
Received May 13, 2018, accepted June 16, 2018, date of publication July 6, 2018, date of current version August 20, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2852805

WCET-Aware Control Flow Checking With
Super-Nodes for Resource-Constrained
Embedded Systems
MING ZHANG1, ZONGHUA GU 1, (Member, IEEE), HONG LI1,
AND NENGGAN ZHENG 2, (Member, IEEE)
1College of Computer Science, Zhejiang University, Hangzhou 310027, China
2Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China

Corresponding author: Nenggan Zheng (zng@cs.zju.edu.cn)

This work was supported by the National Science Foundation of China under Grants 61672454 and 61572433.

ABSTRACT Safety-critical embedded systems in application domains, such as aerospace, automotive, and
industrial automation, must satisfy dual requirements of fault-tolerance and real-time predictability. Control
flow checking is an effective technique for improving embedded systems’ reliability by online monitoring
and checking of software control flow to detect runtime deviations from the control flow graph. However,
inserting instrumentation code in every basic block incurs significant execution time overhead, which may
cause the program to violate its timing constraints. In this paper, we propose to selectively instrument a subset
of code regions that are larger than basic blocks, called super-nodes, in order to make the program partially
resilient to control flow errors while keeping the program worst-case execution time (WCET) below a given
upper bound. WCET analysis is invoked to estimate the program WCET and to identify the corresponding
worst-case execution path (WCEP). An ILP formulation is used to judiciously select a subset of super-nodes
on the WCEP for instrumentation, so that the best fault detection coverage is achieved without violating
the given WCET upper bound. The optimization is repeated for each identified WCEP until the program
WCET satisfies the WCET upper bound. Experimental results demonstrate significant improvements of
fault detection coverage compared with related work.

INDEX TERMS Control flow checking, real-time embedded systems, soft errors.

I. INTRODUCTION
Real-time embedded systems in many application domains,
such as aerospace, automotive and industrial automation are
often safety-critical, and their malfunction may lead to catas-
trophic consequences, including loss of human life. As semi-
conductor technology scales down further, decreasing size,
capacitance and threshold voltage level of devices allow
better performance and lower power consumption, but also
make devices more susceptible to transient faults, especially
for embedded systems operating in harsh environments, such
as aerospace or automotive systems. Specifically, we focus
on transient faults caused by harsh environmental conditions
such as intensive space radiation, and assume the common
Single-Event Upset (SEU) fault model.

For protecting against soft errors in the memory subsys-
tem, including main memory and cache, Error-Correcting
Code (ECC) is an effective mechanism. In fact, ECC is

a mandatory requirement for memory components used in
safety-critical application domains, such as satellite and
aerospace applications. But other mechanisms are needed
to harden the processor pipeline against transient faults.
One approach is to use Dual Modular Redundancy (DMR)
or Triple Modular Redundancy (TMR), which executes
redundant copies of the same program on two or three identi-
cal processing elements and compares their outputs, to detect
both control flow and dataflow errors. Another approach
is to use radiation-hardened processors that are resistant
to space radiations. Such approaches are very effective in
achieving fault-tolerance, and are suitable for safety-critical
applications that can afford the cost, but may not be feasible
for mass-produced consumer products such as automotive
electronics that are highly cost-sensitive, and the designer
must resort to software and compiler techniques to achieve
fault tolerance. Another motivating application scenario is
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pico-satellites based on Commercial Off-The-Shelf (COTS)
smartphones [1], whichmust achieve fault-tolerance with low
cost commercial hardware.

Transient faults may cause either Control Flow
Errors (CFEs) or dataflow errors. A CFE disrupts normal
control flow of a program by causing the program counter
to jump to an erroneous location, whereas a dataflow error
affects numerical results of computation without altering the
control flow. Compared with dataflow errors, CFEs are more
likely to cause severe failures such as program crash and
hang, and are the focus of this paper.

A software program consists of a number of Basic
Blocks (BBs). A BB is a straight line of instructions that
are always executed from the beginning to the end at run-
time, without any Control Flow Instructions (CFIs) in the
middle. A program’s Control Flow Graph (CFG) has nodes
representing BBs and edges representing valid control flow
between the BBs. A CFE occurs when runtime control flow
deviates from the program CFG. There may be three types
of CFEs: branch insertion error: a non-control flow instruc-
tion is changed to a CFI; branch deletion error: a control
flow instruction is changed to a non-control flow instruc-
tion; branch target modification: target address of a control
flow instruction is modified. Many Control Flow Check-
ing (CFC) techniques [2], [3] have been proposed to detect
and/or correct CFEs caused by transient hardware faults, both
hardware-based and software-based. Hardware-based CFC
techniques incur low runtime overhead but require modifica-
tion to commodity hardware. Software-based CFC does not
require hardware modification, but the additional instrumen-
tation code typically incurs large performance overhead.

