy number
(IVFN) corresponds to an intuitionistic fuzzy number
(IFN). We should also note that an IFN is a probability
distribution as proved in [28]. In essence, a probability
distribution is a piece of evidence [29]. Thus, the rela-
tionship between IVFN and evidence theory can be
established via intuitionistic fuzzy sets (IFSs).

• We propose a method to define the augmented connec-
tion matrices.
Quantifying the augmented connection matrices is the
prerequisite to establish ensemble IVFCMs. From the
perspective of IVFSs, we propose a method to augment
the connection matrices, particular emphasis is put on
quantifying the default connections.

• We propose an approach based on ER approach to con-
struct ensemble IVFCMs.
ER approach [30] belongs to a universal evidence-based
multiple attribute decision analysis algorithm for solving
those problems with both quantitative and qualitative
attributes under an uncertain and random environment.
To this day, ER approach has been widely and suc-
cessfully utilized in dealing with information fusion
problems with uncertainty [31]–[33]. Considering its
predominance in aggregating uncertain information, we
propose an approach using ER approach to aggregate all
the augmented connection matrices into a matrix which
denotes the ensemble IVFCMs. Meanwhile, we present
an optimization model to assess the importance levels of
different maps with constraint conditions.

It is clear that ensemble IVFCMs not only enables to model
the complex systems with uncertainty but also represents the
weights of different maps.

The rest of this paper includes four sections. Some relevant
concepts will be presented in Section II. In Section III,
we propose ensemble IVFCMs using ER approach.

Next, we employ three examples to validate the performance
of this theory in Section IV. Finally, Section V summarizes
the whole paper.

II. PRELIMINARY
Both IVFSs [34] and intuitionistic fuzzy sets (IFSs) [35] con-
stitute extensions of conventional fuzzy sets [34]. An IVFS
is equivalent to an IFS in the sense of Lattice [27]. In this
section, we recall two concepts and some operations on them.

A. IVFSS AND IFSS
Definition 1 [34]:An IVFSA in a universe� is amapping

A : �→ Int([0, 1]) : x 7→ [A(x),A(x)] ⊆ [0, 1], (1)

for any element x ∈ �, where Int([0, 1]) denotes the set
including all closed subintervals of [0, 1].
Definition 2 [35]: An IFS A on an universe � is with the

form A = {(x, µA(x), νA(x), πA(x))|x ∈ �}, where µA(x) +
νA(x)+ πA(x) = 1 and 0 ≤ µA(x), νA(x), πA(x) ≤ 1 hold.
To simplify thing, we utilize [α, α] and (a, b) (or (a, b, c))

to respectively denote an IVFN and an IFN, where 0 ≤ α ≤
α ≤ 1, 0 ≤ a, b, c ≤ 1, α + α = 1 and a+ b+ c = 1.
Remark 1: As can be observed from Definition 1 and

Definition 2, both IVFS and IFS are with more flexibil-
ity and freedom to quantify those incomplete and uncertain
information.

B. OPERATIONS ON IVFSS
Definition 3 [36]: For two IVFNs a = [a, a] and

b = [b, b], the addition, the multiplication and the subtraction
between a and b are with the following forms,

a⊕ b =
[
min(a+ b, a+ b), a+ b

]
, (2)

a⊗ b =
[
ab,max(ab, ab)

]
, (3)

a	 b =
[
a− b,max(a− b, a− b)

]
. (4)

Clearly, the following proposition holds.
Proposition 1: For two IVFNs a and b, we have

a⊕ b = a, (5)

a	 b = a, (6)

a⊗ b = b, (7)

when b = [0, 0].
Definition 4 [36]: Let ϒ(X ) be all the IVFSs on

X = {x1, x2, . . . , xn}. For two IVFSs A and A′ (A,A′ ∈
ϒ(X )), then the distance between A and A′ is with the fol-
lowing form.

ϑ(A,A′)

=

√
1
2n

∑n

i=1

(
(A(xi)− A′(xi))2 + (A(xi)− A′(xi))2

)
. (8)

Remark 2: As defined in Definition 4, the proposed dis-
tance measure provides an efficient way to represent the
divergence degree between two IVFNs.
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III. ENSEMBLE IVFCMS
The objective of this section is to construct ensemble
IVFCMs. Firstly, we recall the concept of IVFCM. Secondly,
we present a detailed analysis of IVFS w.r.t evidence theory.
Finally, we focus on establishing ensemble IVFCMs, which
is the core of this section.

