
Received May 19, 2018, accepted June 22, 2018, date of publication July 9, 2018, date of current version July 30, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2852649

On the Feasibility of Using Hierarchical Task
Networks and Network Functions Virtualization
for Managing Software-Defined Networks
WILLIAM VILLOTA1, MARIO GIRONZA2, ARMANDO ORDOÑEZ3,
AND OSCAR MAURICIO CAICEDO RENDON 2
1Instituto de Computação, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
2Telematics Engineering Group, Telematics Department, Universidad del Cauca, Popayán 19003, Colombia
3Intelligent Management Systems Group, Foundation University of Popayán, Popayán 19003, Colombia

Corresponding author: Oscar Mauricio Caicedo Rendon (omcaicedo@unicauca.edu.co)

The work of O. M. Caicedo Rendon was supported by the Universidad del Cauca (Unicauca), Colombia.

ABSTRACT Management is an essential process to ensure the proper operation of computer networks.
There are a lot of proposals to manage software-defined networks (SDN) from their application plane.
However, such proposals share some shortcomings related to low automation of network management tasks,
long time needed to handle network situations, and the lack of flexibility and workability. In this paper,
we introduce JANO to overcome these shortcomings and investigate the feasibility of using automated
planning and network functions’ virtualization to manage SDN from a vertical management plane. JANO
uses hierarchical task networks’ planning to generate automatically plans that automate management tasks
and reduce the time required by administrators to face network situations. Also, JANO performs an
instantiation of the management orchestrator of network functions virtualization to provide flexibility and
workability in the generation and execution of plans targeted to addressing network situations. We evaluate
JANO in a proof of concept. The evaluation results corroborated that JANO is a feasible solution to manage
SDN, since the planning time slightly and linearly increased with the number of primitive tasks that form
a plan, the time-consuming needed by administrators to addressing a network situation was short, and the
additional traffic was low.

INDEX TERMS Automated planning, hierarchical task network, network functions virtualization,
software-defined networks.

I. INTRODUCTION
Management is an essential part of computer networks
because it ensures their proper operation, maintenance,
administration, and provisioning [1]. In a traditional net-
work environment, management is complex because both
forwarding and control planes are in the same net-
work device [2]–[4]. This means that, typically, Network
Administrators (hereinafter called Administrators) have to
manage each network device separately to handle the net-
work. The Software-Defined Networking (SDN) is a new
network paradigm that makes management tasks easier
than in conventional networks by centralizing the network
control [2]. Nevertheless, SDN also needs to be appropriately
managed. In this sense, SDN presents a typical problem of
new paradigms, the importance of its management is under-
estimated. Indeed, the first SDN definitions considered the
planes of Data, Control, and Application and they did not take
into account the Management plane.

The SDN management is a big challenge that needs
to be tackled to prevent technological patching [2]. This
patching is generated by the arising of many manage-
ment solutions, located at the Application Plane, each one
performing specific management tasks. There are many
proposals for managing SDN from its application plane,
such as Set Cover Problem [5], middleboxes [6], interac-
tive visualization [7], Software Defined Infrastructure [8],
and RESTful APIs [9]. These proposals share some short-
comings, such as: (i) low-automation of network man-
agement tasks, (ii) long-time required to perform network
management tasks; and (iii) lack of flexibility andworkability
(i.e., the ability to work in existing networks) in manage-
ment. In our previous work [10]–[13], we have also pro-
posed solutions formanaging SDN from the application plane
by using mashups and the Situational Management (SM).
Nevertheless, in such solutions, we have only achieved a
medium-automation level granted by mashups themselves.

38026
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-2223-947X


W. Villota et al.: On the Feasibility of Using Hierarchical Task Networks and Network Functions’ Virtualization

Ulterior investigations have included a management plane in
the SDN architecture [2], [3], [14]–[16] to address the patch-
ing aforementioned. In this sense, recently, proposals have
emerged to achieve self-driving SDNs [17], [18] by using
Machine Learning (ML).

To overcome the shortcomings related to low-automation,
long-time, and lack of flexibility and workability in perform-
ing network management tasks of current SDN solutions in
the Application Plane and unlike the ML-based solutions,
in this paper, we propose JANO. JANO extends our previous
work [19] and aims to investigate the feasibility of usingHTN
and NFV to automate the SDN vertical Management Plane
(introduced in [2] and modeled by us in [16]) to achieving
SDN management. HTN is a planning technique that decom-
poses tasks into subtasks and leads their execution orderly
to meet a goal [20]. We argue that HTN is a crucial tool to
manage SDN since it facilitates the work of Administrators
by automating many management tasks. Such automation
could reduce the management complexity and would elim-
inate the need for Administrators to address network situ-
ations (e.g., faults, wrong configuration, anomalies in SDN
controllers or OpenFlow-compliant switches, and change of
controllers during runtime) manually one at a time. As a
consequence of using HTN, the Administrators can face and
overcome network situations in a shorter time.

NFV is a promising technology that targets to decou-
ple Network Functions from the hardware on which they
run [21]. Although some research proposals have explored
the relationship between SDN and NFV [21]–[23], to the best
of our knowledge, the use of NFV to perform SDN man-
agement has been scarcely studied. In this sense, we argue
JANOmight become a valuable tool to manage SDN because
it exploits some fundamental NFV characteristics such as
flexibility, elasticity, scalability, and workability. In par-
ticular, JANO uses the NFV Management and Orchestra-
tion (MANO) concept to achieve SDN management via a
vertical plane.

To sum up, our key contributions are:
• An architecture based on NFV and HTN, called JANO,
intended to manage SDN from a vertical plane; note
that we are pioneers on using HTN to offer network
management tasks.

• A prototype of the proposed architecture. This prototype
was deployed in a traditional environment and in a cloud
environment.

• An evaluation by a proof-of-concept that reveals
JANO is a feasible solution to manage SDN regard-
ing time-planning, time-consuming and network traffic.
Time-planning is the time spent by JANO to automati-
cally generating a plan to cope with a situation in SDN.
Time-consuming is the time occupied by an administra-
tor to face a situation in SDN.

The remainder of this paper is organized as follows.
In Section II, we present SDN, NFV, HTN, and related work.
In Section III, we introduce JANO. In Section IV, we expose
and analyze a proof-of-concept of our proposal. In Section V,

we provide some conclusions and implications for future
work.

II. BACKGROUND AND RELATED WORK
This section presents main concepts of SDN, NFV, and HTN.
Also, this section introduces the related work to JANO.

A. BACKGROUND
1) MANAGEMENT OF SOFTWARE-DEFINED NETWORKING
SDN is a network paradigm that aims tomakemore customiz-
able, flexible and dynamic computers networks [24]. The
SDN architecture has four planes [2], [3], [14], [15], [24]:
Data, Control, Application and Management. The Data Plane
represents forwarding devices formed by two elements [25]:
a functional one (software) responsible for holding data and
performing forwarding tasks, and a physical element con-
sisting of components such as ports, memory, processor,
and storage. The Control Plane aims to make high-level
decisions and enforce settings in forwarding devices. This
Plane interacts with the other planes by different interfaces
called SouthBound with the Data Plane, NorthBound with
the Application Plane, EastBound with other controllers, and
Management with the Management Plane. The Application
Plane represents network applications, such as load balancers,
proxies, and firewalls.

The Management Plane aims to offer Management
Functions, such as Fault, Configuration, Accounting, Per-
formance, and Security (FCAPS), to the other SDN
planes. In this sense, recently, proposals based on Arti-
ficial Intelligent techniques have emerged to provide
specific network management tasks, such as handover
control, energy consumption, reconfiguration, and traf-
fic classification [26]–[29]. In particular, in SDN, there
are new proposals that use Machine Learning (ML) to
achieve autonomous [17] and cognitive [18] SDN manage-
ment. Unlike proposals that use ML, it is to highlight that,
in this paper, we propose an approach based onHTN andNFV
to automate the SDN vertical management plane introduced
by us in [16].