For real-time systems, correctness depends not only on
producing correct results, but also on correct timing of deliv-
ering the results. To make system-level timing guarantees,
it is a prerequisite to provide an upper bound on each
individual task’s Worst-Case Execution Time (WCET) [1],
which is much more important than its Average-Case Execu-
tion Time (ACET). Safety-critical embedded systems must
satisfy the dual requirements of timing predictability and
fault-tolerance simultaneously. Previous work has focused
on optimizing the average-case performance, but has not
adequately addressed WCET requirements in hard real-
time systems. In order to achieve practical deployment of
software-based CFC techniques on resource-constrained hard
real-time systems, Gu et al. [5] presentedWCET-Aware Con-
trol Flow Checking (WACFC), which allows flexible trade-
offs between fault detection coverage and program WCET
by instrumenting a select subset of BBs in the CFG. In this
paper, we presentWCET-Aware Control Flow Checking with
Super-Nodes (WACFC-SN) by extending WACFC in [5] to
use the concept of super-nodes to further improve efficiency
and fault coverage.

Table 1 summarizes the main abbreviations used in this
paper.

This paper is organized as follows: Section II discusses
related work, including WCET analysis and optimization,

TABLE 1. Abbreviations.

software-based CFC, super-node-based CFC and
WCET-aware partial CFC; Section III presents the details
of our proposed algorithm WACFC-SN; Section IV presents
experimental results, and Section V concludes the paper.

II. BACKGROUND AND RELATED WORK
A. SYSTEM-LEVEL FAULT-TOLERANCE TECHNIQUES
Researchers have addressed the intersection between real-
time systems and fault-tolerance at the system-level, where
multiple tasks are managed by a real-time operating
system. Zhu [6] presented reliability-aware energy manage-
ment schemes that dynamically schedule error recoveries
for tasks to compensate for reliability loss due to dynamic
voltage and frequency scaling. They also exploited check-
point techniques to efficiently use the runtime timing slack.
Li et al. [8] presented a reliability-guaranteed energy-aware
frame-based task set execution strategy for hard real-time sys-
tems, where processing resources are reserved to re-execute
tasks when transient faults occur. Li et al. [7] presented algo-
rithms for runtime reconfiguration of a defect-tolerant many-
core Network-on-Chip when defective cores are replaced by
backup cores. The above papers generally assume each task’s
WCET is given as problem input, and address system-level
multi-tasking issues.

B. WCET ANALYSIS AND OPTIMIZATION
WCET analysis consists of two steps [4]: the low-level analy-
sis step determines execution time of BBs, taking into account
effects of micro-architectural structures (e.g., cache, pipeline,
etc.); the high-level analysis step takes the execution time
of BBs as input and determines the global WCET of the
program according to its CFG. Since exhaustive enumeration
of all program execution paths is computationally infeasible,
the prevalent approach to WCET analysis is the Implicit
Path Enumeration Technique (IPET) [9] based on an ILP
formulation.

A program’s WCET is determined by the Worst-Case Exe-
cution Path (WCEP), defined as the program execution
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Algorithm 1 Global Super-Node Selection
1: N = ∅,Overlap (b) = ∅,Nselected = ∅,Ndeadlock = ∅
2: for each function f
3: Find all super-nodes in f and add them to N
4: for each BB b in f
5: Add all super nodes in f that contains b to

Overlap (b)
6: end for
7: end for
8: Mark every singleton super-node as instrumented
9: Bcovered = B,Ncandidate = N
10: Find the current WCEP = {(b, ecb)} and the current

WCET
11: while WCET > WCET ub
12: Select a set S of super-nodes from Ncandidate ∩

NWCEP by invoking the Path-local Super-node
Selection algorithm

13: Mark each super-node n ∈ S as instrumented
and other super-nodes on the current path as un-
instrumented

14: Bcovered = (Bcovered\BWCEP) ∪ {hn|n ∈ S}
15: Mark as un-instrumented and remove from

Ncandidate super-nodes that conflict with any n ∈ S
16: if no super-node is removed from Ncandidate
17: for each n ∈ NWCEP
18: if n ∈ Ndeadlock then
19: if the selection state of n changes then
20: scn = scn + 1 end if
21: else scn = 0 end if
22: end for
23: if NWCEP ∩ Ncandidate 6⊆ Ndeadlock then
24: Ndeadlock =

Ndeadlock ∪ (NWCEP ∩ Ncandidate)
25: else
26: Mark as un-instrumented and remove

from Ncandidate the smallest super-node n
with the maximum value of scn.