A. IVFCM
Similarly to FCM [3], an IVFCM is a graph-orientedmap rep-
resenting causal connections between a number of concepts
N (N = {N1,N2, . . . ,Nn}) [22]. Different from conventional
CM and FCM, the causal weights and the state of concepts
are expressed with IVFNs. For above n concepts involved,
the dynamics of the map is denoted by

θi(t + 1) = f
(
θi(t)⊕ (⊕nj=1,j 6=i(θj(t)⊗ wji))

)
, (9)

which includes recurring connection on t ≥ 0 between θ (t +
1) and θ (t) (i ∈ {1, 2, . . . , n}), where θi(t) is the state value
of the concept Ni at t and f is a nonlinear threshold function.
Let θi(t) = [θ i(t), θ i(t)]. Assume that θi(t) ⊕

(⊕nj=1,j6=i(θj(t) ⊗ wji)) = [γ , γ ]. Then equation (9) can be
expressed by

θi(t + 1) = [θ i(t + 1), θ i(t + 1)]

= f
(
θi(t)⊕ (⊕nj=1,j 6=i(θj(t)⊗ wji))

)
= [min{f (γ ), f (γ )},max{f (γ ), f (γ )}]. (10)

To get a better understanding of IVFCM, we present an
example as below.
Example 1: Figure 1 illustrates an example of IVFCM [22].

The IVFCM’s connection matrix is equation (11), and its
threshold function is 1

1+exp(−x) .

0 =

 0 [0.4, 0.5] [0.1, 0.3]
0 0 [0.7, 0.9]
0 0 0

. (11)

FIGURE 1. A three-node IVFCM.

Let θ1(0) = [0.5, 0.6], θ2(0) = [0.2, 0.4] and θ3(0) =
[0.3, 0.4] be the initial state values of three concepts. When
t = 0, the concept values θ1(1), θ2(1) and θ3(1) are calculated
as equations (12)-(14); (14) is shown at the bottom of this
page.

θ1(1) = f (θ1(0))

= f ([0.5, 0.6])

= [0.6225, 0.6457], (12)

θ2(1) = f
(
θ2(0)⊕ (θ1(0)⊗ w12)

)
= f

(
[0.2, 0.4]⊕ ([0.5, 0.6]⊗ [0.4, 0.5]

)
= f ([0.45, 0.65])

= [0.6106, 0.6570], (13)
Remark 3: As can be seen from Example 1, the default

connection is denoted by 0 which is not convenient for
augmenting the connection matrices to construct ensemble
IVFCMs. Proposition 1 implies that [0, 0] can replace 0 to
quantify the default connections. In other words, Proposi-
tion 1 provides a tool to define the augmented connection
matrices for the establishment of ensemble IVFCMs.

B. IVFS IN TERMS OF EVIDENCE THEORY
As proved in [27], an IVFN [a, a] is equivalent to an IFN
(a, 1 − a, a − a), where 0 ≤ a ≤ a ≤ 1. Obviously,
(a, 1 − a, a − a) is a probability distribution. Let 2 =

{H1,H0, {H1,H0}} be a framework of discernment. Then we
define

η(H1) = a, (15)

η(H0) = 1− a, (16)

η({H1,H0}) = a− a, (17)

where η(H1), η(H0) and η({H1,H0}) constitute a piece of
evidence from the perspective of ER approach, and respec-
tively represent the positive degree, the negative degree and
the neutral degree.
Remark 4: As stated above, we have presented a detailed

analysis of IVFS in terms of evidence theory. Thus, we can
utilize the relevant approaches of evidence theory to extend
some theories on IVFSs. What’s more, these theories can be
employed to construct ensemble IVFCMs.