2) NETWORK FUNCTIONS VIRTUALIZATION
NFV is a technology that offers flexibility and cost saving in
the services provisioning [30]. This technology is intended
to decouple Network Functions (NF) (e.g., firewalls and load
balancers) from the hardware on which they run [21]. The
latter means that a Virtualized Network Function (VNF) can
run on any server in the network [31]. The Network Functions
Virtualization Infrastructure (NFVI), VNFs, and MANO
form NFV. NFVI is the combination of physical (hardware)
and virtual resources (software) that form the environment in
which VNFs run. A VNF may implement one or more NFs
and run on virtual resources (e.g., VMs running services and
Dockers running micro-services) [32].

MANO is formed by [33] and [34]: (i) an NFV
Orchestrator in charge of performing the composition of

VOLUME 6, 2018 38027



W. Villota et al.: On the Feasibility of Using Hierarchical Task Networks and Network Functions’ Virtualization

NFVI resources, (ii) a Virtualized Network Functions Man-
ager (VNFM) responsible for managing the lifecycle of
VNFs; and (iii) a Virtualized Infrastructure Manager (VIM)
in charge of virtualizing, monitoring, configuring and con-
trolling network resources. We argue that NFV MANO is
a valuable support for achieving SDN management because
JANO inherits from it essential features like flexibility, elas-
ticity, scalability, workability, and mainly the ability to auto-
matically compose management applications.

3) HIERARCHICAL TASK NETWORKS
HTN is an Artificial Intelligence technique that aims to
automatically create plans (formed by a set of primi-
tive tasks) that modify initial states to achieve goals [35].
To create plans, HTN uses Planning Problems and Planning
Domains [36], [37]. A Planning Problem contains an initial
state (i.e., the state to modify) and a goal (i.e., the state
to reach). Goals are, for instance, guarantee a particular
level of service in a bank network supported by a campus
network handled by an SDN controller and migrate such
controller without losing services continuity. A Planning
Domain contains a set of operators/actions and methods to
break compound tasks. A compound task (e.g., replace a link
by its backup) is a high-level action that must be decom-
posed in subtasks up to get primitive ones. A primitive task
(e.g., execute the re-start command for a controller) is an
indivisible low-level action [38]. In brief, the automatic HTN
planning process starts by using the methods to decompose
non-primitive tasks into subtasks, aiming to achieve a goal.
This process is performed over and over until only obtaining
primitive tasks that can be directly executed using the plan-
ning operators [20].

HTN planning is helpful in domains that meet certain con-
ditions. First, the domain knowledge must be well structured
so that domain goals and activities are expressable as tasks
and plans. Second, detailed information is needed to describe
how to find a solution (achieve a goal) using a set of tasks
(create a plan). These conditions enable HTN planners to be
fast and scalable [37] as well as ideal to overcome real-world
situations in dynamic systems like computer networks (tradi-
tional and based on SDN and/or NFV). The network manage-
ment domain meets these conditions because, first, FCAPS
are well known and definable by atomic tasks forming man-
agement plans. Second, different languages, such as the
Common Information Model (CIM) [16], JavaScript Object
Notation (JSON) [13], andXML [39], can be used to describe
these plans intended to achieve the goals defined in the Ser-
vice Level Agreements (SLAs). It is noteworthy that, in our
approach, HTN is used to create an instance of NFV MANO
that automatically generates plans targeted to handle nmsits.
These nmsits are unexpected, dynamic, and heterogeneous
network management situations, such as a sudden packet loss
in a core router of a network backbone and an unforeseen
slowness in data transmission over a link between virtual
routers [13].

B. RELATED WORK
1) SDN MANAGEMENT
There are a lot of proposals, located at the Application Plane,
that does not consider NFV concepts to manage SDN. For
instance, FlowCover is an approach that introduces a low-cost
monitoring scheme for timely recovering of flow statistics
in SDN [5]. This approach optimizes the flow statistics col-
lection scheme and models the polling switches selection
as a weighted set cover problem. Furthermore, FlowCover
focuses on reducing the network consumption during the
traffic measurement and decreases the communication cost
of monitoring the network performance by polling requests
and replies.

Reference [7] presents an analysis of signaling traffic in
SDN to explain the general effects of the communication
between the Control Plane and the Data Plane regarding
resource consumption and network performance. This anal-
ysis includes Administrators in the management loop. Thus,
they can configure and reconfigure SDN parameters depend-
ing on traffic needs. The Software-defined Unified Virtual
Monitoring Function to Large-scale Networks (SuVMF) is
a component of a Virtual Network Management System
(vNMS) [6] that offers unified control and management
for virtualized infrastructures in SDN. SuVMF allows inte-
gration of management services and provides control and
management abstraction and filtering layer among vNMS,
SDN controllers, legacy NMS, and OpenFlow switches.
Chowdhury et al. [9] present PayLess, a network monitoring
framework to collect flow statistics in SDN. This framework
uses an adaptive statistics collection algorithm that delivers
highly accurate information in real-time generating low net-
work overhead. Also, PayLess offers a flexible application
that proposes an abstract view of networks and a uniformway
to request statistics from the underlying network devices.

Lin et al. [8] present MonArch, an architecture targeted to
monitoring SDN. This architecture provides integrated mea-
surement and monitoring functionalities available to users
by open APIs. MonArch is based on the Software-Defined
Infrastructure concept that allows to design Smart Applica-
tions on Virtual Infrastructure Testbed. This concept aims to
enable the experimentation with future applications and ser-
vices. Reference [25] proposes a framework based on SDN
for handling fixed backbone networks. This framework sup-
ports static and dynamic resource management by including
a distributed management layer and a control layer formed
by a set of local managers and local controllers, respectively.
Yang et al. [40] propose Flo-v, a framework intended to pro-
vide accurate network monitoring in a virtual SDN. Also,
Flo-v monitors traffic in a network hypervisor with lower
traffic overhead than existing schemes by using selective and
adaptive mechanisms. It is to emphasize that Flo-v uses a
virtualized environment that does not consider NFV.

As mentioned in the Background, the first SDN
definitions [4], [24] only consider three SDN planes (Data,
Control, and Application). Ulterior efforts came up to

38028 VOLUME 6, 2018



W. Villota et al.: On the Feasibility of Using Hierarchical Task Networks and Network Functions’ Virtualization

TABLE 1. Proposals for SDN management.

consider a management plane in SDN [2], [3], [14], [15],
but up to now this plane has been barely studied. In fact,
recent advances like the Knowledge-Defined Network-
ing (KDN) [17] and the Cognitive Network Management
(CNM) [18] are just in an early stage to realize the SDN
management plane. KDN and CNM propose to use ML in
SDN, aiming at learning the behavior of the network and,
in some cases, automatically operate the network according
to the learned. The final goal of these advances is to achieve
networks where the network management system is fully
autonomous.

Unlike the related work, in our previous works, we have
proposed approaches for managing SDN by using mashups
and SM [10]–[13]. In these approaches, we facilitate the daily
work of Administrators when they need to deal with nmsits by
providing mechanisms to recognize them automatically and
dynamically compose mashments (i.e., mashups for facing
nmsits), as well as the architecture that supports these models
and mechanisms. It is noteworthy that, up to now, we always
consider the Administrator in the operational management
loop. Thus, our approaches are not fully autonomous. In fact,
we have only achieved a medium-automation level during
the carrying out of network management tasks because of
intrinsic mashups limitations.

In the literature, some approaches use SDN and NFV
jointly, but they usually do not focus on network manage-
ment. For instance, the work [21] introduces an architecture
that allows to compose and deploy VNFs in SDN rapidly.
This work highlights the synergies between NFV and SDN,
they are highly complementary. Matias et al. [22] present the
evolution from a pure NFV solution to an entirely SDN-
enabled. In such an evolved solution, SDN supports the NFV
deployment and, also, the design of VNFs. The work [23]
describes how NFV supports the implementation and deploy-
ment of a particular network function (to know a Session
Border Controller). This work also provides an overview
of the SDN/NFV ecosystem, highlighting its scalability and
flexibility.