27: Bcovered = Bcovered\hn
28: Ndeadlock = ∅
29: end if
30: else Ndeadlock = ∅ end if
31: Find the current WCEP = {(b, ecb)} and the

current WCET
32: end while
33: Nselected = {innermost n ∈ Ncandidate s.t. ∃b ∈ Bcovered :

b ∈ Bn}
34: Actually instrument every n ∈ Nselected

path with the largest possible execution time. In general,
the WCEP may be a rarely-executed ‘‘cold path’’ that has
a very small probability of occurring at runtime, but it is
still important to account for it when computing the WCET

for hard real-time systems. By contrast, other shorter paths
with smaller execution times may be frequently-executed
‘‘hot paths’’ that determine the Average-Case Execution
Time (ACET), but do not contribute to the WCET. Whereas
conventional compiler optimization algorithms aim to reduce
ACET, Suhendra et al. [10] and Wang et al. [11],[12] pre-
sented compiler optimization algorithms that aim to decrease
program WCET by allocating program data variables to on-
chip scratchpad memory. A challenge in WCET reduction is
the so-called WCEP switch, i.e. after reducing the execution
time of the current WCEP, a new path may become the new
WCEP that determines the WCET. Therefore, the designer
needs to optimize each identifiedWCEP as the currentWCEP
switches among different paths during the optimization pro-
cess, until the program WCET falls below WCETub. Refer-
ences [10]–[12] start with a program with all data variables
in off-chip main memory, and gradually allocate data vari-
ables in each BB to on-chip scratchpad memory to reduce
program WCET. Similarly, we start with a program with full
Control Flow Checking, and gradually reduce its WCET by
instrumenting only a selected subset of super-nodes, until the
desired WCET upper bound is reached.

C. SOFTWARE-BASED CONTROL FLOW CHECKING
Software-based CFC techniques [2] typically work by insert-
ing additional checking code, called instrumentation code,
at the beginning and end of each BB. Each BB has associated
entry and exit signatures computed offline to encode some
invariants derived from the CFG. As control flow passes
through a BB at runtime, the instrumentation code in each BB
computes the signatures, typically with bitwise AND/XOR
operations, and compares the runtime signatures with the pre-
computed expected signatures. In case of a mismatch, a CFE
is detected and the error handler is invoked. Different CFC
algorithms differ in the technical details of computing and
checking signatures, but the overall framework is the same.
Our approach in this paper is independent of the specific
details of the CFC algorithm adopted, and is broadly appli-
cable to other CFC algorithms.

Although only a few instructions are added to each BB,
the total runtime overhead of CFC is quite significant, since
most BBs contain only a few instructions (e.g., 3-6 for typ-
ical MIPS programs) on average for typical non-scientific
program workloads [13]. The high performance overhead
of software-based CFC makes it unsuitable for resource-
constrained embedded systems. Vemu and Abraham [14]
and Khudia and Mahlke [15] have presented techniques for
reducing runtime overhead of software-based CFC, but they
focused on average-case performance instead of worst-case
performance as measured by the program WCET, which is
more important to hard real-time systems.

D. SUPER-NODE-BASED CFC
In order to reduce overhead, Vemu and Abraham [14] pro-
posed node expansion, i.e., to insert instrumentation code
only to the beginning and end of each super-node instead
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FIGURE 1. Basic block instrumentation vs. super-node instrumentation.
Solid shade denotes instrumentation code.

of each BB (Fig. 1 (b)), thus reducing the amount of instru-
mentation code and its runtime overhead. A super-node is a
single-entry single-exit code region, where each execution of
the header must be followed by one execution of the footer,
and vice versa. A super-node is said to be on an execution
path if its header (and footer) is on the path. With super-nodes
based CFC, CFEs within each super-node cannot be detected;
only CFEs between different super-nodes can be detected.

