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ABSTRACT As one of the key functions in lithium-ion battery management system, the state-of-
health (SOH) estimation is of great significance to ensure the safe and reliable operation and reduce the
maintenance cost of the battery energy storage system. Unscented particle filter (UPF) algorithm is becoming
a promising method for battery state estimation since it combines the latest measurement information to give
the proposal distribution which is closer to the true posterior distribution. At the same time, UPF algorithm
is able to represent the uncertainty involved in the estimation results, which makes great significance for
battery SOH estimation. On the other hand, it is difficult to measure the battery actual capacity in practice
despite the capacity is a direct indicator of battery SOH. In this paper, an on-line health indicator (HI)
is extracted from the measurable parameters while battery is working. The mapping model between the
extracted HI and battery SOH is established and applied as the observation in the state-space model. An on-
line estimator based on UPF algorithm is developed for battery SOH assessment. The maximum estimation
error based on battery cycling test data is less than 5%. This indicates that the proposed method has a
good adaptability for lithium-ion battery degradation with non-linear and non-Gaussian characteristics.
Additionally, the experiments on different types of lithium-ion battery show the good robustness and

applicability of this approach.

INDEX TERMS Lithium-ion battery, on-line SOH estimation, health indicator, unscented particle filter.

I. INTRODUCTION
Lithium-ion batteries have many advantages, such as high
output voltage, low self-discharge rate, etc. [1], [2]. Thus,
they are widely utilized in consumer electronics, electric
vehicles, navigation, and aviation applications. Particularly,
with the high energy density, lithium-ion battery can signif-
icantly reduce the weight and volume of the energy storage
system in aerospace applications. Therefore it has become the
third generation of satellite power storage batteries [3].

However, the battery performance degrades with the
repeatedly charging and discharging. Thus, battery degrada-
tion identification, state estimation and prediction, and main-
tenance optimization have attracted much attention in many
different fields including energy, reliability engineering, and
aerospace engineering, etc. [4], [S].

Indeed, the lithium-ion battery state monitoring, estima-
tion and prediction involving the State-of-Charge (SOC) and

State-of-Health (SOH) gradually become the new functional
requirements of battery management system (BMS). This
paper focuses on the on-line SOH estimation. SOH can repre-
sent the battery performance as a measurement that indicates
the general health condition of a battery as well as its ability
to deliver the specified performance. One of the definitions of
SOH is the ratio of the current capacity to the initial capacity.
Health state degradation is a long-term variation for a lithium-
ion battery [6]. SOH estimation can make some reasonable
instructions for battery maintenance and replacement. Accu-
rate estimation results are helpful to ensure the host system
running safely, and realize the goal of condition based main-
tenance (CBM). Moreover, degradation of battery maximum
discharge capacity during the long-term operation affects the
accuracy of SOC estimation [7], and SOH estimation can
solve this problem by updating the battery capacity parameter
using the multi-scale joint estimation [8]-[10].
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Capacity is a direct indicator for battery SOH that is
applied in most SOH estimation methods. Wu et al. [11]
acquired the battery capacity through real-time coulomb
counting process to achieve SOH  estimation.
Riviere et al. [12] proposed a SOH estimator based on incre-
mental capacity (IC) analysis and a Butterworth filter.
Chen et al. [13] presented a battery SOH estimation method
based on the relationship between Ohmic internal resistance
and capacity fade. However, it is hard to take such measure-
ments in on-line applications since lithium-ion batteries may
not be fully discharged from the fully charged state. As a
result, the battery capacity cannot be estimated accurately.
At the same time, more research efforts have been devoted to
construct on-line HIs based on measureable battery param-
eters. Hu et al. [14] proposed a prognostics framework for
battery SOH evaluation based on sample entropy of discharg-
ing voltage. Liu et al. [15], [16] constructed a novel HI called
the time interval of equal discharging voltage difference
(TIEDVD) for battery prognostics.