Table 1 presents diverse investigation works about
SDN management, revealing several facts. First, some
investigations [21]–[23] consider the NFV/SDN ecosystem

but they do not aim at managing SDN, wasting the flexibility
and elasticity provided by NFV. Second, to the best of our
knowledge, none of the previous works combines NFV and
HTN for managing SDN. Third, most of aforementioned
works were evaluated using metrics like bandwidth and time-
response; by contrast, we consider two additional metrics:
time-planning and time-consuming. Fourth, most of these
works are located at the Application Plane. Following, direc-
tions from ITU and IRTF, our approach is located at the SDN
Management Plane.

2) HTN PROPOSALS
HTN has been used in different application domains to
achieve a goal by composing plans automatically. For
instance, the work [41] proposes a system that creates mis-
sion plans for environmental disaster situations. In this
work, the authors introduce a planning system that selects
the primitive tasks necessary to addres particular disasters.
Ullrich and Melis [20] propose PAIGOS, a framework that
uses pedagogical knowledge to create structured courses.
PAIGOS offers operators and methods to achieve multiple
learning goals by learners. Chen et al. [35] combine Markov
decision processes and HTN plans to compose Web Services
automatically. In particular, web service composition is to
create multiple executable plans in business processes. Thus,
they offer a more flexible and optimal solution to business
customers.

Recently, the HAUTO framework offers a solution cen-
tered in the user to compose telecommunication services [38]
by using three main modules: (i) a requests processing mod-
ule that transforms natural language and context informa-
tion to computer language, (ii) an automatic composition
that creates plans using HTN; and (iii) an execution envi-
ronment for convergent services that executes the created
plans. Milliez et al. [42] propose a solution to carry out
human-robot collaborative activities. This solution uses HTN
planning to describe the robot tasks and a dynamic model to
track its movements.

From Table 2, we can conclude that HTN has been suc-
cessfully used in a wide range of domains, such as education,
web services composition, convergent telecommunication

VOLUME 6, 2018 38029



W. Villota et al.: On the Feasibility of Using Hierarchical Task Networks and Network Functions’ Virtualization

TABLE 2. HTN-based proposals.

services, and environmental. Unlike the research mentioned
above, our approach focuses on network management. In this
sense, it is important to highlight that we are pioneers in using
HTN and NFV to manage SDN.

III. JANO
This section presents some motivating scenarios. Also, this
section introduces JANO and its architectural elements.

A. MOTIVATING SCENARIOS
First, let us consider a scenario in which a live migration of
SDN controllers must be performed because of technological
obsolescence or because new network services are required
during the expansion of a Campus Network. In this scenario,
it is evident that the task of live migration needs to be carried
out without losing campus services continuity. Thus, this task
should be performed automatically and in the shortest time
possible. Note that, the live migration of SDN controllers
may be time-consuming if Administrators use non-integrated
solutions; it is needed to turn off the current controller and
turn on the new one, implying associate and dissociate the
involved switches. Also, since Administrators are not expert
developers, writing amanagement script to copewith this task
is hard for them.

Let us consider a second scenario in which providers offer
SDNs formed by multiple slices that, in turn, provide Internet
services to companies such as banks, hospitals, and govern-
ments. Sometimes, unexpected situations can break the con-
nection and stop the normal functioning of services offered
by these companies through their corresponding slices. These
providers offering SDN slices often use human Administra-
tors to overcome such situations. They are responsible for
redirecting, re-configuring and, in the worst case, rebooting
the controller and all the OpenFlow switches that form the
network. As a result, overcoming a situation in an SDN con-
text may consume a long time because human intervention
usually tends to be slow and error-prone.

Let us consider a third scenario where an Administra-
tor needs to perform configuration and monitoring tasks in
a network formed by a lot of devices supporting various
protocols, such as OpenFlow and ForCES (Forwarding and
Control Element Separation). To perform these tasks, a lot
of resources for processing and storage are necessary. If the
Administrator decides to use a management application run-
ning on a physical machine, some problems like overload and
low performance could arise. These problems are related to

the network dynamicity that leads to such an application to
consume more and more resources (memory, processing and
storage). Nowadays, Cloud Computing represents a suitable
alternative to face this scenario since resources are offered on
demand. By using Cloud Computing, management applica-
tions may be supplied by Software as a Service (SaaS). In this
sense, when JANO is a SaaS, the customers (e.g., Admin-
istrators, SDN Providers, and Virtual Network Providers)
obtain a flexible and workable tool that allows automatically
performing network management tasks.

Traditional SDN management solutions present several
shortcomings to address the above scenarios: (i) low automa-
tion since in most cases, Administrators must manage the
controllers and devices singly, (ii) time-consuming, Admin-
istrators need a lot of time to face and overcome situations
(e.g., faults, wrong configuration of devices and controllers,
and traffic anomalies); and (iii) lack of flexibility and worka-
bility, typically, Administrators have just one option (coming
from their knowledge) to address and solve a situation. The
above shortcomings lead to loss of money for both providers
and customers. Therefore, it is evident the need for automat-
ing the decision-making process to face and overcome nmsits.
In response to these shortcomings, we propose JANO.

B. OVERVIEW
JANO is a solution that automates the SDN management
tasks by using HTN planning and NFV MANO. In JANO,
HTN is a crucial enabler for providing a more straightfor-
ward and less time-consuming way of generating possible
solutions (plans) to face any nmsit. The planned solutions are
built by combining different alternatives from known compo-
sitions used for dealing with similar nmsits. Thus, an Admin-
istrator has a set of options instead of only one from his/her
own experience. JANO also offers a user-friendly interface
to display executed and on running plans. In turn, MANO
provides to JANO essential Cloud Computing features like
flexibility and workability.

Figure 1 depicts the overall operation of JANO: (1) it col-
lects data from the Managed SDN to recognize nmsits,
(2) it automatically builds plans (i.e., solutions formed by
a set of primitive management tasks) to manage recog-
nized nmsits, (3) it executes plans built to deal with nmsits,
(4) it stores and publishes plans; and (5) it depicts information
about plans (executed and on running) and their primitive
tasks to facilitate the decision-making process when nmsits
arise.

38030 VOLUME 6, 2018



W. Villota et al.: On the Feasibility of Using Hierarchical Task Networks and Network Functions’ Virtualization

FIGURE 1. Overview - JANO functioning.

C. ARCHITECTURAL LAYERS AND ELEMENTS
Figure 2 introduces and details the JANO architecture that
is located in the vertical SDN Management Plane proposed
by [2] and [3] and modeled by us in [16]. This architecture
has three layers: Adaptation, Planning, and Presentation. The
Presentation Layer presents a Graphical User Interface (GUI)
in the client-side to support the interaction between Adminis-
trators and JANO. The Planning Layer automatically recog-
nizes network situations captured from theManaged SDN via
the Adaptation Layer. Also, the Planning Layer automatically
composes and executes plans to overcome such recognized
situations and sends these plans to the Presentation Layer.
Furthermore, the Planning Layer is responsible for storing
and publishing plans. The Adaptation Layer is in charge of
retrieving management information from the Managed Net-
work and transferring it to the Planning Layer. To support
the execution of plans, the Adaptation Layer receives man-
agement operations (i.e., primitive tasks) from the Planning
Layer to transfer them to the Managed SDN. In the next
paragraphs, we describe in detail the layers and elements of
JANO.

