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ABSTRACT Although the preclinical detection of Parkinson’s disease (PD) has been explored, a practical,
inexpensive, and overall screening diagnosis has yet to be made available. However, due to the large
variability and complexity in progress of PD and the difficulties in gathering a single time-point measurement
of a single sign, the goal of precision treatment and assessment severity would be impossible to achieve.
Hence, the repeated monitoring and tracking of individuals during their daily living activities at different
times would also be of great importance for treating this chronic disease. We propose a deep multi-layer
perceptron (DMLP) classifier for behavior analysis to estimate the progression of PD using smartphones.
This paper aims to identify severity in PD patients’ actions by analyzing their speech and movement patterns,
as measured with a smartphone accelerometer in their pocket at different times of the day. Popular machine
learning classification algorithms, such as logistic regression, random forests, k-nearest neighbors, M5P, and
DMLP, are applied on one dataset from the University of California Irvine and another dataset collected by
the authors to classify each patient as being Parkinson positive or negative.We further measure the success of
eachmethod for their ability to correctly classify the patients into one of these categories. Of the experimental
models, it is demonstrated that DMLP performs the best in both datasets.

INDEX TERMS Parkinson’s disease, behavior analysis, DMLP, classification.

I. INTRODUCTION
Parkinson’s disease (PD) is a degenerative disorder of
the nervous system and thus affects behavioral patterns. The
characteristic clinical picture and motor symptoms of the
disease include resting tremors, stiffness, slow shuffling gait,
slowness of voluntary movement and impaired speech. There
is no fully effective cure for PD, withmost treatments targeted
at mitigating symptoms. In the early phases of PD, the face
may reveal little or no expression, or the arms may not shake
while walking. The physical condition deteriorates increas-
ingly, sometimes beginning with a barely obvious tremor in
the fingers of just one side of the body. The most apparent
sign of PD is tremors, but lesions also generally stimulate
the aggravating effects of stiffness, swinging and slowness of
movement. Speechmay also become soft or slurred. Speakers
with PD are characterized by speech impairments such as

decreased loudness, restricted pitch variability, inaccurate
articulation, abnormal speech rates and intermittent ratios.
The speech symptoms of PD become worse as the situation
progresses, as evidenced by the participants with or without
PD who are recognized in our speech experiment.

Although PD patients have obvious motor symptoms, they
are not prominent in the preliminary phases of the dis-
ease’s quiescence. The condition is aggravated after slow
movement, gait disorders and other clinical manifestations;
therefore, patients with motor signs are an important indi-
cator of clinical diagnosis. The early detection of preclini-
cal patients exerts a significant function in the subsequent
prevention, treatment and improvement of patients’ quality
of life. Although the precise cause of PD is generally not
yet clear, genetics, age and living environment may have
an positive effect on the development of PD. According to
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the clinic experience, Parkinson’s patients have no obvious
symptoms in the early stages, where their situation is deterio-
rating slowly. As a result, few patients seek treatment during
this period. With the progress of the disease, the patient’s
aforementioned motor symptoms become increasingly obvi-
ous. PD poses a severe challenge today, as its prevalence
accounts for nearly 160 cases per 100,000 population, and its
incidence is approximately 20 cases per 100,000 population.
Therefore, the patient’s symptoms are an important basis for
the clinical diagnosis of PD. Therefore, how to effectively
use wearable sensors to detect the movement of the elderly
and how to identify and assess the severity of PD according
to the appearance of motor symptoms are worthwhile and
significant research questions. Early detection allows early
treatment, which is crucial because early identification and
treatment can effectively prevent and delay impairment.

Although PD cannot be cured, medications may markedly
improve the symptoms. Regularly monitoring a patient’s
status contributes greatly to better treatment completion. The
Unified Parkinson’s Disease Rating Scale (UPDRS) is world-
wide adopted scoring system to clinically assess and track the
processing of the disease. Approximately 90% of PD patients
manifest speech impairment [1]. UPDRS collects multi-
ple aspects of PD, including mentation, manner, emotional
problems (depression and anxiety), daily activities, compre-
hensive motor examination and complications of chronic
therapy. For the repeated monitoring of a patient’s UPDRS
score, telemonitoring has been proposed. The basic idea is
to evaluate the UPDRS score based on previous UPDRS
scores and biomedical video recordings, which can poten-
tially be obtained as the patient makes telephone or Skype
calls on his/her smartphone. The high-resolution activity
data collected from smartphones can aid in the quantitative
analysis of PD symptoms with non-invasive, continuous and
uninterrupted monitoring during the participant’s daily life,
which ultimately may lead to a thorough understanding of
smart health and mobile health to promote human health.

Recently, researchers have begun to explore the use of
applying smartphones with smart learning to detect the
severity of PD before the symptoms deteriorate further,
as well as in other healthcare context [2]. PD is a neuron
degenerative disorder of the central nervous system, which
is the main cause of partial or full impairment in postural
reflexes, speech, movement, meditation, and other vital signs.
Smartphones are the perfect electronic devices for monitoring
an individual’s health because they are carried around every-
where we go, althogh there are security issues that need to be
considered [3]–[7]. Smartphones improve users’ experiences
by equipping them with a wide range of sensors. A normal
smartphone sensor that measures movement, known as an
accelerometer, can differentiate between patients with PD
and healthy people by measuring their walking patterns.
Measuring the fluctuations in PD symptoms over the course
of a day with a smartphone can reduce the expenses and
inconvenience from interacting with physicians. The abil-
ity of smartphone sensors to detect these subtle movement