C. METHODOLOGY OF ENSEMBLE IVFCMS
As pointed in [19] and [24]–[26], every expert may provide
his or her own cognitive model. These individual models
could then be aggregated into a representative one. In general,
larger expert sample sizes can present much more reason-
able and efficient cognitive model. However, it is necessary
to solve the individual cognitive models with different size
and importance levels. In other words, defining augmented
connection matrices, assessing the weights of different mod-
els and aggregating them are three key challenges in the
establishment of ensemble map. Up to now, how to estab-
lish ensemble IVFCMs is still an open problem. To satisfy
the demand in the field of system modeling, we propose a
methodology of ensemble IVFCMs. Firstly, augment all the

θ3(1) = f
(
θ3(0)⊕

(
(θ1(0)⊗ w13)⊕ (θ2(0)⊗ w23)

))
= f

(
[0.3, 0.4]⊕

(
([0.5, 0.6]⊗ [0.1, 0.3])⊕ ([0.2, 0.4]⊗ [0.7, 0.9])

))
= f ([0.69, 0.83])

= [0.6660, 0.6964]. (14)
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IVFCMs into same-sized maps. Secondly, assess the weights
of different augmented maps. Finally, establish ensemble
IVFCMs based on the known weights and all the augmented
maps.

There are K (K ≥ 2) IVFCMs to be utilized to construct
ensemble maps. Let ξk (k = 1, 2, . . . ,K ) be the weights of
all K maps satisfying

∑K
k=1 ξk = 1 and ξk ∈ [0, 1]. The

connection matrices of all K maps are shown as

0k =


α
(k)
11 α

(k)
12 · · · α

(k)
1Nk

α
(k)
21 α

(k)
22 · · · α

(k)
2Nk

...
...

. . .
...

α
(k)
Nk1 α

(k)
Nk2 · · · α

(k)
NkNk

, (18)

where α(k)ij (i, j = 1, 2, . . . ,Nk ) is an IVFN.
Step 1: Augment connection matrices of all K IVFCMs

into same-size matrices.
Due to the limited knowledge, these connection matrices

0k (k = 1, 2, . . . ,K ) are unlikely to be aggregated directly.
It is clear that ensemble IVFCMs’ priority is rightly to make
all the augmented matrices with same size. Suppose that one
map includes a concept N1 which is not employed in another
one. It means that there are not connections between N1 and
every concept in another map. Clearly, N1 can be regarded
as a new concept of the second map. Next, the causal weight
between N1 and other concepts is defined by [0, 0]. Assume
that all K maps includeN different concepts. Thus, 0k can be
augmented to a N× N matrix.

0̄k =


α̇
(k)
11 α̇

(k)
12 · · · α̇

(k)
1N

α̇
(k)
21 α̇

(k)
22 · · · α̇

(k)
2N

...
...

. . .
...

α̇
(k)
N1 α̇

(k)
N2 · · · α̇

(k)
NN

, (19)

where α̇(k)ij is an IVFN.
Step 2: Assess the weights of different maps.
As pointed in [37], how to assess the importance levels

of different maps is the key point to construct ensemble
IVFCMs. Next, we present an optimization model to quantify
the weights ξk (k = 1, 2, . . . ,K ) of different maps under
constraint conditions 1. Before representing the model,
we firstly introduce the distance between two matrices in
which all the elements are expressed with IVFNs on the basis
of Definition 4.
Definition 5: For two n × q interval-valued fuzzy matri-

ces A and B,

A =


a11 a12 · · · a1q
a21 a22 · · · a2q
...

...
. . .

...

an1 an2 · · · anq

, (20)

B =


b11 b12 · · · b1q
b21 b22 · · · b2q
...

...
. . .

...

bn1 bn2 · · · bnq

 , (21)

aij = [aij, aij] and bij = [bij, bij] are IVFNs for all i ∈
{1, 2, . . . , n} and j ∈ {1, 2, . . . , q}. Then the distancemeasure
between two matrices ϑ(A,B) is quantified as

ϑ(A,B) =

√
1
2nq

∑n

i=1

∑q

j=1

(
(aij − bij)2 + (aij − bij)2

)
.

(22)
Theorem 1: For two interval-valued fuzzy matrices

A and B, ϑ(A,B) satisfies the following three properties:
0 ≤ ϑ(A,B) ≤ 1; ϑ(A,B) = 1 if and only if A = B;
ϑ(A,B) = ϑ(B,A).

Proof: Definition 4 implies that this theorem holds.
Following Definition 5, a model is proposed to assess

the weights of different maps when establishing ensemble
IVFCMs. Let α̇(k)ij = [c(k)ij , c

(k)
ij ], where 0 ≤ c(k)ij ≤ c(k)ij ≤ 1.