Data-driven prognostics methods based on testing data
samples and monitoring parameters for battery degradation
modeling are proved to be effective for battery SOH assess-
ment. For such methods, it is critical to establish a map-
ping relationship between capacity and measurable physi-
cal parameters such as voltage, current, temperature, and
time interval. In other words, the complex electrochemical
reaction and related principles are not taken into considera-
tion for data-driven methods. In previous literatures, neural
network (NN) [17], support vector machine (SVM) [18],
relevance vector machine (RVM) [19], [20], and Gaussian
process regression (GPR) [21], have been used for battery
SOH evaluation. However, such data-driven methods show
high dependency on training data sets. When battery is oper-
ated in complex conditions, the model may lose its accuracy.
Model-based approaches are another kind of SOH estimation
methods. The key point of model-based methods is to build
the physical model by extracting the internal parameters that
are able to characterize dynamic aging and failure process
of the battery. Since the model parameters should change
with the battery degradation, a variety of filtering methods
such as extend Kalman filter (EKF) [22], unscented Kalman
filter (UKF) [23]-[25] and particle filter (PF) [26]-[29] are
applied to adjust the model parameters and hence to track
the battery aging process. However, there are some inherent
defects for EKF and UKF. Firstly, the methods cannot be
well adjusted if the non-linearity of the battery model are
serve as the battery ages. Secondly, the system noise and mea-
surement noise must satisfy the Gaussian distribution. How-
ever the degradation of lithium-in battery is not in line with
these limitations. Therefore, the filtering performance will
decrease or even diverge. In comparison, PF algorithm has
better ability achieving state estimation with nonlinear and
non-Gaussian features [29]. Xing et al. [4] fused an empiri-
cal exponential and a polynomial regression model to track
battery degradation trend, and the model parameters were
adjusted on-line using PF algorithm to implement battery
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SOH prediction. Dong et al. [30] revealed that PF algorithm
had better adaptability for battery SOH estimation and predic-
tion when compared with autoregressive integrated moving
average (ARMA), EKF, RVM and SVM. PF algorithm is
based on Monte Carlo and recursive Bayesian filter methods,
and the key concept is to find a collection of random particle
sample with associated importance weights to represent the
posterior probability density. However, since the standard
PF algorithm cannot take account of the newest observation
information, all but a few importance weights tend to be zero.
This is called particle diversity degradation that reduces the
filtering precision and uncertainty representation. To obtain
acceptable filtering results and proper probability density dis-
tribution, standard PF algorithm requires a massive number of
particles which increases the burden of computing. In order
to solve these problems, two main strategies can be adopted.
One is using resampling techniques, the other is choos-
ing reasonable particle proposal distributions. Although the
resampling techniques can solve the lack of particles to some
extent, it loses the diversity of particles. Therefore, choosing
a reasonable distribution is a promising way to improve the
performance of PF algorithm. Unscented particle filter (UPF)
is a fusion statistical filtering algorithm that combines the
UKF algorithm and PF, and it applies UKF algorithm to
give the particle proposal distribution considering the new
observation information. Because of the proposal distribution
generated by UKF is closer to the true particle posterior distri-
bution, UPF algorithm has a better performance in terms of
filtering precision and uncertainty representation compared
with PF algorithm, and is becoming an effective method to
solve the problems of lithium-ion battery state estimation.
More importantly, the number of particles needed in the
filtering process is greatly reduced [31]. He et al. [32] and
Miao et al. [33] proved that UPF algorithm could improve the
accuracy of battery SOH prediction, and had better prediction
precision and probability density distribution in contrast to PF
algorithm.

Despite considerable research efforts have been devoted
to lithium-ion battery SOH estimation, there are still some
challenging issues. Firstly, data-driven approaches are over-
reliance on the training data. If the training data set cannot
contain sufficient degradation patterns, the battery SOH can-
not be estimated accurately. On the other hand, the parameters
of data-driven model are hard to be updated on-line which
decrease the capability of the method itself. At the same time,
for real applications, it has to be taken into consideration
that the degradation features should be extracted from on-line
measurable parameters such as voltage and current.