problems has attracted many researchers. PD, a brain disease,
results in much less voluntary movement, including speech
impairments, slowness of movement, trembling of the hands
and legs, muscles resisting movement, and loss of balance.
Currently, only when the obvious movement problems of the
disease appear during the late stages of the disease can PD
be identified. If the disease is detected in the early stages,
a cure or treatment that may slow the progression of disease
could be found. It is interesting that people who are at risk
of developing PD but do not show any symptoms may show
very subtle movement problems in their walking patterns,
which further aggravates the difficulties in identifying PD.
First, since nearly 90% of people with PD show some degree
of vocal lesion, we employ UCI Parkinson’s Telemonitoring
Dataset (Speech Dataset) to detect whether a patient has
Parkinson in our paper. Second, we collect our own smart-
phone data and manually label walking, sitting, and standing
actions for accelerometers and gyroscopes as the other data
sets. Our approach is proposed to apply Deep Multi-Layer
Perceptron (DMLP) to smartphone observations, supple-
mented with inertial accelerometers, gyroscopes, and micro-
phones, to recognize the severity of PD without interventions
from physicians. Profiting from a large scope of enrollment
and continuous monitoring on many human activities, these
measurements may be greatly helpful in building the baseline
variability of real-world activity observations observed via
smartphones and may provide a quantification of PD symp-
toms before these are considered in clinical decision-making.
Without requiring physical interactions with physicians, this
detection could thoroughly assess the aspects of PD change
by using many scope measures from performed activities
and passive inference, in contrast to a single signal from
mechanical and electronic devices. The contributions of this
paper are summarized as follows:
• The behavioral data is collected with smartphones
and manually labeled as walking, sitting, and stand-
ing actions for accelerometers and gyroscopes. Then,
the data is Butterworth low-pass filtered, discretized,
denoised and normalized. Finally, the feature vector
composed of feature values is used as training data.

• The proposed DMLP classifier for behavior analysis
is compared to the other classification methods on the
data collected via smartphones and UCI speech data set.
In addition, the trained DMLP method is employed to
identify actions in the unlabeled data.

• We analyze the frequency and distribution of PD symp-
toms and assess the severity and possibility of PD.

The remainder of this article is organized as follows.
Section II presents related works on the classification meth-
ods used to analyze Parkinson datasets from wearable
sensors. Section III introduces UCI data sets and indi-
viduals’ activity data from smartphones. Section IV pro-
vides overviews of the k-Nearest Neighbor (KNN), Random
Forests (RF), Linear Regression, M5P regression tree, and
DMLP classification methods. We theoretically analyze their
performance. Section V presents the experimental settings
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and evaluation metrics. Finally, we conclude this article in
Section VI

II. RELATED WORK
In the literature, studies that focus mainly on speech mea-
surement for general voice lesions can be found in [8]–[11],
particularly considering PD detection. Some studies use a
regression approach to detect the level of PD by utilizing
the UPDRS measurements, while other studies approach
the problem as a classification problem to detect whether a
patient has Parkinson [12]–[16]. Little et al. [17] tried to diag-
nose the lesion by measuring the dysphonia that arose from
PDwith a dataset containing sustained vowel ‘‘a’’ phonations
of 31 attributes. They presented a SVM with RBF that had
better performance (91.4%). Furthermore, Sakar et al. [18]
designed a PD diagnostic device and achieved a 92.75%
classification accuracy by combiningmutual information into
SVM. Additionally, Tsanas et al. [19] used linear and nonlin-
ear regression algorithms to estimate the progression of the
disease (UPDRS level) on a set of 6000 samples of 42 PWP.
Tsanas et al. [20] also posed a classification problem with
the extended version of the dataset [21] and achieved the best
results when using a non-linear SVM, with 97% accuracy,
compared with LASSO and Random Forests. The previ-
ous research demonstrates the successful use of SVMs in
the classification analysis of the Parkinson speech dataset.
Comparing the PD detection capabilities of an artificial neu-
ral network (ANN), DMneural, with regression with decision
trees, Das [22] experimentally demonstrated that the ANN
performs the best and produces more correct classification
results, with an overall accuracy of 92.9%. Integrating the
fuzzy k-nearest neighbor (FKNN) method and a principle
component analysis (PCA) (PCA-FKNN), Emary et al. [23],
Zhao and Yin [24], Hariharan et al. [25], and Jiang et al. [26]
presented the advantages of both FKNN and PCA and devel-
oped a PD detection device that produces a classification
accuracy of 96.07%. Zuo et al. [27], Meng and Shao [28],
Cai et al. [29], and Li and Ren [30] achieved a mean accu-
racy of 97.47% when using an efficient PD aided detection
tool that improved on the performance of a FKNN based
on PSO.

Currently, PD is diagnosed by having the patient meet
face-to-face with medical experts, but recent studies have
also utilized motion sensors (dedicated or on smartphones)
to identify features of the disease, typically by securing the
sensors to areas such as the waist and legs [31]–[45]. This cre-
ative research, as innovated in the USA, attempts to track PD
patients and control interventions in the trial using a smart-
phone app called MPower, which could provide information
about the symptoms, as obtained through finger tapping,
voice recording, balance and walking. Critically, the data for
this project is publicly available to researchers who have
completed the required accreditation process. Our research
is to predict PD severity with classification algorithms on
smartphone sensor data in pockets from the UCI repository
and from our collected actions.

III. DATASET PREPROCESSING
A. UCI DATASET
A series of biomedical voice recordings [46] from
42 people who have early-stage PD and were engaged in
a six-month test of a telemonitoring tool for remote signs
and symptoms process monitoring form this publicly avail-
able dataset. In this period, the voices of these patients are
automatically recorded in their home. The dataset details
the columns included, such as subject number, subject age,
subject gender, time interval from preliminary enrollment
date, motor UPDRS, total UPDRS, and 16 biomedical speech
measures. Each row matches one of the 5875 voice recording
captured from those patients. The major purpose of the
recordings is to forecast the motor and total UPDRS scores
(‘‘motor_UPDRS’’ and ‘‘total_UPDRS’’) from the 16 voice
recordings. The measurement is in ASCII CSV format. The
rows of the CSV file include a living example in accordance
with one voice recording. Each patient has approximately
200 recordings, and the first column of the measurements
provides the subject number of the patient.