Based on 0̄k and ξk , we get the following matrix:

Ek =


e(k)11 e(k)12 · · · e(k)1N
e(k)21 e(k)22 · · · e(k)2N
...

...
. . .

...

e(k)N1 e(k)N2 · · · e(k)NN

, (23)

where e(k)ij = [ξkc
(k)
ij , 1 − ξk + ξkc

(k)
ij ]. Depending on

Ek (k = 1, 2, . . . ,K ), we introduce a function as

fk (ξ ) =
K∑

k ′=1,k ′ 6=k

ϑ(Ek ,Ek ′ )
2. (24)

It is clear that the smaller the value fk (τ ), the greater con-
sensus between the kth IVFCM with others. In other words,
the kth one occupies amore important proportion of ensemble
IVFCMs. To maximize the effect of the kth one in ensemble
IVFCMs, we can construct the following optimal model:

min fk (ξ )

s.t. ξ ∈ 1
K∑
k=1

ξk = 1

ξk ≥ 0 k = 1, 2, . . . ,K . (25)

Clearly, it is necessary to solve the following model to assess
the weights of all maps.

min f1(ξ )

min f2(ξ )
...

min fK (ξ )

s.t. ξ ∈ 1
K∑
k=1

ξk = 1

ξk ≥ 0 k = 1, 2, . . . ,K . (26)

Here we consider all the objective functions having equal
importance levels. Then equation (26) is equivalent to the
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following equation:

min f (ξ )

s.t. ξ ∈ 1
K∑
k=1

ξk = 1

ξk ≥ 0 k = 1, 2, . . . ,K . (27)

where f (ξ ) =
∑K

k=1 fk (ξ ).
Solving the above optimal model, we can get the weights ξ .
Step 3: Establish ensemble IVFCMs.
Based on 0̄k and ξk (k = 1, 2, . . . ,K ), we determine

the ensemble IVFCMs. Let 0 be the aggregated connection
matrix as below:

0 =


δ11 δ12 · · · δ1N
δ21 δ22 · · · δ2N
...

...
. . .

...

δN1 δN2 · · · δNN

, (28)

where δij = [g
ij
, gij] is an IVFN for i, j ∈ {1, 2, . . . ,N}.

Take δ11 for instance. Let η1,k = ξkc
(k)
11 , η2,k = ξk (1−c

(k)
11 ),

η̄H ,k = 1 − ξk , η̃H ,k = ξk (c
(k)
11 − c(k)11 ), ηH ,k = m̄H ,k +

η̃H ,k (k = 1, 2, . . . ,K ), η1,I (1) = η1,1, η2,I (1) = η2,1,
ηH ,I (1) = ηH ,1, η̄H ,I (1) = m̄H ,1 and η̃H ,I (1) = η̃H ,1. Do the
following mathematical operations as equations (29)-(34),

η1,I (k+1) = RI (k+1)[η1,I (k)η1,k+1
+ ηH ,I (k)η1,k+1 + η1,I (k)ηH ,k+1], (29)

η2,I (k+1) = RI (k+1)[η2,I (k)η2,k+1
+ ηH ,I (k)η2,k+1 + η2,I (k)ηH ,k+1], (30)

ηH ,I (k) = η̄H ,I (k) + η̃H ,I (k), (31)

η̃H ,I (k+1) = RI (k+1)[η̃H ,I (k)η̃H ,k+1
+ η̄H ,I (k)η̃H ,k+1 + η̃H ,I (k)η̄H ,k+1], (32)

η̄H ,I (k+1) = RI (k+1)[η̄H ,I (k)η̄H ,k+1], (33)

RI (k+1) =
1

1− η1,I (k)η2,k+1 − η2,I (k)η1,k+1
, (34)

where η1,I (k+1) + η2,I (k+1)) + ηH ,I (k+1) = 1. Perform the
recurrent procedures until k = K − 1. Finally, δ11 is defined
as follows:

δ11 = [
η1,I (K )

1− η̄H ,I (K )
, 1−

η2,I (K )

1− η̄H ,I (K )
]. (35)

Same as δ11, we get 0.
Remark 5: As mentioned above, the theory of ensemble

IVFCMs has been completely established via the ER theory
within the framework of IVFSs. The theory not only provides
a method to aggregate different maps but also shows their
importance levels. What’s more, how to assess the weights
of different maps have been solved by a multi-objective opti-
mization model.