Here are the basic definitions of super-nodes:

1) DOMINATOR
ABB b1 is a dominator of a BB b2 if every path from the start
of the program that reaches b2 has to pass through b1.

2) POSTDOMINATOR
A BB b1 is a postdominator of a BB b2 if every path from b2
to the end of the program has to pass through b1.

3) DOMINATOR-POSTDOMINATOR PAIR
BBs b1 and b2 form an ordered dominator-postdominator pair
(b1, b2) iff b1 is a dominator of b2 and b2 is a postdominator
of b1. If b1 and b2 form a dominator-postdominator pair,
b1 and b2 are different BBs, and b1 is in every loop that
b2 is part of and vice versa, then b1 and b2 form a strict
dominator-postdominator pair.

4) SUPER-NODE
A super-node is formed from a strict dominator-postdominator
pair (b1, b2), where BBs b1 and b2 are the header and footer
of the super-node, respectively; every BB on every path from
b1 to b2 (including b1 and b2) is part of the super-node.
We use

(
bi, bj

)
to denote the super-node corresponding

to the dominator-postdominator pair
(
bi, bj

)
. A super-node

contains or covers a BB if the BB is part of the super-node.
As a special case, each BB is also a singleton super-node.

Super-nodes are different from super blocks in compiler
optimization [17]. A super-block is an execution trace, i.e., a

FIGURE 2. Relationships between super-nodes and their impacts on
instrumentation.

linear sequence of BBs with no side entrances. Control flow
may only enter from the top but may leave at one or more
exit points. In contrast, a super-node consists of a directed
graph of BBs with possible control flow within the super-
node. If a BB in a super-node is on an execution path, only
the header and footer of the super-node are guaranteed to be
on the execution path, while the other BBs may or may not
be on the path depending on runtime control flow decisions.

Two different super-nodes ni and nj may be either disjoint
or overlapping (Fig. 2). If ni and nj contain at least one
common BB, then ni and nj overlap with each other (e.g.,
(b1, b9) and (b2, b5); (b6, b7) and (b7, b8)); otherwise, they
are disjoint (e.g., (b2, b5) and (b6, b7)). For two overlapping
super-nodes ni and nj, if nj is a true subset of ni, then ni
includes nj (e.g., (b1, b9) includes (b2, b5)). We refer to ni as
an outer node of nj, and nj as an inner node of ni. If neither of
two different overlapping super-nodes includes the other, then
the super-nodes partially overlap each other (e.g., (b6, b7)
and (b7, b8)). A super-node nj is said to conflict with another
super-node ni if ni includes or partially overlaps nj.

E. WCET-AWARE PARTIAL CFC
Assuming that WCET of the original program without CFC
instrumentation, WCETorig, does not exceed WCETub; and
WCETFCFC, WCET of the program with full CFC instru-
mentation on all BBs, exceeds WCETub, Gu et al. [5]
presented WCET-aware partial CFC that allows flexible
tradeoffs between fault detection coverage and program
WCET, and provides a tunable fault detection technique that
can be adapted by the designer to suit the needs of different
applications. It works by selectively instrumenting a subset of
BBs in the program to endow the program with partial fault
detection capability while keeping its WCET within a given
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upper boundWCETub. The objective is to achieve reasonable
fault detection coverage within a reasonable upper bound on
the program WCET, where the notion of reasonable should
be application-dependent and specified by the designer. If the
processor workload is light, or the processor has enough
computing power, then more BBs can be instrumented to
achieve higher fault detection coverage; if the system is over-
loaded, then the designer may choose to instrument fewer
BBs to reduce the workload. However, partial CFC may not
be applicable to certain highly safety-critical applications,
e.g., avionics control systems, and full CFC must be used
even if it is necessary to add more processors or switch to
a faster processor to reduce the per-processor workload.

III. WCET-AWARE CONTROL FLOW CHECKING
WITH SUPER-NODES
We now present our main contribution, the WACFC-SN
algorithm, which consists of two parts: Global Super-node
Selection, a heuristic algorithm, and Path-local Super-node
Selection, an ILP formulation. We start with a program with
full CFC, and WCET exceeding the designer-specified upper
bound WCETub. During each iteration, we perform WCET
analysis to obtain the programWCET and identify the current
WCEP. If the current WCET exceeds WCETub, we invoke
the Path-local Super-node Selection algorithm to reduce exe-
cution time of the WCEP by instrumenting only a selected
subset of super-nodes on the current path. After this step,
a new path may become the WCEP, so we perform WCET
analysis again, and repeat this process until the program
WCET falls below WCETub. We first present the definition
of CFE Detection Capability, then the Path-local Super-node
Selection algorithm, and finally the Global Super-node Selec-
tion algorithm.