The training data captured in the context of this study is
from 20 PD patients, including 6 females and 14 males, and
20 healthy individuals (50% of each gender). Twenty-three
voice samples are collected from each subject, and these
voice measurements are characteristic of continuous vowel,
word, number, idiom and short sentence. When capturing
these recordings, the 28 PD patients are only required to
speak two persistent vowels ’a’ and ’o’ three times each. This
process gives a total of 168 samples.We extract the 23 feature
parameters from the voice sets of these recordings, which can
be viewed as an independent trial example to corroborate the
results derived from training example. A list of the features
used in this experiment is given in Table 1.

The other human activity dataset is created from the
daily movement activities of 50 volunteers while wearing
a waist-mounted smartphone with installed inner sensors.
The task is to designate the performed activities into one
of three classifications. A class of 50 volunteers between
the ages of 19 and 45 years participates in this experiment.
Each person performs 3 activities (WALKING, SITTING,
STANDING)while carrying a smartphone on the waist. Since
the frequency of human activity is between 0 and 15 Hz and
the frequency of a tremor is between 4 and 6Hz, 3-axial linear
acceleration signals are collected with the phone’s built-in
accelerometer and gyroscope at an invariable rate of 30 Hz,
which means that the captured signal not only has integrity
but also has no redundancy. The video recordings are marked
manually and randomly divided into two sets, where 70% of
the available data is allocated to the training example and the
remaining 30% are used for the test example.

B. THE DATASET COLLECTED FROM SMARTPHONES’
SEGMENTATION AND PREPROCESSING
In addition to the acceleration signal generated by human
motion, there are a variety of interference signals, such as the
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TABLE 1. PD features extracted from voice samples.

inherent noise of the sensor, the vibration caused by changes
in external conditions, and the sensor not being completely
fixed, which causes friction due to acceleration and other
interference signals. The noise can be reduced by selecting
the sensor with greater accuracy and stability when the sensor
component is worn. For the noise that has been generated,
we process the original acceleration signal by using Butter-
worth low-pass filtering to denoise and interfere to obtain a
relatively smooth acceleration curve. There are various types
of filters to choose from. Median filtering for sharp noise
and Butterworth low-pass filtering have the flattest frequency
response curves, so these methods are used in combination
to preprocess and denoise the raw data. The accelerated
velocity signal of sensors, which intertwines gravitational
signals with body motion components, is used in Butterworth
low-pass filtering to split the signals into two parts: gravity
and acceleration. With the assumption that the gravitational
force contains only low-frequency constituents, filtering with
a 0.25 Hz cutoff frequency might be denoised.

So far, a large number of discrete data sequences that are
continuous in time have been captured. The huge amount
of data contains unrelated details and is not suitable for
direct processing. Therefore, we divide these large-scale data
sequences into a large number of data segments that are of
the same length in time as the basic processing units for
subsequent analysis and calculation. The data in each time
period is analyzed, and the useful feature values are extracted
to identify the training model or used as input for the trained
recognitionmodel to determine whether there is an abnormal-
ity in this period.

The body’s movement is a complicated process in
time. In daily activities, an individual’s movement con-
sists of a large number of random and regular movements.

According to related research on human kinematics, most
random actions, such as turning, bouncing and standing, are
completed in approximately 2 seconds. The regular cycles of
walking, running and going up and down are also approx-
imately 2 seconds. In the meantime, there are intermittent
and random seizures in patients with early PD. There is
no specific pattern to follow. The frequency of tremors is
approximately 4 to 6 times a second, and the duration of
symptoms is approximately 2 to 10 seconds. Therefore,
we select the time window 1T to be 2 seconds, and the data
are collected every 2 seconds to form a data sequence as the
basic unit of information processing. From each timewindow,
a feature vector formed by computing variables of the time
and frequency range is naturally created.

After filtering the data for noise reduction and segmenta-
tion, the clean and reliable data is employed. Next, we select
the feature value and form the feature vector as the input
term of the machine-term classifier. Normalization is also
called standardization. That is, by scaling the data, all of the
data to be processed is mapped into a range of numbers.
This is done to improve the convergence of the data and
make it easier to process the data. With the normalization
method, the problems of dimension and order of magnitude
can be eliminated. A change in large-magnitude data will
not completely affect the final result, and a change in small-
magnitude data will not be completely neglected. When the
data is uniform and of the same order of magnitude, it is
more suitable for dimensionless learning. In this paper, mean
normalization is used to normalize the data according to the
mean and divide the variance, so it is suitable for a more
scattered data set of data and may be formulated as follows:

X̂ =
X − X̄
σ

(1)

In the field of machine learning, the range of feature values
can be confined in the same area through normalization,
which accelerates the convergence speed and improves the
training speed when training the classifier. The pipeline of
the deep MLP classifier for behavior analysis to assess PD
severity can be seen in Figure 4.

IV. CLASSIFICATION ALGORITHMS
Two kinds of data sets are normally used for a classification
algorithm: the training set and the testing set. Classification

FIGURE 1. Sitting readings from smartphones.
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FIGURE 2. Standing readings from smartphones.

FIGURE 3. Walking readings from smartphones.

FIGURE 4. Classification pipeline.

algorithms find a model that can be used for a training set
according to the testing set. That is, the training set is utilized
to build a model, and the testing set is used to evaluate the
model. The model can divide the data by class attributes
such that each class has the same types of class attributes for
the data. An overview of the algorithms used to classify the
Parkinson dataset is discussed here.