D. EVALUATION OF ENSEMBLE IVFCMS
Concerning the topic of establishing ensemble cognitive
maps or high-order maps, there are a number of aggregation
methods are proposed in succession from different perspec-
tives. Roughly speaking, existing methods mainly cover two
classes. The first class just considers non-default connections
when quantifying the aggregated connections, while the sec-
ond class fully takes into account the influences from all
maps. As discussed in [19] and [24]–[26], above two classes
are chosen and utilized in view of the actual demands, that
is to say, there are not complete and quantitative evaluation
methods in establishing ensemble maps or high-order maps.

As described in this Section, the proposed method in this
paper belongs to the second class, which is different from
ECM and FGCM [18], [19].

IV. EXPERIMENTS AND ANALYSIS
In this section, we utilize three examples to validate the
performance of the proposed ensemble IVFCMs and have a
detailed analysis.

A. SOCIO-ECONOMIC PROBLEM MODELING
Here we consider a socio-economic inference model as dis-
cussed in [19]. This model constitutes Population (N1), Crime
(N2), Economic condition (N3), Poverty (N4), and Unem-
ployment (N5) as partial nodes of three IVFCMs shown as
Figures 2(a)–2(c) and their connection matrices are defined
as equations (36)–(38).

FIGURE 2. The respective IVFCMs and ensemble IVFCMs. (a) IVFCM 1.
(b) IVFCM 2. (c) IVFCM 3. (d) Ensemble IVFCMs.

01 =


N1 N3 N5

N1 0 [0.2, 0.4] [0.5, 0.8]
N3 0 0 [0.2, 0.5]
N5 0 0 0

, (36)

02 =


N1 N2 N3 N4

N1 0 0 [0.3, 0.5] 0
N2 0 0 0 [0.1, 0.6]
N3 0 [0.1, 0.3] 0 0
N4 [0.3, 0.5] [0.6, 0.9] 0 0

,
(37)
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03 =


N1 N4 N5

N1 0 0 [0.6, 0.8]
N4 [0.1, 0.4] 0 0
N5 0 [0.6, 0.7] 0

. (38)

Assume that the constraint conditions of three maps are
denoted by 1 = {ξ1 − ξ2 > 0.1, ξ3 ≥ 0.3, ξ2 + ξ23 ≤ 0.4}.
Next, we present the ensemble IVFCMs via the three maps.
Step 1:On the basis of01,02 and03, we get the augmented

connection matrices as equations (39)-(41).

0̄1=


[0, 0] [0, 0] [0.2, 0.4] [0, 0] [0.5, 0.8]
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0] [0, 0] [0.2, 0.5]
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

,
(39)

0̄2=


[0, 0] [0, 0] [0.3, 0.5] [0, 0] [x0, 0]
[0, 0] [0, 0] [0, 0] [0.1, 0.6] [0, 0]
[0, 0] [0.1, 0.3] [0, 0] [0, 0] [0, 0]
[0.3, 0.5] [0.6, 0.9] [0, 0] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

,
(40)

0̄3=


[0, 0] [0, 0] [0, 0] [0, 0] [0.6, 0.8]
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
[0.1, 0.4] [0, 0] [0, 0] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0] [0.6, 0.7] [0, 0]

.
(41)

Step 2: Depending on 0̄1, 0̄2 and 0̄3 and the con-
straint conditions 1, a optimization model is established as
equation (42),

min f (ξ )

s.t. ξ1 − ξ2 ≥ 0.1,

ξ3 ≥ 0.3,

ξ2 + ξ
2
3 ≤ 0.4,

ξ1 + ξ2 + ξ3 = 1,

ξ1 ≥ 0,

ξ2 ≥ 0,

ξ3 ≥ 0, (42)

where f (ξ ) = 1.8384ξ21 + 1.7376ξ22 + 1.8576ξ23 −
1.6608ξ1ξ2−1.7872ξ1ξ3−1.6424ξ2ξ3. Solving this equation,

FIGURE 3. System model of cooperative sensing.

we get

ξ = [0.3843 0.2843 0.3313]. (43)