To address the issue of on-line battery SOH estimation, this
work extracts the on-line HI by using measurable parameters
(voltage, time interval) for working battery. The UPF algo-
rithm is chosen as state filtering method for its better proposal
distribution that makes significance for uncertainty represen-
tation. The extracted HI are used to construct health model
and then SOH is estimated with UPF algorithm. As a result,
the on-line battery SOH estimator as well as its confidence
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interval can be obtained with this fused approach. The on-
line SOH estimator this paper proposed fuses the mapping
relationship between on-line HI and SOH into the state-space
model, and choose the on-line HI as the measurement instead
of capacity that achieve the goal of on-line estimation for
battery SOH.

The rest of this paper is organized as follows. Section II
introduces the methodology of PF algorithm and UPF algo-
rithm. Section III describes the proposed on-line SOH estima-
tion method of lithium-ion battery. Experiments and results
analysis are illustrated in section I'V. Finally, section V sum-
marizes the conclusion and future work.

Il. METHODOLOGIES

The state-space equation is a time domain model that
describes the dynamic characteristics of systems, including
the state transition and measurement equations which can be
expressed as:

Xp = f(Xk—1, Vk—1) (D
Yk = h(xe, mg) )

where f'(-) and A(-) represent the state transition and measure-
ment equations respectively. x; represents the system state
variables, and y is the measurements of the system at time k.
vi and p; are the system process noise and the measurement
noise respectively. They are independent with each other and
independent with the system state variables. Both standard
PF algorithm and UPF algorithm are designed based on the
state-space model.

A. PARTICLE FILTER ALGORITHM

PF algorithm is one of the statistical filtering algorithms that
uses Monte Carlo methods to solve the Bayesian estimation
problem [34]. It represents the distribution of system state
variables by particle collection and can be applied to any form
of state-space model, which provides a new idea for solving
the probability density distribution of system state estimation.
The key of the PF algorithm is to approximate the posterior
distribution of the system state variables using a collection of
particles {x};}f.\’: | with associated weight vector {w}; }f.VZ |» and
the posterior probability density distribution of the estimated
system state variables can be written as

N

POk lyox) = Y wis(xk — X}) 3)
i=0

Actually, it is hard to obtain the ideal particle distribution
directly from the posterior probability density distribution
p(Xk|yo:x)- Therefore, it is necessary to find an alternative
easy-to-sample particle distribution g(X¢ |yo:x) called the pro-
posal distribution to approximate the particle posterior dis-
tribution in the standard PF algorithm [30]. The standard PF
algorithm is described as follows:

Step 1: Initialization
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Set k = 0, draw a collection of particles {x)}, from prior
probability distribution p(Xxp) and set all the particle weights
to 1/N. Here, N is the number of particle.

Step 2: Importance sampling

Draw particles xf( from the proposal distribution q(x;( |¥0:k)-
In standard PF algorithm, we define g(x}, |yo.x) = p(X; [yo:x)-

Step 3: Weight calculation and normalization

Considering the new measured values, calculate the
weights of new particles according to the (4), and normalize
the weights.

0PI IX )
Wi & T
qxp 1% _ 1> Yi:k)

N
Wi = / S )
=1

Step 4: Resampling
Calculate the effective particles with (6),

“

N
N ~ 1 [ > (wp)? (6)
i=1

If the effective sample size N is below the given threshold
N, the resampling procedure is conducted according to (7)
and (8) for a new collection of particles. Generally, we let
Ny =2/3N.

N

i j i

xi=x, Y W, =i ™)
J=1

W=y ®)

Step 5: State estimation
Obtain the estimated state variables at time k by the new
particles and their corresponding weights.

N
Xe= ) WX )
i=1

If k < T(T is the number of the whole measured values),
assume k = k + 1, turn to Step 2. If k > T, then the overall
estimation algorithm should be ended.

The diversity and effectiveness of particles determine the
accuracy and uncertainty representation ability of PF algo-
rithm. However, in the standard PF algorithm, the majority of
particle weights tend to be zero after a few steps of iteration,
which results in the reduction of the diversity of the particles.
In other words, a large number of particles will be unimpor-
tant in the filtering process. In order to solve this problem,
two methods can be adapted. One is the particle resampling
technology and the other is to choose a better particle distribu-
tion that has a greater overlap with the true particle posterior
distribution. The essence of particle resampling is to discard
the particles with lower weights and copy the particles with
larger weights, which loses the diversity of particle collection
to some extent while solving the problems of particle scarcity.
In comparison, choosing a good particle proposal distribution
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is a more promising way to improve the performance of PF
algorithm.