A. K-NEAREST NEIGHBOR REGRESSION
The KNN classifiers find the k closest nodes to a new node
in the training set and identify its classification based on the
primary classifications of these k neighbors. There are three
integral factors: the training set, the distance or similarity of
the k neighbors to the new node, and the value of k. For a
given data record, the first step for a KNN classifier is to
calculate all the distances between any two nodes in the train-
ing set and then to rank and select the k closest from them,
so the target record can be classified by its k neighbors based
on the primary neighbors that have a common classification.
The distance is often Euclidean distance, but cosine similarity
may be better for text data sets. Choosing an appropriate value
of k is vital and difficult and is always determined by cross-
checking (based on k = 1). KNN is a lazy algorithm with
a simple model that is not inclined to refine itself, and it is
time-consuming to compute all distances between two nearby
nodes in the training set.

B. RANDOM FORESTS
RF is an ensemble learning method that uses multiple
decision trees that are randomly built to solve classifica-
tion or regression problems. Every decision tree in the ran-
dom forest considers a sub-set by taking random samples
from the original dataset, and every sub-tree is built of ran-
domly selected features. Each decision tree learns by training
to obtain results independently and gets the final production
by taking the vote. The majority of the decision trees conduct
kinds of situations that do not perform properly but can be
used as a basis for other trees to work better. Compared
to a single decision tree model, random forests show better
performance in data sets for addressing the shortcoming
of overfitting. They can handle highly multi-dimensional,
discrete or continuous data without feature selection, and they
have good noise immunity.

C. LINEAR REGRESSION
Linear regression is a kind of regression analysis that finds a
quantitative linear connection between variables in the train-
ing data using least squares regression. The values’ depen-
dent variable depends on mapping values of the independent
variable and the regression function fitted from the training
set. The least square and gradient descent are two common
methods used in linear regressions to estimate the fitting of
the regression by computing the loss between the estimated
value and the ground truth. By contrast, logistic regression is a
kind of generalized linear regression model that is nonlinear
and has more than one independent variable. It can handle
nonlinear relations and binary classification problems, which
a linear regression makes mistakes with.

MAE =
1
n

n∑
i=1

|Yi − Ŷi| (2)

D. M5P REGRESSION TREE
The M5P Regression Tree is an accurate model with
first-order segmented multiple linear regressions. It divides
the sample space of the training set on the principle of the
standard deviation reduction (SDR) that differs from the
information gain in the decision tree model. The splitting
of the data sample stops when the sample size is smaller
than a certain value or when the standard deviation reduction
of the samples of the node meets a threshold value. Then,
a corresponding regression model is built for each partition
of samples based on data sample features while combining
the pruning and smoothing of trees. The M5P regression
tree utilizes the pruning method from leaf nodes to the root
to avoid over-learning for the tree. It connects the branches
and nodes with the regression tree according to regression
linear equations and finds optimal pruning positions where
the attributes that maximize the expected error reduction
are selected for separating at that node. The smoothing of
the trees fits the linear regression models of every couple
adjacent leaf nodes by multivariate linear fitting equations,
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which corrects the discontinuity between neighboring leaves.
For an experiment, the expected error reduction is calculated
with the following formula:

1error = stdev(S)−
∑
i

(
|Si|
|S|

stdev(S)) (3)

where S means the set of samples traversed to the node,
stdev(S) denotes the standard deviation, and Si is the subset
of S that results from splitting the node in accordance with
the selected attribute. The progression of splitting into new
nodes is terminated when there are only a few instances
(four or fewer) to process further or when the variation in the
output values of the instances that pass the node is very slight.
Once the tree has been created, a linear model is designed at
each node that is a regression equation.

E. DMLP CLASSIFICATION ALGORITHM
MLP is a multiple feedforward artificial neural network that
maps input vectors to output vectors. TheMLP can be defined
as a directed graph with multiple node layers, where the
input layer is on the bottom, the output layer is on the top,
and the others in the middle are the hidden layers. Every
node in the upper level has connections with all the nodes
in the lower level; this is called a fully connected network.
One or more hidden layers are allowed. Each node represents
a neuron (or processing unit) with a nonlinear activation
function except for input layer nodes. A supervised learning
methodology referred to as a backpropagation algorithm (BP)
is often utilized to train MLP. MLP is the extension of a
single-layer perceptron that corrects the weakness that single-
layer perceptrons cannot solve nonlinear data. It can learn
non-linearly separable decisions, in contrast to single-layer
perceptrons. Figure 5 depicts three-layer MLP:

FIGURE 5. Three-layer MLP.

DMLP [47] refers to the structure described from this point
onwards, in which five or ten hidden layers are adopted;
by contrast, the maximum number of layers traditionally
employed by simple MLP is two. Furthermore, the sigmoid
and tanh activation functions are traditionally employed in
MLP because they provide good performance in smaller and
medium-sized networks. For the DMLP model developed for
cloudUPDRS, ReLUor softplus are preferred instead because
the latter activation functions can address the vanishing gradi-
ent problem that affects deep networks. The function enables

them to obtain sparse representations by hard-limiting the
input of negative hidden nodes to zero.