Step 3: Based on the obtained 0̄1, 0̄2, 0̄3 and ξ , we get the
aggregated connection matrix as equation (44), as shown at
the top of the next page.
Step 4: Let θ (0) = [[0.9, 1] [0, 0] [0, 0] [0, 0] [0, 0]] be the

initial concept values of the ensemble IVFCMs, and 1
1+e−x be

the threshold function. If |θ i(t+1)−θ i(t)| < 10−4 and |θ i(t+
1)−θ i(t)| < 10−4 (i = 1, 2, 3, 4, 5) (θi(t) = [θ i(t), θ i(t)] and
θi(t+1) = [θ i(t+1), θ i(t+1)]), we think the ensemble map
reaches the steady states. The results of the reasoning process
are shown as Table 1 and the steady state is equation (45), as
shown at the top of the next page.
Remark 6: As discussed in this example, the IVFN [0, 0]

has been employed to define the default connections and
the augmented connection matrices. What’s more, the multi-
objective optimization model has opened a new theoretical
analysis perspective for assessing the weights of different
maps, which is the basis of establishing ensemble IVFCMs.

B. MODELING OF COOPERATIVE SENSING IN
COGNITIVE RADIO
Cognitive radio [38] has been an effective tool to strengthen
spectrum applications. Cooperative sensing plays an impor-
tant role in cognitive radio which is shown as Figure 3.
Different SUs have mutual relations in cognitive radio net-
work.Meanwhile, it should be noted that there exist both hon-
est andmalicious SUs in thewhole sensing system. Some SUs
of a local sensing area forms a cluster in which the variation

TABLE 1. Reasoning using the ensemble IVFCMs.
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0 =


[0, 0] [0, 0] [0.1320, 0.2316] [0, 0] [0.3973, 0.5508]
[0, 0] [0, 0] [0, 0] [0.0170, 0.1020] [0, 0]
[0, 0] [0.0170, 0.0510] [0, 0] [0, 0] [0.0553, 0.1382]
[0.0893, 0.1985] [0.1161, 0.1741] [0, 0] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0] [0.1474, 0.1720] [0, 0]

. (44)

θ (8) = [[0.6815, 0.6979] [0.6941, 0.7026] [0.6884, 0.7028] [0.7019, 0.7141] [0.7582, 0.7768]]. (45)

FIGURE 4. The respective IVFCMs and ensemble IVFCMs. (a) IVFCM 1.
(b) IVFCM 2. (c) IVFCM 3. (d) Ensemble IVFCMs.

tendency of each SU and the connections among them can
be understood as an IVFCM. Here we consider a cognitive
radio network including five SUs (SU i, i = 1, 2, 3, 4, 5)
belonging to three local sensing areas. The three areas
respectively constitute three clusters C1 (SU1, SU2, SU3),
C2 (SU2, SU3, SU4) and C3 (SU3, SU4, SU5). Based on the
three clusters, we construct the following three IVFCMs as
Figure 4 and equations (46)-(48).

01=


N1 N2 N3

N1 0 [0.8, 0.9] [0.1, 0.2]
N2 [0.8, 1.0] 0 [0.2, 0.3]
N3 [0.7, 0.8] [0.8, 0.9] 0

, (46)

02=


N2 N3 N4

N2 0 [0, 0.1] [0.6, 0.9]
N3 [0.7, 0.8] 0 [0.6, 0.7]
N4 [0.8, 0.9] [0.1, 0.2] 0

, (47)

03=


N3 N4 N5

N3 0 [0.6, 0.7] [0.9, 1.0]
N4 [0.1, 0.3] 0 [0.8, 0.9]
N5 [0.1, 0.2] [0.7, 0.7] 0

. (48)

There are five SUs including one malicious one (the
3rd SU) and other four honest ones. Here three IVFCMs are
with identical weights, i.e., ξ = [ 13

1
3

1
3 ]. Let

1
1+exp(−x) be

the threshold function. From the PU, we get the initial state
values of five SUs are as below:

θ (0) =
[
[0.8, 0.9] [0.7, 0.8] [0, 0.1] [0.6, 0.8] [0.8, 0.9]

]
.