A. CFE DETECTION CAPABILITY
The probability of transforming a non-branch opcode to a
branch opcode (and vice versa) due to a single bit flip is
generally assumed to be very low [15], [16]. We adopt the
same assumption in this paper, and focus on CFEs due to
branch target modification.

When a CFE occurs, control flow is directed from a source
CFI to an erroneous target instruction. Transient faults may
occur anywhere in the processor pipeline, from instruction
fetch, to decode, to execute, and to retirement. Consider a
CFI, e.g., a branch or jump instruction. The instruction may
have a field encoding the target address. As long as the
instruction stays in the processor pipeline, it may be affected
by a transient fault, such as a bit-flip in the pipeline register
where the target address is stored, which may cause a CFE.
Therefore, the longer a CFI stays in the processor pipeline,
the more vulnerable to soft errors it becomes. The total time
a CFI spends in the processor pipeline during a program run
depends on both the instruction execution time (i.e., the time
each execution of the instruction takes) and the execution
frequency of the instruction. For any given CFI, its execution
frequency determines its total execution time.We assume that

the probability for a CFI i to experience a CFE at runtime is
proportional to the average-case execution frequencyFi of the
CFI. By definition, each BB b contains at most a single CFI,
hence the average-case execution frequency of a CFI is equal
to the average-case execution frequency Fb of its BB that
contains it. We collect the average-case execution frequency
Fb of every BB by profiling the program with random inputs.
We now consider the destination of the CFE, i.e., the code

region that is the target of invalid control flow due to the
CFE. A large super-node that spans a large range of mem-
ory addresses is more likely to become the destination of a
CFE than a smaller super-node, assuming that all memory
addresses have equal probability of being the target of a CFE.
For a RISC processor where all instructions have the same
length (number of bits), we define the size of a given super-
node n as the total number of instructions in all BBs Bn
contained in it: ∑

b∈Bn

ICb (1)

where ICb is the instruction count, i.e., number of instructions
in BB b. We assume the probability for a super-node n to
become the destination of a CFE is proportional to the size
of the super-node.

For a given super-node n, the probability for a CFE that
jumps from a CFI outside the super-node to some instruction
inside the super-node is proportional to the average-case
execution frequency of the source CFI times the size of the
destination super-node:

Fi ·
∑
b∈Bn

ICb (2)

CFC instrumentation of a super-node enables detection of
CFEs that direct control flow from a CFI outside the instru-
mented super-node to some instruction inside that super-
node, but not vice versa. In each instrumented super-node,
instrumentation code is added to both the beginning of the
header and the end of the footer to update the runtime signa-
ture and check it against a pre-computed expected signature.
At compile-time, a unique expected signature is assigned to
the inside of each instrumented super-node. If no CFE occurs,
the runtime signature is updated to the expected signature
at the beginning of the header of the super-node, which is
expected by the signature check at the end of the footer. If a
CFE directs control flow from a CFI outside the super-node
to the inside of the super-node, the runtime signature is not
updated at the beginning of the header of the super-node, and
thus will not match the expected signature for the inside of the
super-node. Such a mismatch will be caught by the signature
check at the end of the footer of the super-node and the CFE
is detected. If a CFE directs control flow to an instruction
outside any super-node, control flow may or may not pass
through a signature check after the CFE occurs. Furthermore,
if a CFE directs control flow between two instructions that
are not inside any super-node, the expected signatures at the
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instructions may be the same. In either case, the CFE may go
undetected.

The observation above motivates our definition of Super-
node CFE Detection Capability Dn of super-node n as a
metric to estimate the fault detection coverage provided by
an instrumented super-node n:

Dn =

 ∑
b∈B−Bn

Fb

 ·∑
b∈Bn

ICb (3)

where B is the set of all BBs in the program code, Bn is the
set of BBs in super-node n. Intuitively, super-node n’s CFE
detection capability is proportional to its size, i.e., number of
instructions inside the super-node, and the sum of average-
case execution frequencies of all CFIs outside the super-node.