Connections that cross over a couple of layers are named
shortcuts. Most DMLPs have a connection architecture,
where all nodes of one layer are connected to the whole nodes
of the next layer without shortcuts. The nodes of layers are
listed as follows:
• Succ(i) is the set of all nodes j when the connection i→ j
exits

• Pre(i) is the set of all nodes j when the connection j→ i
exits

There are assignments of nonnegative real numbers
(weights) to all the connections. wji denotes the weight of the
connection i → j. All hidden and output nodes have a bias
weight and some variable neti (‘‘network input’’). The bias
node is connected to other nodes with trainable weights. wi0
represents the bias weight of neuron i. All nodes have some
variable ai (‘‘activation’’/‘‘output’’). The MLP algorithm can
be described as follows:

Algorithm 1 Multi-Layer Perceptrons
Require:
1: pattern Ex, DMLP, count all nodes in topological

sequence;
Ensure:
2: compute output of DMLP;
3: for all initial nodes i do
4: compute activation of input nodes: ai← xi;
5: for all the hidden and output nodes i in topological

sequence do
6: neti← wi0 + âĹ′

jâĹĹPred(i)
wijaij;

7: ai← flogneti;
8: for all output nodes i do
9: gather ai in output vector y;

return Ey

V. EXPERIMENTAL ANALYSIS AND PERFORMANCE
EVALUATION
A. PERFORMANCE METRICS
The metrics that are widely known to be used to assess the
performance of classification algorithms are accuracy, sensi-
tivity, specificity, andMCC. It is acknowledged that accuracy
is the ratio of accurately classified examples to the whole
examples and is a good measure for evaluating a model’s
performance.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(4)

Sensitivity =
TP

TP+ FN
(5)

Specificity =
TN

TN + FP
(6)

MCC =
TP× TN − FP× FN

√
(TP+FP)(TP+FN )(TN+FP)(TN + FN )

(7)
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where TP means the number of true positives, TN is the
number of true negatives, FP is the number of false positives,
and FN is the number of false negatives. Sensitivity and
specificity are statistical measures of a test’s ability to accu-
rately classify a person as with or without PD, respectively.
The Matthews Correlation Coefficient (MCC) has a range
between the predicted and observed binary classifications and
takes a value of +1 when all of the prediction values are
correct, −1 for a completely incorrect binary classifier, and
0 when the classification is worse than a random estimation.

B. CROSS-VALIDATION (CV)
In cross-validation, we leave aside a subset of the data pro-
vided. Instead, we use the remaining data, i.e., the training set,
in the algorithm to build a model. The test set, which is the
part of the dataset that was not applied in training, measures
the accuracy with which the model classifies the test set
instances, aiming to assess the model’s capability. In K-fold
cross-validation (KFCV), we arbitrarily split the dataset into
K subsets of equal size, use one subset as a test set, and apply
the remaining K − 1 subsets for training. To ensure that each
subset is used as a test set exactly once, the cross-validation
must be performed n times. The detail of KFCV is that the
data set is randomly allocated into K approximately equally
sized subsets. For each part k, we leave out part k, fit the
model to the other K − 1 sets (combined), and subsequently
compute predictions for the remaining kth part. For each part
k = 1, 2, . . .K, the same is done successively, and ultimately,
the results are combined. The advantage of KFCV is that
all samples in the dataset are eventually used both to train
and to test. Setting K = n yields n-fold or leave-one out
cross-validation (LOOCV). LOOCV is the degenerate case of
KFCV, where N is chosen as the total number of examples.

C. RESULTS AND DISCUSSIONS
As predictors, we use the time since recruitment and the
four most relevant biomedical voice features according to [1]:
HNR, RPDE, DFA and PPE. The Personalized Telemonitor-
ing scenario is an adaptive system for estimating the UPDRS
score. In temporal train-test splits, the first 2/3 of the data is
used as training data, and the remaining 1/3 of the data is used
as test data. A separate model is built for each patient using
only those instances corresponding to that patient, resulting in
personalized models. We average the estimations belonging
to the same-day final estimation of the UPDRS score for a
particular day. We estimate both the motor and total UPDRS
scores. The primary evaluation metric is the mean absolute
error (MAE).We also use the normalized mean absolute error
NMAE and root mean squared error (RMSE) and observe
similar trends. The accelerometer data is recorded by phone,
at a 50 Hz sampling frequency, for an individual.

As shown in Figure 6, we find that the Net-5 and
Net-10 methods predict visibility with almost the same abso-
lute error, with M5P being slightly higher. Thus, we use
DMLP to recognize visibility over different degrees precisely,
and the classifications are independent. Our approach in

FIGURE 6. The MAE of predicting PD severity using classification
algorithms.

adopting the DMLP classifier in Figure 6 produces the best
performance across all speech features. Note in particular that
the magnitude of the standard deviation is very small, imply-
ing that the initialization bias has been avoided.When the dif-
ference between the errors from the estimation and the MAE
of DMLP is larger than the standard deviations, as computed
from the error values observed during CV, the smartphone
is breaking down. All the performance metrics are given for
validation sets in Table 2. With summarized feature vectors,
the performance improves significantly. All methods present
the positive MCC. The experimental results for the smart-
phone dataset are computed with the same classifiers and
depicted in Table 3. Further, in this case, the DMLP approach
also surpasses the other classifiers across all features, often
by a significant margin.

TABLE 2. Results for validation set using LOOCV.

TABLE 3. Classification for 3 actions: sit, stand, walk.

Of the examined models, artificial neural networks seem
to perform best. While an automated estimation of the
UPDRS score with personalized apps running on smart-
phones or tablets is a promising research direction, further
research is required to achieve a sufficient accuracy for
real-world applications, especially if only a small amount
of training data is available for each patient or if the
voice data is captured under daily-life conditions (instead of
well-controlled laboratory settings). Additional data sources
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(based on the user’s interaction with the smartphone or tablet,
such as her typing patterns or performance in logical games)
could improve the estimation of the UPDRS score.

Classifications for 3 actions (sit, stand, walk) are shown
in Table 3. The experimental results shows a maximum
of 97.9% accuracy in action classification with 3 actions with
the classification algorithm. Because we could not collect
our own PD data with ground truth, the model created with
control subjects was unsuitable for accurate classification.
The main limitations of this experiment were the small sam-
ple size and the lack of real PD patients available to create
the model. Some of the smartphone data also lacked long,
continuous data spanning from morning to evening, which
makes meaningful comparisons difficult.