(49)

The inference process of ensemble IVFCMs is as follows:
Step 1: From 01, 02 and 03, we get the following aug-

mented connection matrices:

0̄1 =


[0, 0] [0.8, 0.9] [0.1, 0.2] [0, 0] [0, 0]
[0.8, 1.0] [0, 0] [0.2, 0.3] [0, 0] [0, 0]
[0.7, 0.8] [0.8, 0.9] [0, 0] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

,
(50)

0̄2 =


[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0.1] [0.6, 0.9] [0, 0]
[0, 0] [0.7, 0.8] [0, 0] [0.6, 0.7] [0, 0]
[0, 0] [0.8, 0.9] [0.1, 0.2] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

,
(51)

0̄3 =


[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0] [0.6, 0.7] [0.9, 1.0]
[0, 0] [0, 0] [0.1, 0.3] [0, 0] [0.8, 0.9]
[0, 0] [0, 0] [0.1, 0.2] [0.7, 0.7] [0, 0]

.
(52)

Step 2: Based on ξ , 0̄1, 0̄2 and 0̄3, we get the aggregated
connection matrix as equation (53), as shown at the bottom
of the next page.
Step 3: Determine the steady state of the ensemble

IVFCMs. If |θ i(t + 1) − θ i(t)| < 10−4 and |θ i(t + 1) −
θ i(t)| < 10−4 (i = 1, 2, 3, 4, 5) (θi(t) = [θ i(t), θ i(t)] and
θi(t+1) = [θ i(t+1), θ i(t+1)]), we think the ensemble map
reaches the steady states. The results of the reasoning process
are shown as Table 2 and the steady state is equation (54), as
shown at the bottom of the next page.
Remark 7: In order to improve spectrum utilization, it is of

great importance to consider the connections among different
SUs and to detect malicious SUs in cognitive radio network.
The ensemble map can more accurately describe the connec-
tions among different SUs, and the the variation tendency of
concept values is helpful to detect malicious SUs.

C. MONITORING SYSTEM OF AIR QUALITY
Here we consider a problem of monitoring system of air
quality in Gaoming District, Foshan, Guangdong Province,
China. In a 10km × 10km area, there have been three sta-
tions as Figure 5. This station is with four sensors that can
be configured to measure: Carbon monoxide (N1), Nitrogen
dioxide (N2), Sulfur dioxide (N3) and Ozone (N4). From the
historical data, we get three IVFCMs of three stations and
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TABLE 2. Reasoning using the ensemble IVFCMs.

FIGURE 5. A multi-parameter air quality station.

FIGURE 6. The respective IVFCMs and ensemble IVFCMs. (a) IVFCM 1.
(b) IVFCM 2. (c) IVFCM 3. (d) Ensemble IVFCMs.

their respective connection matrices are shown as equations
(55)-(57) and Figure 6.

01 =


0 0 0 0
0 0 [0.4, 0.5] [0.3, 0.4]
0 [0.3, 0.5] 0 [0.2, 0.3]
[0.2, 0.3] [0.1, 0.2] [0.3, 0.4] 0

,
(55)

02 =


0 0 0 [0, 0.1]
0 0 [0.5, 0.6] [0.4, 0.4]
0 [0.3, 0.5] 0 [0.2, 0.3]
0 [0.2, 0.3] [0.2, 0.3] 0

, (56)

03 =


0 0 0 0
0 0 [0.4, 0.5] [0.2, 0.3]
0 [0.5, 0.6] 0 [0.3, 0.4]
[0, 0.1] [0.1, 0.3] [0.2, 0.4] 0

.
(57)

The inference process of ensemble IVFCMs is as follows:
Step 1: From 01, 02 and 03, we get the following aug-

mented connection matrices:

0̄1 =


[0, 0] [0, 0] [0, 0] [0, 0]
[0, 0] [0, 0] [0.4, 0.5] [0.3, 0.4]
[0, 0] [0.3, 0.5] [0, 0] [0.2, 0.3]
[0.2, 0.3] [0.1, 0.2] [0.3, 0.4] [0, 0]

,
(58)

0̄2 =


[0, 0] [0, 0] [0, 0] [0, 0.1]
[0, 0] [0, 0] [0.5, 0.6] [0.4, 0.4]
[0, 0] [0.3, 0.5] [0, 0] [0.2, 0.3]
[0, 0] [0.2, 0.3] [0.2, 0.3] [0, 0]

,
(59)

0̄3 =


[0, 0] [0, 0] [0, 0] [0, 0]
[0, 0] [0, 0] [0.4, 0.5] [0.2, 0.3]
[0, 0] [0.5, 0.6] [0, 0] [0.3, 0.4]
[0, 0.1] [0.1, 0.3] [0.2, 0.4] [0, 0]

.
(60)

Step 2: In the monitoring process, the three stations are
with equal weights, i.e., ξ = [ 13

1
3

1
3 ]. Based on ξ , 0̄1, 0̄2

and 0̄3, we get the aggregated connection matrix as equa-
tion (61), as shown at the top of the next page.