B. UNSCENTED PARTICLE FILTER ALGORITHM
UPF algorithm is a converged statistical filtering algorithm
that fuses UKF algorithm to generate a particle proposal
distribution by taking account of the latest measured values
and solves the particle scarcity problems for the standard PF
algorithm. Since the particle proposal distribution obtained
by UKF algorithm is closer to the true posterior distribution,
UPF algorithm has a great advantage in terms of accuracy and
the ability of uncertainty representation [31]. UPF algorithm
can be divided into two steps: 1) get the particle proposal
distribution by the UKF algorithm, 2) use the standard PF
algorithm to give the estimation of system state variables and
update the corresponding covariance matrix. It is described
as follows:

Step 1: Initialization '

Randomly generate a collection of particles {x8)+} and the
corresponding covariance matrix {Pg)+}, i =1,2,...,N
based on the initial distribution(k = 0), and set

(l) E[X(l)+] (10)
Pg)+ E[(X(l)+ —(l))(x(l)+ —(i))T] (1 1)

Step 2: Particle proposal distribution
a) Sigma points generation
Calculate the augmented sigma points for each particle:

T
Xiz)a;r _ [( (t)+)T Vk X ”’k l] (12)

P — diag(PV", Q, R} (13)

X]El)!ll+ [ (z)a+ (1)a+ 4y /Pg)a;r (:)a+ /P;:)ffr]

(14)
where y = +/L + X, L is the dimension of the augmented
state variables and A is the composite scaling parameter.

b) Time update
Perform the time update to propagate the particle into the
future:

W = (15)
- 2L -
X =W 16)
Jj=0
- 2L - - - -
P = Z W0 = x0T = x DT am
y = g(x“”‘ ) (18)
(l)_ Z W(m)w(l)_ (19)

¢) Measurement update
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Perform the measurement update to incorporate the latest
observation information:

}k " Z W(C)( (l)_ (l) )(w](llz (l) )T (20)
2L )
ka,)’k = ZW(L)( (l)x* (l) )(I/f(l)* ygcl)*)T (21)
j=0
Ki =Py, }kP)_k Vi (22)
x,‘{f>+ = x,(;) + Ke(ye — y¢7) (23)
P =P~ KBy K 4

Step 3: State estimation and covariance matrix update

a) Weight calculation and normalization

Calculate the relative weight of each particle conditioned
on the measurement y; and normalize the weights:

o PP )
w, X Or o+ (25)
(X |Xk717yl:k)
wp =" [ 5 W (26)
=1

b) Resampling

When the effective sample size Ny is below the given
threshold Ny, we can generate a set of particles {x,(jH} and
their corresponding covariance matrix {P(ki)+} on the basis of

the relative weight wf{ by resampling method.

N

KT RO S s )
J=1

we =1y (28)

¢) State estimation
The system state variables can be given as:

o= Zx(l)Jr (29)

Fork =1,2,---, repeat the step 2 and step 3 above.
IIl. FUSION APPROACH WITH ON-LINE HEALTH
INDICATOR EXTRACTION FOR SOH ESTIMATION
A. OVERALL PROCEDURES
In order to realize the on-line estimation of battery SOH,
this paper starts from the discharging voltage series and time
series that can be monitored directly during the actual opera-
tion of batteries, and construct an on-line HI. Taking account
of the non-linear and non-Gauss complex features of lithium-
ion battery, we achieve the battery SOH estimation based
on UPF algorithm, and the on-line estimation framework for
battery SOH can be summarized in Fig. 1.