VI. CONCLUDED REMARKS AND FUTURE WORK
In smart healthcare, mobile smartphone presents a promising
opportunity for the provision of practical and cost effective
diagnosis at population scale as the expert clinical treatment
fail to collect the persistent activities and signs. In the chronic
and progressive disease, monitoring the activities of daily life
is of great importance. Yet, to completely reach their potential
such apps should provide a seamless user experience. In this
paper, the classifiers, including KNN, RF, Linear Regression,
M5P, and DMLP are applied to accelerometer data continu-
ously captured from smartphones. In our experiments both
datasets perform reliably and show promising results. Of the
experimental models, it is demonstrated that DMLP performs
the best in both datasets.

Since recording our own PD patient data with ground truth
was not achieved, it would be useful to do so and have a more
direct comparison with the knowledge of actions. With more
data, even if they were not recorded by this study, the classi-
fication would also be more accurate. Furthermore, longer-
scale data spanning months would be useful for observing
not just small cycles in actions but also the progression of
symptoms. In addition to more data, future endeavors could
consider security in the implementation of this research, such
as limiting access to only patient and medical professionals.
We hope this may improve the precision of treatments and
interventions and ultimately to advance smart health.

REFERENCES
[1] M. A. Little, P. E. McSharry, E. J. Hunter, J. Spielman, and L. O. Ramig,

‘‘Suitability of dysphonia measurements for telemonitoring of Parkinson’s
disease,’’ IEEE Trans. Biomed. Eng., vol. 56, no. 4, pp. 1015–1022,
Apr. 2009.

[2] I. You, K.-K. R. Choo, C.-L. Ho, I. You, and K.-K. R. Choo,
‘‘A smartphone-based wearable sensors for monitoring real-time physio-
logical data,’’ Comput. Elect. Eng., vol. 65, pp. 376–392, Jan. 2018.

[3] C. J. D’Orazio and K.-K. R. Choo, ‘‘Circumventing IOS security mech-
anisms for APT forensic investigations: A security taxonomy for cloud
apps,’’ Future Gener. Comput. Syst., vol. 79, pp. 247–261, Feb. 2018.

[4] W. Meng, W. Li, L.-F. Kwok, and K.-K. R. Choo, ‘‘Towards enhancing
click-draw based graphical passwords using multi-touch behaviours on
smartphones,’’ Comput. Secur., vol. 65, pp. 213–229, Mar. 2017.

[5] C. J. D’Orazio and K.-K. R. Choo, ‘‘A technique to circumvent SSL/TLS
validations on iOS devices,’’ Future Gener. Comput. Syst., vol. 74,
pp. 366–374, Sep. 2017.

[6] C. J. D’Orazio, K.-K. R. Choo, and L. T. Yang, ‘‘Data exfiltration from
Internet of Things devices: IOS devices as case studies,’’ IEEE Internet
Things J., vol. 4, no. 2, pp. 524–535, Apr. 2017.

[7] Q. Do, B.Martini, and K.-K. R. Choo, ‘‘Is the data on your wearable device
secure? An Android wear smartwatch case study,’’ Softw., Pract. Exper.,
vol. 47, no. 3, pp. 391–403, 2017.

[8] S. T.Moore, H. G.MacDougall, andW. G. Ondo, ‘‘Ambulatory monitoring
of freezing of gait in Parkinson’s disease,’’ J. Neurosci. Methods, vol. 167,
no. 2, pp. 340–348, 2008.

[9] S. R. Hundza et al., ‘‘Accurate and reliable gait cycle detection in
Parkinson’s disease,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22,
no. 1, pp. 127–137, Jan. 2014.

[10] S. Wan, Y. Zhang, and J. Chen, ‘‘On the construction of data aggregation
tree with maximizing lifetime in large-scale wireless sensor networks,’’
IEEE Sensors J., vol. 16, no. 20, pp. 7433–7440, Oct. 2016.

[11] K.-C. Lan and W.-Y. Shih, ‘‘Early diagnosis of Parkinson’s disease using
a smartphone,’’ in Proc. FNC/MobiSPC, 2014, pp. 305–312.

[12] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Prac-
tical Machine Learning Tools and Techniques. San Mateo, CA, USA:
Morgan Kaufmann, 2016.

[13] K. Wang, Y. Shao, L. Shu, C. Zhu, and Y. Zhang, ‘‘Mobile big data fault-
tolerant processing for eHealth networks,’’ IEEE Netw., vol. 30, no. 1,
pp. 36–42, Jan./Feb. 2016.

[14] K. Wang, Y. Shao, L. Shu, G. Han, and C. Zhu, ‘‘LDPA: A local data
processing architecture in ambient assisted living communications,’’ IEEE
Commun. Mag., vol. 53, no. 1, pp. 56–63, Jan. 2015.

[15] Y. Shao, K. Wang, L. Shu, S. Deng, and D.-J. Deng, ‘‘Heuristic opti-
mization for reliable data congestion analytics in crowdsourced eHealth
networks,’’ IEEE Access, vol. 4, pp. 9174–9183, 2016.

[16] L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, and M. Guizani. (2018).
‘‘Security in mobile edge caching with reinforcement learning.’’ [Online].
Available: https://arxiv.org/abs/1801.05915

[17] M. A. Little, P. E.McSharry, S. J. Roberts, D. A. Costello, and I. M.Moroz,
‘‘Exploiting nonlinear recurrence and fractal scaling properties for voice
disorder detection,’’ BioMed. Eng. OnLine, vol. 6, no. 1, p. 23, 2007.

[18] B. E. Sakar et al., ‘‘Collection and analysis of a Parkinson speech dataset
with multiple types of sound recordings,’’ IEEE J. Biomed. Health Inform.,
vol. 17, no. 4, pp. 828–834, Jul. 2013.

[19] A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig, ‘‘Accurate
telemonitoring of Parkinson’s disease progression by noninvasive speech
tests,’’ IEEE Trans. Biomed. Eng., vol. 57, no. 4, pp. 884–893, Apr. 2010.