1) PRESENTATION LAYER
This layer via a Management GUI offers to Administrators
mainly two functionalities. The first one is to visualize infor-
mation about HTN-based solutions (i.e., Plans, see Listing 9)
that have already been executed or are currently running. This
information is retrieved from the HTN Solution Repository
located at the Planning Layer by using the Pr-Pl reference
point. In JANO, a reference point is an interface that sup-
ports bi-directional interaction between two points located
at different architectural layers. The second functionality is
to customize HTN-based solutions for their reuse. This cus-
tomization involves to retrieve and write data in the Planner
Repository (containing the Planning Domains and Planning
Problems, see Listing 7 and Listing 8) and the HTN Solution
Repository by Pr-Pl.

The REST (REpresentational State Transfer), SOAP
(Simple Object Access Protocol), and repositories drivers

are options to instantiate Pr-Pl. Note that REST and SOAP
are suitable models for providing request-response interac-
tions over the HTTP (HyperText Transfer Protocol). In turn,
specific drivers are helpful to directly accessing the repos-
itories (back-end) from the Management GUI (front-end).
Thus, if the Presentation Layer reads and writes directly
by drivers, it provides its functionalities as follows. First,
when the Administrator asks information about one or more
plans (on running or executed, to visualization or customiza-
tion) by the Management GUI, this layer sends requests to
retrieve from the Planner Repository and the HTN Solu-
tion Repository the queried information. Second, this layer
receives, decodes (from text-plain, JSON, or XML) and
presents (in HTML) the corresponding responses that contain
information about Plans, Planning Domains and Planning
Problems.

2) PLANNING LAYER
This layer is in charge of automatically generating plans
intended to manage SDN. This generation follows two
phases: (i) automatic recognizing of situations to deal with;
and (ii) automatic planning of solutions targeted to overcome
the identified situations. This layer uses a Recognizer and
a Planning Orchestrator to perform the phases mentioned
above.

Figure 3 introduces the Recognizer that conducts the
automatic recognition of nmsits by comparing the samples
with the patterns. The Recognizer is formed by: Pattern
Repository, Sensing, and Matching Mechanism. The Pattern
Repository contains patterns (in JSON) written by network-
ing experts. Patterns hold information representing nmsits
that could arise in the Managed SDN. Every pattern fol-
lows the nmsits conceptual model that we proposed in [13]:
[{NAMESIT : namesit,NMSIT : [{nmsit1}, {nmsitn}]}].
Where,NAMESIT is the name of theNMSIT set and nmsitn is
given by: [{SITUATION : situation,EAC : [{eac1, eacn}]}].
Here, SITUATION is the particular name of an nmsit and
EAC represents the collection of entities, attributes, and con-
straints involved in such situation. The structure of eacn is:
[{ENTITY : entityn,AC : [{ac1, acn}]}]. Where, ENTITY
is any entity involved in a nmsit and AC represents the set
of attributes and constraints of such an entity. Here, acn is:
[{ATTRIBUTE : attributen,CONSTRAINT : constraintn}].
Note that constraints serve to determine when a situation
happens. An example of a simple nmsit is: namesit = {drop
of transmitted packages}, situation = {unexpected drop of
sent packages in an OpenFlow-enabled virtual switch}, and
eac = [{ENTITY : cyscoSwitch2960, ac : [{ATTRIBUTE :
sentPkg, CONSTRAINT : < 90%}]}]. An example of an
nmsit formed by two ones is: namesit = {link has
an unexpected behavior}, situation1 = {a switch has
an unforeseen overload in both memory and processor},
eac1 = [{ENTITY : cysco100, ac : [{ATTRIBUTE :
processor,CONSTRAINT :> 97%}, {ATTRIBUTE :

memory,CONSTRAINT :> 95%}]}, situation2 = {a switch
has a sudden overload in both memory and processor}, and

VOLUME 6, 2018 38031



W. Villota et al.: On the Feasibility of Using Hierarchical Task Networks and Network Functions’ Virtualization

FIGURE 2. JANO architecture.

FIGURE 3. Automatic recognition.

eac2 = [
{
ENTITY : openvswitch, ac : [{ATTRIBUTE :

proces,CONSTRAINT :> 91%},
{
ATTRIBUTE : mem,

CONSTRAINT :> 91%
}
]
}
].

In the Recognizer, the Sensing is in charge of retrieving
network management information from the Managed SDN
and delivering it as streaming to the Matching Mechanism.

The Matching Mechanism automatically recognizes a
situation as follows (see Figure 3). First, it receives sam-
ples (i.e., management information) coming from the Sens-
ing. Second, it loads and reads situation patterns from the
Pattern Repository. Third, it conducts matching operations
by comparing samples with patterns. Matching operations

38032 VOLUME 6, 2018



W. Villota et al.: On the Feasibility of Using Hierarchical Task Networks and Network Functions’ Virtualization

can be carried out by using different algorithms, such as
PHREAK [43] and RETE [44]. Fourth, if a situation is
detected (i.e., there is a match), the Planning Orchestrator is
invoked to build and execute an automatic plan that aids to
overcome such a situation.

The Planning Orchestrator is in charge of composing plans
automatically and executing them for coping with the net-
work situations. Figure 4 depicts the automatic composition
of a plan to overcome a particular nmsit that has been identi-
fied by the Recognizer. The Planning Orchestrator has three
elements: the Decomposer, Executor, HTN Solution Reposi-
tory, and Planner Repository.When the PlanningOrchestrator
receives an invocation, the Decomposer retrieves a planner
from the Planner Repository. A planner uses two descriptors:
Planning Domain and Planning Problem. Experts in auto-
mated planning use HTN notation to write these descriptors.
The Planning Domain is to define the useful operators and
methods to compose plans automatically. The Planning Prob-
lem is to establish the initial state and the final state that a plan
must reach during its execution.

Algorithm 1 HTN Planning
SHOP2(s,T ,D)
P = empty− plan
T0← {t ∈ T }
LOOP
if T0 = � then
return P

end if
choose any t ∈ T0
if t is a primitive task then
A← {a : a is an instance of an operator in D}
if A = � then
return failure

end if
append a to P
modify T by removing t
T0← {t ∈ T no task in T is constrained to preced t}

else
M ← {m : m is an instance of a method in D}
if M = � then
return failure

end if
choose a m ∈ M
modify T by removing t

end if
REPEAT

The Decomposer follows the Simple Hierarchical Ordered
Planner (SHOP2) planning algorithm described in [38].
SHOP2 is an automated system for planning HTN tasks in
the same order that they will be executed later [36]. The
Algorithm 1 depicts a simplified version of the SHOP2 plan-
ning procedure. The inputs of the algorithm are the initial
state s, a partially ordered set of tasks T , and a domain
description D. The output is the generated plan that is

initially empty. First, a task t ∈ T is selected. If t is primitive
(i.e., if t can be accomplished directly using an action that
is an instance of a planning operator), then, SHOP2 finds an
action a that matches t and whose preconditions are satisfied
in s. If t is compound (i.e., a method needs to be applied to t to
decompose it into subtasks), then, SHOP2 chooses a method
m that will decompose t into subtasks. The process repeats
until achieving the goal state.

To detail the functioning of the Planning Orchestrator, let
us consider two situations. In the first one (see Figure 5),
an SDN provider needs to perform a live migration of its
controller because of: (i) technological obsolescence, (ii) new
features required; or (iii) workload overload. Here, it is
needed an HTN planner to migrate an SDN controller, involv-
ing turning on the new controller and turning off the running
controller; the network switches must start to be handled
by the new controller without losing continuity of services.
In this situation, first, it is needed to define the Planning
Problem (see Listing 1) that contains both the initial state
of controllers (i.e., the situation to face) and the desired
state to reach (i.e., the goal: live migration of controller by
providing service continuity). Second, it is needed to define
the Planning Domain (see Listing 2) useful to achieve the
goal, containing a set of all possible tasks (i.e., operators) and
ways of decomposing them (i.e., methods). In this Domain,
the method allows modifying the states of controllers by call-
ing operators. Once operators are invoked, they are executed
to carry out the live migration of SDN controller and, so,
achieve the goal.