Firstly, the discharging voltage series and time series that
can be detected directly are extracted from the battery on-
line test dataset. We construct an on-line HI based on these
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FIGURE 1. On-line estimation framework for battery SOH.
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FIGURE 2. HI extraction with TIEDVD.

monitored battery parameters, and the correlation between
the extracted HI and battery SOH is evaluated and mapped
which can be used in the system state-space equation. Then,
we apply this mapping relationship into the system state-
space equation, realize on-line estimation for battery SOH
based on the UPF algorithm, and give the distribution of
confidence intervals, with a confidence level of 95%.

B. ON-LINE HEALTH INDICATORS EXTRACTION

AND MAPPING

Capacity is a direct measurement for battery SOH, but it
could not be obtained easily while the battery is working,
in other words, capacity cannot be used as the observation
of the system state-space equation. Therefore, it is necessary
to find the available parameters during battery running, such
as voltage, current, time and temperature to construct an
efficient HI of battery SOH.

Liu et al. [15], [16] showed that there were some differ-
ences between the discharging voltage cures of each discharg-
ing cycle, and the time interval of equal discharging voltage
difference (TIEDVD) could serve as an on-line HI to measure
the capacity degradation in each charging and discharging
cycle for battery SOH estimation.

The extraction principle of TIEDVD for one charging and
discharging cycle is shown in Fig. 2.

TIEDVD is an efficient on-line avaliable HI, and the poten-
tial degradation based on the TIEDVD index is similar to that
of battery capacity. In particular, the on-line HI this paper
constructed corresponding to certain charging and discharg-
ing cycle is:

HI = |ty — tvy,l. i=12,....k....  (30)
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here, ty,,, and ty,, are the upper and lower limit voltage
sampling time respectively.
The on-line HI series can be expressed as:

HI = {HI;,HD, ... ,HI, ...} (31)

The on-line HI can be used as an indirect indicator for
battery SOH, and the correlation analysis and transformation
relationship between battery SOH and on-line HI is valuable.
Based on the experimental results presented in [35], the trans-
formation relationship between battery SOH and TIEDVD
can be described as:

SOH; = Bo + B1HI; + B2 In(HI;) + ¢; (32)

here, Biand B, are the coefficients for transformation rela-
tionship, By is a constant and ¢; is the error term.

This approximation method applies linear basis expan-
sions, which is one of the extensions of generalized linear
regression model. The benefit of this transformation relation-
ship is that one can add smooth functions to describe the
linear or non-linear relationship between the two variables.

C. SOH ESTIMATION BASED ON FUSION UPF

1) DEGRADATION MODEL AND STATE TRANSITION
EQUATION

The degradation of lithium-ion batteries is a complex electro-
chemical reaction process, especially the self-charging phe-
nomenon during the charging and discharging cycle makes it
hard to establish a suitable model to characterize the overall
degradation process well. Fortunately, it is not difficult to
see that the overall trend of battery degradation follows the
exponential decay. Moreover, Xing et al. [4] revealed that
the double exponential degradation model could characterize
battery degradation process well, and can be written as:

SOH; = a-exp(b - k) + c - exp(d - k) (33)

where a, b, c and d are the model parameters and k is the cycle
number. a and c are related to the internal impendence, b and
d are connected with the degradation rate.

Degradation model parameters are chosen as the system
state-space variables and the state transition equation can be
established as:

Xk = lak; b; ck; di ] (34
ap = ag—1+vaik—1 va ~ N(O, 0p)
by =bi_1 +vpr—1 v~ N(O,0p) (35)
Ck = Ck—1+Vek—1 Ve ~N(O,0¢)
dp =di—1+vak—1 va ~ N(,oq)

here, N(0, o) is the Gaussian noise with zero mean and
standard deviation o.

2) MEASUREMENT EQUATION CONSTRUCTION

The measurement equation describes the function relation-
ship between system state variables and observational infor-
mation, and the on-line HI we constructed is chosen as the
measurement of state-space equation. Thus, taking account
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FIGURE 3. State parameters updating based on UPF algorithm.

of battery degradation model and the mapping relationship
between on-line HI and SOH, the measurement equation is
established as:

{ SOH) = ay - exp(by - k) + ci - exp(dy - k) (36)

HI = g(SOHy) + pypy ~ N(O, o)

here, function g(-) represents the transformation relationship
between SOH and on-line HI.