To estimate the fault detection coverage of an execution
path p with a selected set N p

selected of instrumented super-
nodes, the Path CFE Detection Capability Dp of the path is
defined as the sum of Super-node CFEDetection Capabilities
of all instrumented super-nodes on the path:

Dp =
∑

n∈N p
selected

Dn (4)

Similarly, for a program with a selected set Nselected of instru-
mented super-nodes, the Program CFE Detection Capability
D can be defined as the sum of Super-node CFE Detection
Capabilities of all instrumented super-nodes in the program
code:

D =
∑

n∈Nselected

Dn (5)

This Program CFE Detection Capability serves as a proxy
for the actual fault detection coverage, which can only be
obtained through fault injection experiments, but not express-
ible analytically. Experimental results confirm that this objec-
tive is more effective than the objective of maximizing the
total average execution time of instrumented BBs in the
program in [5].

B. ILP FORMULATION FOR PATH-LOCAL
SUPER-NODE SELECTION
In this section, we present the ILP formulation for the
Path-local Super-node Selection algorithm, which selects a
subset of candidate super-nodes Ncandidate on the current
WCEP for instrumentation to maximize the Path CFE Detec-
tion Capability while keeping the execution time of the path
below WCETub. For each candidate super-node n on the cur-
rent WCEP, a 0-1 variable xn is associated with it to indicate
whether the super-node is selected for instrumentation (xn =
1) or not (xn = 0). The optimization objective is to maximize
the Path CFE Detection Capability of the current WCEP:∑

n∈Ncandidate∩NWCEP

Dn · xn (6)

where NWCEP denotes the set of super-nodes on the current
WCEP. This definition of the Path CFE Detection Capability
is equivalent to (4).

One constraint is that execution time of the current WCEP
must not exceed WCETub:

WCET orig +
∑

n∈Ncandidate∩NWCEP

echn · OH inst · xn ≤ WCET ub

(7)

where WCETorig denotes the original WCET of the pro-
gramwithout any instrumentation; echn denotes the execution
count of the header BB hn of super-node n on the current
WCEP, which is also the execution count of super-node n
on the current WCEP; OH inst denotes the instrumentation
overhead, i.e., the additional execution time of any single
super-node due to additional instrumentation code.

Another constraint is that overlapping super-nodes, i.e.,
super-nodes that contain the same BB, must not be selected
for instrumentation simultaneously:

∀b ∈ B :
∑

n∈Overlap(b)∩Ncandidate∩NWCEP

xn ≤ 1 (8)

where B denotes the set of all BBs in the program, and
Overlap (b) denotes the set of super-nodes that contain BB b.
To see why overlapping super-nodes cannot be instrumented
simultaneously, consider Fig. 2 as an example. Suppose
(b1, b9) is instrumented. Instrumentation code in b9 (marked
with solid shade in b9) expects a runtime signature value
produced by instrumentation code in b1 (marked with solid
shade in b1). If the super-node (b2, b5) is instrumented simul-
taneously with (b1, b9), instrumentation code for (b2, b5)
(marked with horizontal lines) may execute between b1 and
b9 and alter the runtime signature value produced by instru-
mentation code in b1, causing the exit check at the end of
b9 to be invalid. The same problem happens for partially
overlapping super-nodes (b6, b7) and (b7, b8).
The optimization objective (6), and constraints (7)(8) form

the ILP model of the Path-local Super-node Selection algo-
rithm. The algorithm may reduce execution time of a path in
two ways. First, if more than one super-node on the path has
previously been selected for instrumentation and some of the
selected super-nodes are inner nodes of the same super-node,
then the common outer nodemay be selected for instrumenta-
tion instead of its inner nodes. In this case, the program loses
the ability of detecting invalid control flow between different
parts within the outer node. Second, a super-node on the path
which has previously been selected for instrumentation may
be de-selected. In this case, the program loses the ability
of detecting invalid control flow from the outside of the
super-node to its inside. In both cases, the CFE Detection
Capability is reduced for a decrease in execution time of
the path.

It is not possible to formulate a unified ILP model to
optimize (5), because WCET analysis with IPET [9] involves
an ILP formulation with the objective of maximizing program
execution time. Hence we cannot express the WCET upper
bound constraint in (7) with a set of linear constraints in
the overall ILP model with the objective of maximizing (5).
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Next, we introduce the Global Super-node Selection algo-
rithm (Algorithm 1).