[20] A. Tsanas, M. A. Little, P. E. McSharry, J. Spielman, and L. O. Ramig,
‘‘Novel speech signal processing algorithms for high-accuracy classifica-
tion of Parkinson’s disease,’’ IEEE Trans. Biomed. Eng., vol. 59, no. 5,
pp. 1264–1271, May 2012.

[21] E. Naydenova, A. Tsanas, C. Casals-Pascual, and M. De Vos, ‘‘Smart
diagnostic algorithms for automated detection of childhood pneumonia
in resource-constrained settings,’’ in Proc. IEEE Global Humanitarian
Technol. Conf. (GHTC), Oct. 2015, pp. 377–384.

[22] R. Das, ‘‘A comparison of multiple classification methods for diagnosis
of Parkinson disease,’’ Expert Syst. Appl., vol. 37, no. 2, pp. 1568–1572,
2010.

[23] E. Emary, H.M. Zawbaa, andA. E. Hassanien, ‘‘Binary ant lion approaches
for feature selection,’’ Neurocomputing, vol. 213, pp. 54–65, Nov. 2016.

[24] Y. Zhao and C. Yin, ‘‘The expected discounted penalty function under
a renewal risk model with stochastic income,’’ Appl. Math. Comput.,
vol. 218, no. 10, pp. 6144–6154, 2012.

[25] M. Hariharan, K. Polat, and R. Sindhu, ‘‘A new hybrid intelligent system
for accurate detection of Parkinson’s disease,’’Comput.Methods Programs
Biomed., vol. 113, no. 3, pp. 904–913, 2014.

[26] J. Jiang, L. Liu, and Y. Wu, ‘‘Symmetric positive solutions to singular sys-
tem with multi-point coupled boundary conditions,’’ Appl. Math. Comput.,
vol. 220, pp. 536–548, Sep. 2013.

[27] W.-L. Zuo, Z.-Y. Wang, T. Liu, and H.-L. Chen, ‘‘Effective detection of
Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach,’’
Biomed. Signal Process. Control, vol. 8, no. 4, pp. 364–373, 2013.

[28] F.Meng and J. Shao, ‘‘Some newVolterra–Fredholm type dynamic integral
inequalities on time scales,’’ Appl. Math. Comput., vol. 223, pp. 444–451,
Oct. 2013.

[29] Z. Cai, J. Gu, and H.-L. Chen, ‘‘A new hybrid intelligent framework for
predicting Parkinson’s disease,’’ IEEE Access, vol. 5, p. 17188–17200,
2017.

36832 VOLUME 6, 2018



S. Wan et al.: DMLP Classifier for Behavior Analysis to Estimate PD Severity

[30] P. Li and G. Ren, ‘‘Some classes of equations of discrete type with har-
monic singular operator and convolution,’’ Appl. Math. Comput., vol. 284,
pp. 185–194, Jul. 2016.

[31] C. G. Goetz et al., ‘‘Movement disorder society-sponsored revision of
the unified Parkinson’s disease rating scale (MDS-UPDRS): Process, for-
mat, and clinimetric testing plan,’’ Movement Disorders, vol. 22, no. 1,
pp. 41–47, 2007.

[32] S. Arora, V. Venkataraman, S. Donohue, K. M. Biglan, E. R. Dorsey,
and M. A. Little, ‘‘High accuracy discrimination of Parkinson’s dis-
ease participants from healthy controls using smartphones,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2014,
pp. 3641–3644.

[33] J.-L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, and D. Anguita,
‘‘Transition-aware human activity recognition using smartphones,’’ Neu-
rocomputing, vol. 171, pp. 754–767, Jan. 2016.

[34] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, ‘‘A public
domain dataset for human activity recognition using smartphones,’’ in
Proc. ESANN, 2013, pp. 437–442.

[35] L. Palmerini, L. Rocchi, S. Mellone, F. Valzania, and L. Chiari, ‘‘Feature
selection for accelerometer-based posture analysis in Parkinson’s disease,’’
IEEE Trans. Inf. Technol. Biomed., vol. 15, no. 3, pp. 481–490, May 2011.

[36] M. Alhussein, ‘‘Monitoring Parkinson’s disease in smart cities,’’ IEEE
Access, vol. 5, pp. 19835–19841, 2017.

[37] G. Dimauro, V. Di Nicola, V. Bevilacqua, D. Caivano, and F. Girardi,
‘‘Assessment of speech intelligibility in Parkinson’s disease using a
speech-to-text system,’’ IEEE Access, vol. 5, pp. 22199–22208, 2017.

[38] H.-C. Chang, Y.-L. Hsu, S.-C. Yang, J.-C. Lin, and Z.-H. Wu, ‘‘A wearable
inertial measurement system with complementary filter for gait analysis
of patients with stroke or Parkinson’s disease,’’ IEEE Access, vol. 4,
pp. 8442–8453, 2016.

[39] A. Murad and J.-Y. Pyun, ‘‘Deep recurrent neural networks for human
activity recognition,’’ Sensors, vol. 17, no. 11, p. 2556, 2017.

[40] B. Andò et al., ‘‘Awearable device to support the pull test for postural insta-
bility assessment in Parkinson’s disease,’’ IEEE Trans. Instrum. Meas.,
vol. 67, no. 1, pp. 218–228, Jan. 2018.

[41] J. Camps et al., ‘‘Deep learning for freezing of gait detection in Parkinson’s
disease patients in their homes using a waist-worn inertial measurement
unit,’’ Knowl.-Based Syst., vol. 139, pp. 119–131, Jan. 2018.