Listing 1. Planner problem - live migration of controllers.

Listing 2. Planner domain - live migration of controllers.

In the second situation, an SDN provider offers network
services to a prestigious bank. To grant an excellent service
availability, the provider uses two links that transport Open-
Flow messages, one as main and other as backup. Here, it is
needed an HTN planner for switching the state (i.e., on and
off) of these links every time a fail happens. In particular, first,
it is needed to define the Planning Problem (see Listing 3) that
contains both the initial state (i.e., the situation to overcome)

Listing 3. Planner problem - links situation.

VOLUME 6, 2018 38033



W. Villota et al.: On the Feasibility of Using Hierarchical Task Networks and Network Functions’ Virtualization

FIGURE 4. Automatic composition.

FIGURE 5. Live Migration of Controllers by HTN.

of links and the desired state (i.e., the goal). Second, a set of
all possible tasks (i.e., operators) and ways of decomposing
them (i.e., methods) must be defined in the Planning Domain
(see Listing 4) for achieving the desired goal. In this Domain,
the method allows modifying the states of links by calling
the operators. Again, once operators are invoked, they are
executed to achieve the desired goal.

After plans generation, they are automatically executed.
During such an execution, the Planning Layer sends

Listing 4. Planner domain - links situation.

management operations (i.e., primitive tasks) to the Adapta-
tion Layer by the Pl-Ad that, like Pr-pl, may be instantiated
by using REST or SOAP. In turn, the Adaptation Layer

38034 VOLUME 6, 2018



W. Villota et al.: On the Feasibility of Using Hierarchical Task Networks and Network Functions’ Virtualization

FIGURE 6. Adaptation layer example.

sends these primitives to the Managed SDN that is respon-
sible for their running. The executed and on running plans
are automatically stored in the HTN Solution Repository
and published for their depicting in the Presentation Layer.
Besides, these plans can be used byAdministrators for further
reference when they need to know previous actions carried
out on the Managed SDN.

3) ADAPTATION LAYER
This layer is responsible for hiding the complexity and het-
erogeneity of theManaged SDN. In this sense, the Adaptation
Layer is in charge of retrieving information from the planes of
Application, Control, and Data to send this information to the
Planning Layer. Furthermore, the Adaptation Layer receives
management operations from the Planning Layer to forward
them to the Managed SDN. The Adaptation Layer has two
entities, called J-VNFM and J-VIM. These entities are based
on VNF Manager and Virtualised Infrastructure Manager,
respectively. In turn, J-VIM is in charge of virtualizing and
managing the network infrastructure (physical and virtual)
including the three traditional SDN planes.

The Adaptation Layer and the Managed SDN interact
by three reference points, named Vm-Dat, Vm-Con, and
Vm-Ap, that allow retrieving management information and
forwarding management operations. Vm-Dat is to interact
with the Data Plane, Vm-Con is to communicate with the
Control Plane, and Vm-Ap is to interact with the Application
Plane. REST/SOAP are also options to instantiate Vm-Dat,
Vm-Con, and Vm-Ap.

Figure 6 presents an example of using REST to instantiate
Vm-Dat, Vm-Con, and Vm-Ap. First, HTTP-requests are
sent to J-VNFM or J-VIM (i.e., depending on the SDN Plane
to manage) from the Planning Layer. Second, J-VNFM or
J-VIM sends HTTP-requests to URIs that point to the Man-
aged SDN. An example of HTTP-request encoded on JSON
is http : //MashmentSys/Wrapper/Beacon/getSwitches
that offers to the Planning Layer, a list containing basic

information about switches handled by a Beacon OpenFlow
Controller. Third, theManaged SDN carries out the requested
management tasks. Fourth, J-VNFM or J-VIM receives
responses containing data encoded on JSON from the Man-
aged SDN. An example of data received is [

{
IPCTRL :

ipCtrl,LIST : [{IDSWITCH : id1, IPSWITCH : ip1},
{IDSWITCH : idn, IPSWITCH : ipn}]

}
]. In this structure,

IPCTRL is the IP address of the Beacon Controller, and
LIST is the corresponding switches list. Such list has a set
of identifiers (IDSWITCH ) and IP addresses (IPSWITCH )
of switches. Fifth, J-VNFM or J-VIM sends such data via
HTTP-responses to the Planning Layer. Finally, concerning
the Adaptation Layer, it is relevant to highlight that Admin-
istrators never access it directly. The Planning Layer always
conducts this access.

IV. PROOF-OF-CONCEPT
To test the feasibility of JANO, first, we implemented a
prototype. Second, we evaluated such a prototype regarding
time-planning (i.e., time required by the Planning Orchestra-
tor for building an automatic plan), time-consuming (i.e., time
needed by Administrators for dealing with situations) and
network traffic. The network traffic evaluation is to measure
the additional traffic generated by JANO.

A. PROTOTYPE
Figure 7 depicts the deployment of JANO. The Presentation
Layer was implemented as a typical Web-based GUI. The
Planning Orchestrator was developed by using JSHOP2 [38]
that is a Java-based implementation of SHOP2. TheMatching
Mechanism was built using the PHREAK algorithm pro-
vided by JBoss Drools [43]. It is important to highlight that
we deployed JANO in two ways. The first one by using
OpenStack [45]. Thus, we provided JANO as a Service (JaaS)
and leveraged important features from OpenStack like flexi-
bility, elasticity, and scalability. The second deployment was
performed in conventional servers.

VOLUME 6, 2018 38035



W. Villota et al.: On the Feasibility of Using Hierarchical Task Networks and Network Functions’ Virtualization

FIGURE 7. JANO prototype.

In our test environment, theManaged SDNhas a controller,
virtual switches, and hosts. Virtual switches (i.e., OVSK)
and hosts were deployed on Mininet. Mininet allows emu-
lating networks based on OpenFlow that run on Oracle
VM VirtualBox [46]. The controller was deployed by using
Ryu [47]; a platform that provides software components with
well-defined APIs to create SDN applications. It is important
tomention that we implemented and deployed in a Java-based
application the communication from JANO to Ryu by follow-
ing the REST architectural model.

1) OPERATIONAL EXAMPLES
In order to detail the operation of the JANO prototype,
we returned to nmsits (planner problems) presented in
Listings 1, 2, 3, and 4. Listing 5 presents the Planning
Problem, by using HTN notation, of the nmsit where the
live migration of a controller (see Listing 1) is performed
because of technological obsolescence. This Planning Prob-
lem includes the description of the initial state where
old_controller is on and, also, the description of the goal
that is the replacement/change of such a controller by a
new one. In turn, Listing 6 presents the Planning Domain,

Listing 5. HTN problem - live migration of controllers.

Listing 6. HTN domain - live migration of controllers.

by using HTN notation, containing operators and methods
that allow decomposing complex tasks in primitive ones for
reaching the desired goal. It is important to highlight that
Planning Domains are fundamental for the Planning Orches-
trator because these Domains include all actions useful for
addressing any nmsit.

Listing 7. HTN problem for links situation.

Listing 7 presents the Planning Problem, by using HTN
notation, of the situation where the state of two links (see
Listing 3) that transport OpenFlow messages are exchanged
to enable a link and disable the other one. This Planning
Problem includes the description of the initial state where
link2 is on and, also, the description of the goal where
the status of links must be exchanged. Listing 8 presents
the Planning Domain, by using HTN notation, containing
operators and methods that allow decomposing tasks. Again,
note that Planning Domains are fundamental for the Planning
Orchestrator because it includes all necessary actions to face
nmsits.

Listing 8. HTN domain for links situation.

Listing 9. HTN solution for links situation.