3) STATE UPDATING AND SOH ESTIMATION
The accurate estimation of battery SOH not only depends on
the precise degradation model, but also on the optimization
and adjustment of model parameters during the degradation
process. In this paper, the UPF algorithm are applied to
optimize and update the state parameters illustrated in Fig. 3.
At cycle k, the estimated SOH collection for each particle
can be given by:

SOH;] = di - exp(bl. - k) + ¢} - exp(d] - k) (37)

and the estimated SOH is represented as:
N . .
SOH, =Y - SOH] (38)
i=1

‘When the SOH is achieved, the estimated confidence inter-
val distribution is given with a confidence level of 95%, and
finally form a confidence interval distribution band around
the estimated results.
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IV. EXPERIMENTS AND RESULT DISCUSSION

A. EXPERIMENTAL DATA SETS

In the experiments, two lithium-ion battery data sets are uti-
lized to verify the proposed methods. Battery B18 is obtained
from the data repository of the NASA Ames Prognostics
Center of Excellence (PCoE) [36], and CS-36 is from the
Center for Advanced Life Cycle Engineering (CALCE) at
University of Maryland [1], [4], [37], [38].

Battery B18 is a commercial lithium-ion 18650 recharge-
able battery with rated capacity 2Ah. The battery is tested in a
constant current (CC) mode at 0.75C until the battery voltage
reached 4.2V and then charged in a constant voltage (CV)
mode until the charge current dropped to 0.01C. Discharge
is conducted at a constant current (CC) level of 1C until
the battery voltage dropped to 2.5V. Repeated charge and
discharge cycles resulted in accelerated aging of the battery.
The experiments were stopped when the batteries reached the
end-of-life (EOL) with a 30% fade in rated capacity (from
2Ahr to 1.4Ahr).

The rated capacity of battery CS-36 whose rated capacity
is 1.1Ah is tested with the charging current 0.5C. While the
battery charging voltage reached 4.2V and then charged in
a constant voltage mode until the charge current dropped to
0.05A. Discharge is conducted at a constant current level
of 1C until the battery voltage dropped to 2.7V.

Different battery samples tested under different charg-
ing/discharging conditions can guarantee the general appli-
cability of the proposed methods.

B. EXPERIMENT SETTING AND EVALUATION CRITERIA
Firstly, battery B18 is selected as the experimental sample.
Then, battery CS-36 is chosen to conduct the experiments to
evaluate the adaptability of the method for different types of
battery samples. When the battery SOH is less than 0.8, it is
regarded as failure. Thus, in the experiments, only the SOH
estimation is analyzed before the battery reaches the failure
threshold (SOH = 0.8).

In addition, in order to analyze the estimation performance
of the proposed method, the PF algorithm is proceeded with
the same number of particles (N = 128) as well as the
method comparison. The evaluation indexes include the root
mean square error (RMSE), maximum error (ME), maximum
relative error (MRE), average error (AE) and average width
of confidence interval (AWCI).

(1) Root Mean Square Error (RMSE):

L
Z (SOHé(stimation - SOHt];ue)z
RMSE = | = (39)
L
(2) Maximum Error (ME):
ME = max{(SOH asion — SOHyVie1 (40)
(3) Maximum Relative Error (MRE):
SOH* . — SOHX
MRE = max( S esinatin - m\l )
SOH,,
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FIGURE 4. The extracted on-line Hl series of battery B18.
(4) Average Error (AE):
L k k
Z (s OHestimation — SOH,.)
AE = & (42)
L
(5) Average Width of Confidence Interval (AWCI):
L
3.92% ) ok
AWCI = k=1 (43)
L
k k :
here, SOH ... ..., and SOH; , are the estimated value and

true value at kzh cycle respectively. L is length of iteration
and oy is the standard deviation of the collection {SOH, ,i }.