[42] C. L. Pulliam, D. A. Heldman, E. B. Brokaw, T. O. Mera, Z. K. Mari,
and M. A. Burack, ‘‘Continuous assessment of levodopa response in
Parkinson’s disease using wearable motion sensors,’’ IEEE Trans. Biomed.
Eng., vol. 65, no. 1, pp. 159–164, Jan. 2018.

[43] L. Moro-Velázquez, J. A. Gómez-García, J. I. Godino-Llorente, J. Villalba,
J. R. Orozco-Arroyave, and N. Dehak, ‘‘Analysis of speaker recognition
methodologies and the influence of kinetic changes to automatically detect
Parkinson’s disease,’’ Appl. Soft Comput., vol. 62, pp. 649–666, Jan. 2018.

[44] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, ‘‘Activity recognition
using cell phone accelerometers,’’ ACM SIGKDD Explorations Newslett.,
vol. 12, no. 2, pp. 74–82, Dec. 2010.

[45] S. A. Mostafa et al., ‘‘Evaluating the performance of three classification
methods in diagnosis of Parkinson’s disease,’’ in Proc. Int. Conf. Soft
Comput. Data Mining. Cham, Switzerland: Springer, 2018.

[46] M. Lichman. (2013). UCI Machine Learning Repository. [Online]. Avail-
able: http://archive.ics.uci.edu/ml

[47] C. Stamate et al., ‘‘Deep learning Parkinson’s from smartphone data,’’ in
Proc. IEEE Int. Conf. Pervasive Comput. Commun. (PerCom), Mar. 2017,
pp. 31–40.

SHAOHUA WAN received the Ph.D. degree
from the School of Computer, Wuhan Univer-
sity, in 2010. From 2016 to 2017, he was a Vis-
iting Scholar with the Department of Electrical
and Computer Engineering, Technical University
of Munich, Germany. Since 2015, he has been a
Post-Doctoral Researcher with the State Key Lab-
oratory of Digital Manufacturing Equipment and
Technology, Huazhong University of Science and
Technology. He is currently anAssociate Professor

and aMaster Advisor with the School of Information and Safety Engineering,
Zhongnan University of Economics and Law. His main research interests
include massive data computing for Internet of Things and edge computing.

YAN LIANG is currently pursuing the master’s
degree with the School of Information and Safety
Engineering, Zhongnan University of Economics
and Law, China. Her main research interests are
edge computing.

YIN ZHANG (SM’16) is currently an Associate
Professor with the School of Information and
Safety Engineering, Zhongnan University of Eco-
nomics and Law (ZUEL), China. He is a Wenlan
Distinguished Scholar with ZUEL and a Chutian
Distinguished Scholar in China. He has authored
over 80 prestigious conference and journal papers,
including eight ESI Highly Cited Papers. His
research interests include intelligent service com-
puting, big data, and social network. He is the

Vice-Chair of the IEEE Computer Society Big Data STC. He serves as an
Editor or an Associate Editor for the IEEEAccess, the IEEE Sensors Journal,
and the Journal of Information Processing Systems. He is a Guest Editor of
the Future Generation Computer Systems, the IEEE IoT Journal, theMobile
Networks and Applications, the Sensors, theMultimedia Tools and Applica-
tions, the Wireless Communications and Mobile Computing, the Electronic
Markets, the Journal ofMedical Systems, and theNewReview of Hypermedia
and Multimedia. He served as the Track Chair for the IEEE CSCN 2017 and
the TPC Co-Chair for CloudComp 2015 and TRIDENTCOM 2017.

MOHSEN GUIZANI received the bachelor’s
degree (Hons.) and the master’s degree in elec-
trical engineering, and the master’s and doctorate
degrees in computer engineering from Syracuse
University, Syracuse, NY, USA, in 1984, 1986,
1987, and 1990, respectively. He was the Asso-
ciate Vice President of graduate studies with Qatar
University; the Chair of the Computer Science
Department, Western Michigan University; and
the Chair of the Computer Science Department,

University of West Florida. He held academic positions with the University
of Missouri–Kansas City, University of Colorado-Boulder, Syracuse Univer-
sity, and Kuwait University. He is currently a Professor and the Electrical
and Computer Engineering Department Chair with the University of Idaho.
He has authored nine books and over 400 publications in refereed journals
and conferences. His research interests include wireless communications and
mobile computing, computer networks, mobile cloud computing, security,
and smart grid. He also served as a member, the Chair, and the General Chair
of a number of international conferences. He received the Best Research
Award from three institutions. He currently serves on the editorial boards
for several international technical journals and the Founder and the Editor-in-
Chief forWireless Communications andMobile Computing Journal (Wiley).
He was a Guest Editor of a number of special issues in IEEE journals
and magazines. He was selected as the Best Teaching Assistant for two
consecutive years at Syracuse University. Hewas the Chair of the IEEECom-
munications SocietyWireless Technical Committee and the TAOS Technical
Committee. He served as the IEEE Computer Society Distinguished Speaker
from 2003 to 2005.

VOLUME 6, 2018 36833


	INTRODUCTION
	RELATED WORK
	DATASET PREPROCESSING
	UCI DATASET
	THE DATASET COLLECTED FROM SMARTPHONES' SEGMENTATION AND PREPROCESSING

	CLASSIFICATION ALGORITHMS
	K-NEAREST NEIGHBOR REGRESSION
	RANDOM FORESTS
	LINEAR REGRESSION
	M5P REGRESSION TREE
	DMLP CLASSIFICATION ALGORITHM

	EXPERIMENTAL ANALYSIS AND PERFORMANCE EVALUATION
	PERFORMANCE METRICS
	CROSS-VALIDATION (CV)
	RESULTS AND DISCUSSIONS

	CONCLUDED REMARKS AND FUTURE WORK
	REFERENCES
	Biographies
	SHAOHUA WAN
	YAN LIANG
	YIN ZHANG
	MOHSEN GUIZANI