Listing 9 presents the plan built automatically by the
Planning Orchestrator. This plan uses two primitive tasks
to overcome the links situation described in the operational
examples. The primitives are to disable link2 and enable
link1 that was initially disabled. The Planning Orchestrator
also depicts: (i) the cost of the plan that is the sum of operators
cost; and (ii) the time (in milliseconds) spent to generate the
plan automatically. Note that the cost may be calculated by
using different metrics like the number of tasks. The esti-
mated cost could be useful to select the best plan according
to a ranking.

B. EVALUATION AND ANALYSIS
We evaluate the behavior of JANO regarding time-planning,
time-consuming, and network traffic. It is important to

38036 VOLUME 6, 2018



W. Villota et al.: On the Feasibility of Using Hierarchical Task Networks and Network Functions’ Virtualization

mention that in all evaluations, we took 32 measurements
with 95% confidence level.

During the time-planning evaluation, we generated
the plans described in the operational examples (see
Listings 1, 2, 3, and 4) and measured the corresponding
time-planning when JANO is deployed in a conventional
Web server and in a cloud environment (i.e., JaaS) based
on OpenStack. Table 3 presents the time-planning results
when the number of primitive tasks included per plan was
2, 10, 20, 40, 80, and 100. The test results reveal, first, that
time-planning increases linearly with the number of tasks.
Second, the planners described in the operational examples
have equal time-planning behavior because they have the
same number of primitive tasks. Third, as expected, the time-
planning in JaaS is lower than in traditional JANO.

TABLE 3. Time-planning for a single plan.

In the time-planning evaluation, we also conducted tests
for 2, 4, 8, and 16 automatic plans (50% of plans for the links
situation and 50% of plans for the live migration situation).
In these tests, we varied the number of primitive tasks, using
the same two primitives repetitively, per plan from 4 to 28.
Figures 8 and 9 present the time-planning results for JANO
deployed in a traditional way and as a service, revealing that
such time slightly and linearly increases with the number of
primitives. Furthermore, as expected, the time-planning in
JaaS is lower than in traditional JANO.

FIGURE 8. Time-planning for several plans in traditional JANO.

JANO is a feasible solution regarding time-planning
because, first, it can automatically generate plans to manage

FIGURE 9. Time-planning for several plans in JaaS.

network situations in SDN. Second, it spends a negligible
time to create these plans taking as reference the Web Appli-
cations optimal time ((r ≤ 100ms [48]). Consequently, con-
cerning time-planning, we have corroborated the importance
of using HTN and NFV to accomplish SDN management.

For the time-consuming evaluation, we use the Keystroke-
Level Model (KLM) because it allows to estimate the time
that Administrators spend to carry out management tasks sup-
ported on computer mouse and keyboard. In KLM [49], each
task is modeled as a sequence of actions: (i) Hold or release
the mouse → B = 0.1s, (ii) Press and release a key →
K = 0.2s, (iii) Type a string → nk ∗ 0.2s, (iv) Move the
hand from mouse to keyboard or vice-versa → H = 0.4s;
and (v) Point the mouse→ P = 1.1s.
In JANO, to manage network situations, the Administra-

tor does not need to perform any action. He only needs to
launch the JANOWeb-based GUI to see the plans that are on
running. The corresponding actions sequence is as follows:
(1) Point the mouse to select the direct link to the JANOWeb
application→ P, (2) Hold and release the mouse to access
such an application → 2B. (3) Point the mouse to select a
particular plan that is on running → P; and (4) Hold and
release the mouse to see details of the selected plan→ 2B.
According to this sequence, the estimated time for addressing
a network situation is T = 2P+ 4B. Then, we expect that,
by using JANO, Administrators spend around 2.6s to cope
with a network situation. We also conducted, an experimental
study to measure the time-consuming. In the study partici-
pated 30 people whose age ranged from 18 to 28 and had
frequently used web tools. In the experiment, the result of the
average time was 2.7s and, therefore, KLM predictions were
corroborated.

Figure 10 compares JANO and Rich Dynamic Mashments
(RDM) [13] regarding time-consuming when they are used
to address the nmsit presented in the operational example.
An RDM is a tunable mashup that combines diverse types of
resources from multiple providers and automates the inves-
tigative and control aspects of SM, aiming to facilitate the

VOLUME 6, 2018 38037



W. Villota et al.: On the Feasibility of Using Hierarchical Task Networks and Network Functions’ Virtualization

FIGURE 10. Time-consuming: JANO vs RDM.

work of network administrators. The time-consuming for
addressing nmsits by RDM is Tcon:rdm = Tlau + Tuse. Where
Tlau and Tuse are the time spent by Administrators for launch-
ing and using RDM, respectively. As Tlau = 1.7s and Tuse =
5.3s, Tcon:rdm = 7s. It is remarkable that this time is more
than twice the JANO time-consuming (approximately 2.7s).
JANO is a feasible solution regarding time-consuming

because, first, HTN and NFV support the automation of
SDN management tasks. In fact, Administrator intervention
is only necessary to get information about plans on running
(or executed). This intervention is short since it involves
few graphical elements. Furthermore, the time response to
obtaining such information is quick, and it is only related to
read and write in the repositories (deployed as databases).
Consequently, we can state that JANO aids to solve the
low-automation problem in SDN management.

The network traffic evaluation aims to analyze the impact
of JANO in an SDN.Here, wemeasured the traffic on the con-
troller because it is a core component of SDN. Furthermore,
we only tested traditional JANOS since the traffic behavior
from and to the controller is regardless the JANOdeployment.
Specifically, we measured the traffic when the controller
deals with requests coming from 10, 20, 40, 80, 160 and 320
plans with 2, 4, 8, and 16 primitive tasks. Figure 11 depicts
the network traffic evaluation results, revealing the OpenFlow
messages increment linearly with the number of primitives.
In fact, one primitive task generated just one OpenFlow mes-
sage (approximately 0.129 kB). Therefore, we have a relation
one to one that allows knowing in advance the traffic that an
automatic plan can generate (e.g., xin the example of links,
two primitives represent 0.258 kB).

JANO is a feasible solution regarding network traffic
because, first, it can perform SDN management tasks with
a low traffic overhead. It is noteworthy that JANO does
not affect the traffic between switches, it only increases the
number of OpenFlow messages between the controller and
switches.

As we already analyzed JANO quantitatively, subse-
quently, we perform some brief comments about its

FIGURE 11. Traffic versus plans launched.

flexibility, workability, and automation. Flexibility is the
ability to adapt to changes; this involves scalability and
elasticity [50]. In this sense, scalability is the ability to han-
dle a growing amount of work without suffering signifi-
cant degradation in quality [51]. In turn, elasticity is the
automatic adaptation of resources according to the current
demand [52]. Scalability and elasticity (involving flexibility)
are mainly leveraged by JaaS (i.e., JANO deployed in Open-
Stack). Workability refers to the ability to work in existing
networks [53]. As JANO performs an instantiation of NFV
Orchestrator, VNFM, and VIM, it can be easily adapted to
work in SDN or traditional networks. Automation is the
capability to operate independently [54]. JANO presents a
high level of automation because it generates plans by itself.

V. CONCLUSIONS
Considering that SDNmanagement is a significant challenge,
in this paper, we introduced JANO. JANO is an approach
for managing SDN based on HTN, NFV, and a vertical
management plane. The time-planning evaluation corrobo-
rated that JANO is a promissory alternative to manage a
network situation in a short time and it helps to overcome
the problem of low management tasks automation presented
in related work. We solved this problem by using an HTN
planning technique (SHOP2) that allows building and exe-
cuting solutions automatically. Human intervention is only
needed to get information about such solutions at runtime.
By an experimental and KLM evaluation, we observed that
JANO reduces the time that Administrators spend to manage
a network situation compared to solutions based on mashups
and situational management. Furthermore, this reduction cor-
roborated that the automation of tasks, introduced by HTN,
facilitates the work of Administrators. The network traffic
evaluation also allows stating that JANO is a promising solu-
tion because the automatic plans built by JANO do not affect
the traffic between switches, these plans only increase the
OpenFlow messages between the controller and switches.
From a qualitative outlook, it is noteworthy that flexibility
and workability are implicit features of JANO because it

38038 VOLUME 6, 2018



W. Villota et al.: On the Feasibility of Using Hierarchical Task Networks and Network Functions’ Virtualization

offers high-automation level by SHOP2 used to instantiate
NFVMANO. Besides, JANO can operate in different kind of
networks by creating particular instances of VNFM andVIM.