C. EXPERIMENTS ON SOH ESTIMATION AND
COMPARISON

1) NASA PCOE BATTERY SOH ESTIMATION

Firstly, the on-line HI is extracted for battery sample B18,
and the correlation analysis between the constructed HI and
SOH is conducted. Then, the mapping function between on-
line and SOH is established for measurement equation and
the degradation model is obtained for state transition equation
respectively. Finally, the UPF algorithm is applied to optimize
the state parameters for SOH estimation and give the confi-
dence interval.

The on-line HI this paper proposed is extracted from the
series of discharge voltage serials as well as sample time
serials. Figure 4 describes the extracted on-line HI series of
battery B18, here V), = 4.0V, and V,,,;, = 3.5V.

The correlation analysis curve between on-line HI and
battery SOH is shown in Fig. 5. The correlation coefficient
R = 0.991, which means the extracted on-line HI can be
equivalent to the factor characterized the battery SOH.

The mapped on-line HI obtained with Eq. (32) and the bat-
tery SOH are shown in Fig. 6. The coefficients By, f1, B2 are
calculated used least square algorithms. The maximum error
is 0.0315which indicates the system state-space equation can
be established by using the mapping relationship.
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FIGURE 5. Correlation analysis between on-line HI and SOH for
battery B18.
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FIGURE 6. Mapping of on-line HI and SOH for battery B18.
(a) Comparison of mapped HI and SOH. (b) Mapping error.

The function fitted with double exponential model for bat-
tery B18 is shown in Fig. 7. The correlation coefficient R =
0.9625, that means the double exponential model has a good
ability to characterize the degradation process of battery B18.

In the experiment, the fitting results of the model param-
eters shown in Table 1 are selected to initialize the system
state variables, and the corresponding standard deviations
are calculated by combining the parameter fitting range and
rule 3o0.

The SOH estimation results in the whole life cycle for
battery B18 are shown in Figs 8 - 9.To further evaluate the
efficiency of the proposed method, the PF and UPF algo-
rithms are compared in the experiments. Table 2 shows the
quantitative the performance comparison results.
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TABLE 1. State parameters initialization and standard deviation for cycle
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State Initial Fitting Standard —@— Relative error(%)
Variables Value Range Deviation 56 —@— Absolute error
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FIGURE 9. SOH estimation with UPF algorithm for battery B18. (a) SOH
estimation result and its confidence interval. (b) Error of SOH estimation.

1 TABLE 2. Comparison of SOH estimation for battery B18.

Real SOH
0751 | %  Estimated SOH 1 —
Evaluation indexes PF UPF
0.7 : - : - : - : AE 0.0061 0.0050
10 20 30 40 50 60 70 80 ME 0.0392 0.0322
cycle MRE 4.2082% 3.5639%
(a) RMSE 0.0012 0.0005
AWCI 0.0606 0.0458
8
—@— Relative error(%)
6l —@— Absolute error ]

Estimation Error
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FIGURE 8. SOH estimation with basic PF algorithm for battery B18.
(a) SOH estimation result and its confidence interval. (b) Error of SOH FIGURE 10. The extracted on-line HI series of battery CS-36.
estimation.

It can been seen that the proposed method has a good
performance for SOH estimation of battery B18, and the esti- D. MARYLAND CALCE BATTERY SOH ESTIMATION
mation error is less than 5%. Additionally, the UPF algorithm Battery CS-36 is utilized in order to evaluate the adaptability
shows better efficiency in terms of five evaluation indexes of different types of batteries. The constructed HI and the true
when compared with PF algorithm. SOH for battery CS-36 are shown in Fig. 10.
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FIGURE 11. Correlation analysis between on-line HI and SOH for battery
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FIGURE 12. Mapping of on-line HI and SOH for battery CS-36. (a)
Comparison of mapped Hl and SOH. (b) Mapping error.

The On-line HI against SOH of CS-36 is shown as Fig. 11.
The correlation of on-line HI and SOH is higher than 0.96.
In other words, the variation of battery SOH can be presented
by the proposed HI.

The mapped on-line HI and battery SOH are shown as
Fig. 12. The maximum error is 0.0436 which indicates the
system state-space equation can be established with this map-
ping relationship.