0 =


[0, 0] [0.2133, 0.2400] [0.0216, 0.0432] [0, 0] [0, 0]
[0.2133, 0.2667] [0, 0] [0.0466, 0.0920] [0.1500, 0.2250] [0, 0]
[0.1806, 0.2065] [0.5082, 0.5644] [0, 0] [0.3830, 0.4375] [0.2483, 0.2759]
[0, 0] [0.2133, 0.2400] [0.0486, 0.1171 [0, 0] [0.2133, 0.2400]
[0, 0] [0, 0] [0.0216, 0.0432] [0.1806, 0.1806] [0, 0]

. (53)

θ (8) = [[0.7460, 0.7543] [0.8271, 0.8327] [0.7114, 0.7225] [0.7992, 0.8090] [0.7550, 0.7590]]. (54)
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0 =


[0, 0] [0, 0] [0, 0] [0, 0.0211]
[0, 0] [0, 0] [0.4399, 0.5192] [0.2753, 0.3263]
[0, 0] [0.3731, 0.5058] [0, 0] [0.2069, 0.2828]
[0.0466, 0.0920] [0.1107, 0.2081] [0.2122, 0.3140] [0, 0]

 . (61)

Step 3: Determine the steady state of the ensemble
IVFCMs. If |θ i(t + 1) − θ i(t)| < 10−4 and |θ i(t + 1) −
θ i(t)| < 10−4 (i = 1, 2, 3, 4, 5) (θi(t) = [θ i(t), θ i(t)] and
θi(t+1) = [θ i(t+1), θ i(t+1)]), we think the ensemble map
reaches the steady states. Let tanh be the threshold function.
Here θ (0) =

[
[0.6, 0.7] [0.8, 0.9] [0.5, 0.6] [0.7, 0.8]

]
. The

results of the reasoning process derived from three respective
IVFCMs and ensemble IVFCMs are shown as Table 3 and
Table 4.
Remark 8: Up to now, air quality has been a serious issue

for everyone, especially in some developing countries. How-
ever, some sensors or certain station may lose efficacy or gen-
erate abnormal data. To avoid the negative influence from
those invalid sensors or stations, it is necessary to syntheti-

cally consider all the stations in a local area. As illustrated
Table 4, the ensemble IVFCMs is helpful to detect abnormal
sensors or station by comparing the respective ones and the
ensemble one.

D. ANALYSIS
From the above three examples, we can get the following
interesting results:

• As indicated in the above three examples, the problems
of quantifying both default connections and augmented
connection matrices have been successfully solved. The
proposedmethod has delivered a new vision to assess the
importance levels of different maps when establishing
ensemble IVFCMs.

TABLE 3. Reasoning using the ensemble IVFCMs.

TABLE 4. Monitoring system of air quality: Summary of steady state results and iterative times using the ensemble IVFCMs.
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• As shown in equation (44), equation (53), equation (61),
Table 1, Table 2 and Table 3, both the connection matrix
and the state values of the ensemble IVFCMs reflect the
causal relationship among concepts and their variation
tendency.

• As can be observed from Table 4, the ensemble IVFCMs
can more accurately reflect the connections between
concepts than the respective maps. From the varia-
tion tendency of the concepts’ state, the abnormal con-
cept or stations can be detected by comparing the
respective IVFCMs and the ensemble one.

V. CONCLUSION
We have studied the challenging problem of establishing
ensemble IVFCMs in this study, which includes three key
points, i.e., quantifying the default connections and the
augmented connection matrices, assessing the weights of
different maps, and aggregating all the maps. Firstly, we have
redefined the default connections and presented the aug-
mented connection matrices as the basis of establishing
ensemble IVFCMs. Then, a multi-objective model has been
presented for assessing the importance levels of different
maps. Finally, we have proposed a scheme based on ER
theory to aggregate a number of maps with different weights.
The results of three examples indicated that the ensemble
IVFCMs provides an effective way to model complex sys-
tems with uncertainty from numerous fields, such as social
systems, medical decision making and supplier selection.
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