As future work, we are interested in enabling JANO to
support Natural Language Processing and Intends to make
easier the daily work of Administrators by allowing inter-
action from any device connected to the Internet. Finally,
we desire to develop amechanism able to generate descriptors
automatically every time unknown network situations are
detected.

REFERENCES
[1] Y. Zhang, X.Gong, Y.Hu,W.Wang, andX.Que, ‘‘SDNMP: Enabling SDN

management using traditional NMS,’’ in Proc. IEEE ICCW, Jun. 2015,
pp. 357–362.

[2] J. A. Wickboldt, W. P. D. Jesus, P. H. Isolani, C. B. Both, J. Rochol,
and L. Z. Granville, ‘‘Software-defined networking: Management require-
ments and challenges,’’ IEEE Commun. Mag., vol. 53, no. 1, pp. 278–285,
Jan. 2015.

[3] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, ‘‘Software-defined networking: A compre-
hensive survey,’’ Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[4] S. Sezer et al., ‘‘Are we ready for SDN? Implementation challenges
for software-defined networks,’’ IEEE Commun. Mag., vol. 51, no. 7,
pp. 36–43, Jul. 2013.

[5] Z. Su, T. Wang, Y. Xia, and M. Hamdi, ‘‘FlowCover: Low-cost flow moni-
toring scheme in software defined networks,’’ in Proc. IEEEGLOBECOM,
Dec. 2014, pp. 1956–1961.

[6] T. Choi, S. Kang, S. Yoon, S. Yang, S. Song, and H. Park, ‘‘SuVMF:
Software-defined unified virtual monitoring function for SDN-based large-
scale networks,’’ in Proc. ACM Conf. Future Internet Technol., 2014,
Art. no. 4.

[7] P. H. Isolani, J. A. Wickboldt, C. B. Both, J. Rochol, and L. Z. Granville,
‘‘Interactive monitoring, visualization, and configuration of openflow-
based SDN,’’ in Proc. IFIP/IEEE IM, May 2015, pp. 207–215.

[8] J. Lin, R. Ravichandiran, H. Bannazadeh, and A. Leon-Garcia, ‘‘Mon-
itoring and measurement in software-defined infrastructure,’’ in Proc.
IFIP/IEEE IM, May 2015, pp. 742–745.

[9] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, ‘‘PayLess: A low
cost network monitoring framework for software defined networks,’’ in
Proc. IEEE NOMS, May 2014, pp. 1–9.

[10] O.M. C. Rendon, F. Estrada-Solano, and L. Z. Granville, ‘‘Amashup-based
approach for virtual SDN management,’’ in Proc. IEEE Comput. Softw.
Appl. Conf., Jul. 2013, pp. 143–152.

[11] O. M. C. Rendon, F. Estrada-Solano, and L. Z. Granville, ‘‘A mashup
ecosystem for network management situations,’’ in Proc. IEEE GLOBE-
COM, Dec. 2013, pp. 2249–2255.

[12] O. M. C. Rendon, C. R. P. dos Santos, A. S. Jacobs, and L. Z. Granville,
‘‘Monitoring virtual nodes using mashups,’’ Comput. Netw., vol. 64,
pp. 55–70, May 2014.

[13] O. M. C. Rendon, F. Estrada-Solano, V. Guimarães, L. M. R. Tarouco,
and L. Z. Granville, ‘‘Rich dynamic mashments: An approach for network
management based on mashups and situation management,’’ Comput.
Netw., vol. 94, pp. 285–306, Jan. 2016.

[14] Recommendation y.3300 Framework of Software-Defined Networking,
document Y.3300, ITU-T, 2014. [Online]. Available: http://www.itu.int/
rec/T-REC-Y.3300-201406-I/en

[15] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and
O. Koufopavlou, Eds., Software-Defined Networking (SDN): Layers and
Architecture Terminology, document RFC 7426, Internet Requests for
Comments, RFC Editor, Jan. 2015. [Online]. Available: https://www.rfc-
editor.org/info/rfc7426, doi: 10.17487/RFC7426.

[16] F. Estrada-Solano, A. Ordonez, L. Z. Granville, and O. M. C. Rendon,
‘‘A framework for SDN integrated management based on a CIM
model and a vertical management plane,’’ Comput. Commun., vol. 102,
pp. 150–164, Apr. 2017.

[17] A. Mestres et al., ‘‘Knowledge-defined networking,’’ SIGCOMM Com-
put. Commun. Rev., vol. 47, no. 3, pp. 2–10, Sep. 2017, doi: 10.1145/
3138808.3138810.

[18] S. Ayoubi et al., ‘‘Machine learning for cognitive network
management,’’ IEEE Commun. Mag., vol. 56, no. 1, pp. 158–165,
Jan. 2018.

[19] M. A. Gironza-Ceron, W. F. Villota-Jacome, A. Ordonez,
F. Estrada-Solano, and O. M. C. Rendon, ‘‘SDN management based
on hierarchical task network and network functions virtualization,’’ in
Proc. ISCC, Jul. 2017, pp. 1360–1365.

[20] C. Ullrich and E. Melis, ‘‘Pedagogically founded courseware generation
based on htn-planning,’’ Expert Syst. Appl., vol. 36, no. 5, pp. 9319–9332,
2009.

[21] K. Giotis, Y. Kryftis, and V. Maglaris, ‘‘Policy-based orchestration of
NFV services in software-defined networks,’’ in Proc. IEEE NETSOFT,
Apr. 2015, pp. 1–5.

[22] J. Matias, J. Garay, N. Toledo, J. Unzilla, and E. Jacob, ‘‘Toward an
SDN-enabled NFV architecture,’’ IEEE Commun. Mag., vol. 53, no. 4,
pp. 187–193, Apr. 2015.

[23] G. Monteleone and P. Paglierani, ‘‘Session border controller virtualization
towards ‘service-defined’ networks based on NFV and SDN,’’ in Proc.
IEEE SDN4FNS, Nov. 2013, pp. 1–7.

[24] Y. Jarraya, T. Madi, and M. Debbabi, ‘‘A survey and a layered taxonomy
of software-defined networking,’’ IEEE Commun. Surveys Tuts., vol. 16,
no. 4, pp. 1955–1980, 4th Quart., 2014.

[25] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, ‘‘Adaptive
resource management and control in software defined networks,’’ IEEE
Trans. Netw. Service Manage., vol. 12, no. 1, pp. 18–33, Mar. 2015.

[26] F. Al-Turjman and S. Alturjman, ‘‘Context-sensitive access in indus-
trial Internet of Things (IIoT) healthcare applications,’’ IEEE Trans. Ind.
Inform., vol. 14, no. 6, pp. 2736–2744, Jun. 2018.

[27] F. M. Al-Turjman, M. Imran, and S. T. Bakhsh, ‘‘Energy efficiency
perspectives of femtocells in Internet of Things: Recent advances and
challenges,’’ IEEE Access, vol. 5, pp. 26808–26818, 2017.

[28] A. Malik, B. Aziz, M. Adda, and C. H. Ke, ‘‘Optimisation methods
for fast restoration of software-defined networks,’’ IEEE Access, vol. 5,
pp. 16111–16123, 2017, doi: 10.1109/ACCESS.2017.2736949.

[29] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, ‘‘Machine learning for
networking: Workflow, advances and opportunities,’’ IEEE Netw., vol. 32,
no. 2, pp. 92–99, Mar./Apr. 2018.