The double exponential degradation model for battery CS-
36 is fitted as Fig. 13. The correlation coefficient R =
0.9811, meaning the degradation model can characterize
the degradation process of battery CS-36 well. The state
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FIGURE 13. Degradation process fitting for battery CS-36.
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FIGURE 14. SOH estimation with UPF algorithm for battery CS-36. (a) SOH
estimation result and its confidence interval. (b) Error of SOH estimation.

parameters initialization and their standard deviations are
listed in Table 3.

The SOH estimation results for battery CS-36 are shown
in Figs. 14-15. The PF and UPF algorithms are evaluated
and compared in the experiments, and the quantitative per-
formance comparison are given in Table 4.

Similarly, the proposed method still has a good perfor-
mance for SOH estimation of battery CS-36. Especially, com-
pared with PF algorithm, the UPF algorithm shows better
abilities of average width confidence interval.

E. EXPERIMENTAL DISCUSSION
From Tables 2 and 4, it can be obtained that PF methods
have good performance in battery SOH estimation, and the
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FIGURE 15. SOH estimation with UPF algorithm for battery CS-36. (a) SOH
estimation result and its confidence interval. (b) Error of SOH estimation.

TABLE 3. State parameters initialization and standard deviation for
battery CS-36.

State Initial Fitting Standard
Variables Value Range Deviation
a -0.001432 (-0.003069, 0.000205) 0.000546
b 0.03466 (0.0275, 0.0418) 0.00238
c 0.9608 (0.954, 0.968) 0.0023
d -0.001386 (-0.00166, -0.00111) 0.000092
TABLE 4. Comparison of SOH estimation for battery CS-36.
Evaluation indexes PF UPF
AE 0.0155 0.0107
ME 0.0503 0.0385
MRE 6.0111% 3.8483%
RMSE 0.0022 0.00065
AWCI 0.0935 0.0374

maximum relative error of SOH estimation is within 10%.
This indicates that the method is suitable for non-linear and
Non-Gaussian system such as lithium-ion battery. In addition,
the proposed UPF algorithm combining degradation model
and on-line HI is superior to the basic PF algorithm. And
the maximum relative error can be reduced to within 5%,
especially in the uncertainty representation of SOH estima-
tion, the 95% confidence interval of UPF algorithm is much
more convergent, and contains most of the SOH actual value,

VOLUME 6, 2018

which shows that the estimation results have high preci-
sion and accuracy. Moreover, the proposed method has good
adaptability on different types of lithium-ion batteries, which
shows that the method has good robustness.

V. CONCLUSIONS

In this paper, an on-line estimation method for lithium-ion
battery SOH based on UPF algorithm is proposed. Since the
battery actual capacity is hard to be measured when battery
is actually operated, this paper first construct an on-line mea-
surable health indicator, namely, TIEDVD from discharging
voltage and time measurements. The correlation between
this HI and SOH is higher than 0.95 and the mapping error
is less than 0.05 that could be a perfect replacement for
SOH estimation. The mapping relationship between extracted
HI and battery SOH is established and then applied to the
system state-space equation. The double exponential degra-
dation model is built, and the UPF algorithm is employed
to adjust the model parameters in real time. The experi-
ments validate the on-line estimation method The results
indicate that SOH estimation based on UPF algorithm not
only has high precision, but also provides great robustness
to suppress model parameter perturbations. Compared with
PF algorithm, the proposed method has better performance in
terms of the average error, maximum error, maximum relative
error, root mean square error and average width of confidence
interval. Meanwhile, the UPF algorithm can effectively adapt
to lithium-ion battery with non-linear and non-Gaussian char-
acteristics and owns the ability of uncertainty representation
that is of great significance for the health management of
lithium-ion battery. Additionally, the proposed SOH estima-
tion approach estimates the battery health state based on the
on-line measurable parameters instead of capacity. Therefore,
this SOH estimator can be utilized in real lithium-ion battery
applications.

However, it is much more complex when battery is oper-
ated in the dynamic conditions. This challenging issue will
be researched in the future. At the same time, the proposed
framework will also be optimized for embedded platforms
which will make the proposed framework more applicable.
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