[30] L. Mamatas, S. Clayman, and A. Galis, ‘‘A flexible information service for
management of virtualized software-defined infrastructures,’’ Int. J. Netw.
Manage., vol. 26, no. 5, pp. 396–418, 2016.

[31] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B. Duarte,
‘‘Orchestrating virtualized network functions,’’ IEEE Trans. Netw. Service
Manage., vol. 13, no. 4, pp. 725–739, Dec. 2016.

[32] ETSI GS NFV 002 V1.2.1: Network Functions Virtualisation (NFV); Archi-
tectural Framework, document GS NFV 002 (V1.2.1), 2014.

[33] ETSI GS NFV 003 v1.2.1: Network Functions Virtualisation (NFV); Termi-
nology for Main Concepts in NFV, document GS NFV 003 (v1.2.1), 2014.

[34] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, ‘‘Network function virtu-
alization: Challenges and opportunities for innovations,’’ IEEE Commun.
Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.

[35] K. Chen, J. Xu, and S. Reiff-Marganiec, ‘‘Markov-HTN planning approach
to enhance flexibility of automatic Web service composition,’’ in Proc.
IEEE ICWS, Jul. 2009, pp. 9–16.

[36] E. Sirin, B. Parsia, D.Wu, J. Hendler, and D. Nau, ‘‘HTN planning forWeb
Service composition using SHOP2,’’Web Semantics, Sci., Services Agents
World Wide Web, vol. 1, no. 4, pp. 377–396, 2004.

[37] I. Georgievski and M. Aiello. (2014). ‘‘An overview of hierarchical task
network planning.’’ [Online]. Available: https://arxiv.org/abs/1403.7426

[38] A. Ordonez, J. C. Corrales, and P. Falcarin, ‘‘Hauto: Automated compo-
sition of convergent services based in htn planning,’’ Ingeniería Investi-
gación, vol. 34, no. 1, pp. 66–71, 2014.

[39] P. A. P. R. Duarte, J. C. Nobre, L. Z. Granville, and L. M. R. Tarouco,
‘‘A P2P-based self-healing service for network maintenance,’’ in Proc.
IFIP/IEEE IM, May 2011, pp. 313–320.

[40] G. Yang, K. Lee, W. Jeong, and C. Yoo, ‘‘Flo-v: Low overhead network
monitoring framework in virtualized software defined networks,’’ in Proc.
Int. Conf Future Internet Technol., 2016, pp. 90–94.

[41] S. Biundo and B. Schattenberg, ‘‘From abstract crisis to concrete relief—A
preliminary report on combining state abstraction and HTN planning,’’ in
Proc. 6th Eur. Conf. Planning, 2014, pp. 1–8.

[42] G. Milliez, R. Lallement, M. Fiore, and R. Alami, ‘‘Using human knowl-
edge awareness to adapt collaborative plan generation, explanation and
monitoring,’’ in Proc. IEEE HRI, Mar. 2016, pp. 43–50.

[43] P. Browne, JBoss Drools Business Rules. Birmingham, U.K.: Packt, 2009.

VOLUME 6, 2018 38039

http://dx.doi.org/10.1145/3138808.3138810
http://dx.doi.org/10.1145/3138808.3138810
http://dx.doi.org/10.1109/ACCESS.2017.2736949


W. Villota et al.: On the Feasibility of Using Hierarchical Task Networks and Network Functions’ Virtualization

[44] E. Friedman-Hill, Jess in Action: Rule-based Systems in Java, vol. 46.
Greenwich, U.K.: Manning, 2003.

[45] K. Jackson, OpenStack Cloud Computing Cookbook. Birmingham, U.K.:
Packt, 2012.

[46] B. Lantz, B. Heller, and N. McKeown, ‘‘A network in a laptop: Rapid
prototyping for software-defined networks,’’ in Proc. ACM SIGCOMM
Workshop Hot Topics Netw., 2010, Art. no. 19.

[47] RYU. (2011). Welcome to RYU the Network Operating System. [Online].
Available: https://ryu.readthedocs.io/en/latest/

[48] S. Joines, R.Willenborg, and K. Hygh, Performance Analysis for JavaWeb
Sites. Boston, MA, USA: Addison-Wesley, 2002.

[49] D. Kieras, ‘‘Using the keystroke-level model to estimate execution times,’’
Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Univ. Michigan,
Ann Arbor, MI, USA, 2001.

[50] C. Yang and Q. Huang, Spatial Cloud Computing: A Practical Approach.
Boca Raton, FL, USA: CRC Press, 2013.

[51] J. Y. Lee and S. D. Kim, ‘‘Software approaches to assuring high scalability
in cloud computing,’’ in Proc. IEEE ICEBE, Nov. 2010, pp. 300–306.

[52] D. M. Shawky and A. F. Ali, ‘‘Defining a measure of cloud computing
elasticity,’’ in Proc. IEEE ICSCS, Aug. 2012, pp. 1–5.

[53] R. Mijumbi et al., ‘‘Network function virtualization: State-of-the-art
and research challenges,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[54] M. Ghallab, D. S. Nau, and P. Traverso, Automated Planning: Theory and
Practice. Amsterdam, The Netherlands: Elsevier, 2004.

WILLIAM VILLOTA received the degree in
electronics and telecommunications engineering
from the Universidad del Cauca, Colombia,
in 2016. He is currently pursuing the master’s
degree with the University of Campinas, Brazil.
His research interests include network and ser-
vice management, network function virtualization,
software-defined networking, and Web 2.0/3.0.

MARIO GIRONZA received the degree in elec-
tronics and telecommunications engineering from
the Universidad del Cauca, Colombia, in 2016.
His research interests include network and ser-
vice management, network function virtualization,
software-defined networking, and Web 2.0/3.0.

ARMANDO ORDOÑEZ received the Ph.D.
degree in telematics engineering from the
Universidad del Cauca, Colombia, in 2014. He is
currently a Researcher with the Foundation Uni-
versity of Popayán, Colombia. His research fields
are in the applications of artificial intelligence in
telecommunications.

OSCAR MAURICIO CAICEDO RENDON
received the bachelor’s degree in telecommunica-
tions and themaster’s degree in telematics from the
University of Cauca (Unicauca) in 2006 and 2001,
respectively, and the Ph.D. degree in computer
science from the Institute of Informatics, Federal
University of Rio Grande do Sul (UFRGS), Brazil,
in 2015. He is currently a Full Professor with the
Telematics Department, Unicauca. He is a member
of the Telematics Engineering Group, Unicauca,

and the Computer Networks Group, UFRGS. He has published in prominent
journals, such asCommunicationsMagazine, JISA,Computer Networks, and
Computer Communications, and in relevant conferences, such as the IEEE
Globecom, AINA, COMPSAC, CNSM, and ISCC. He was a recipient of an
IETF Fellowship and a Traveler Grant from ACM Sigcomm.

38040 VOLUME 6, 2018


	INTRODUCTION
	BACKGROUND AND RELATED WORK
	BACKGROUND
	MANAGEMENT OF SOFTWARE-DEFINED NETWORKING
	NETWORK FUNCTIONS VIRTUALIZATION
	HIERARCHICAL TASK NETWORKS

	RELATED WORK
	SDN MANAGEMENT
	HTN PROPOSALS


	JANO
	MOTIVATING SCENARIOS
	OVERVIEW
	ARCHITECTURAL LAYERS AND ELEMENTS
	PRESENTATION LAYER
	PLANNING LAYER
	ADAPTATION LAYER


	PROOF-OF-CONCEPT
	PROTOTYPE
	OPERATIONAL EXAMPLES

	EVALUATION AND ANALYSIS

	CONCLUSIONS
	REFERENCES
	Biographies
	WILLIAM VILLOTA
	MARIO GIRONZA
	ARMANDO ORDOÑEZ
	OSCAR MAURICIO CAICEDO RENDON