C. GLOBAL SUPER-NODE SELECTION ALGORITHM
We assume a program without any CFC instrumentation
satisfies the given WCETub. We first identify the set of
all super-nodes (N ), and the set of overlapping super-nodes
Overlap (b) which contains the same BB b for each BB
(Lines 2-7). The algorithm starts with a fully instru-
mented program, where every BB, i.e., singleton super-node,
is marked as instrumented and the instrumentation overhead
OH inst is added to the execution time of every singleton
super-node (Line 8). The set Ncandidate of candidate super-
nodes is initialized to contain all (possibly overlapping)
super-nodes (Line 9). The candidate super-nodes in Ncandidate
are the only super-nodes that may be selected for instru-
mentation by the Path-local Super-node Selection algorithm.
We do not actually instrument or un-instrument super-nodes
until the end of the algorithm, when the program’s WCET
satisfies WCETub and all super-nodes to be instrumented are
determined.

If the current program WCET exceeds WCETub, then we
gradually reduce the amount of instrumentation code until the
programWCET falls below WCETub (Lines 10-32). We first
perform WCET analysis to obtain the program WCET and
the corresponding WCEP (Line 10), which consists of a set
of tuples {(b, ecb)} denoting each BB b on the WCEP and its
execution count ecb. If the current WCET exceeds WCETub
(Line 11), we select a set S of super-nodes on the current
WCEP from Ncandidate by invoking the Path-local Super-node
Selection algorithm (Line 12). The super-nodes selected by
the Path-local Super-node Selection algorithm are marked as
instrumented and other super-nodes on the current path are
marked as un-instrumented (Line 13). Then, super-nodes that
conflict with any of the selected super-nodes are marked as
un-instrumented and removed from Ncandidate (Line 15). This
ensures that the execution time of a selected super-node will
not be increased by preventing its inner nodes from being
selected for instrumentation. Super-nodes that do not conflict
with any selected super-node remain in Ncandidate and may be
selected later when a different WCEP is optimized or when
the same WCEP is optimized again.

When the execution time of the current path is decreased
belowWCETub, we performWCET analysis again to identify
the new WCEP (Line 31). This process is repeated until the
program WCET falls below WCETub, when we have found
a valid solution, and can proceed to actually instrument the
selected super-nodes. To keep track of the selected super-
nodes, we maintain a set Bcovered of BBs, which contains
headers of super-nodes that are selected for instrumentation.
Initially, the set Bcovered contains all BBs of the program to
reflect the fact that every singleton super-node is initially
selected for instrumentation (Line 9). After every invocation
of the Path-local Super-node Selection algorithm, Bcovered is
updated to contain headers of the selected super-nodes on the
current path as well as headers of selected super-nodes on

FIGURE 3. Two paths of the same program with two BBs BB1 and BB2 in
common.

other paths (Line 14). When the programWCET is decreased
below WCETub, for each b ∈ Bcovered , the innermost super-
node n ∈ Ncandidate that covers b is actually instrumented
(Lines 33-34).

D. DEADLOCK PREVENTION
From Algorithm 1, we can see that the state of Ncandidate is
closely related to whether the algorithm terminates or not.
Every time the Global Super-node Selection algorithm opti-
mizes a path, some candidate super-nodes may be removed
from Ncandidate so that they will not be instrumented. Super-
nodes are never added to Ncandidate after it is initialized.
Therefore, as long as the algorithm keeps removing super-
nodes from Ncandidate, the set will eventually become empty,
and the algorithm will terminate. However, the algorithm
might stop removing super-nodes from Ncandidate and stop
making progress under certain circumstances, if no mecha-
nism were incorporated to prevent deadlocks.

As an example, consider Fig. 3. Suppose BB b1 has execu-
tion count of 99 on Path 1 and execution count of 1 on Path 2;
BB b2 has execution count of 1 on Path 1 and execution
count of 99 on Path 2. Starting from the configuration where
both b1 and b2 are instrumented, we run the WCET analysis
tool and find out WCETub is exceeded. Suppose Path 1 is
identified as the WCEP, and we decide to un-instrument b1to
reduce the execution time of Path 1. We re-run the WCET
analysis tool and find out the WCETub is still exceeded, but
the WCEP has switched to Path 2. In order to reduce the
execution time of Path 2, we now decide to un-instrument
b2 and re-instrument b1. But this causes the WCEP to switch
back toPath 1, when the algorithm enters an infinite loop, or a
deadlock.

We note three necessary conditions for causing such a
deadlock.

1) A set of execution paths that pass through at least
two common super-nodes are optimized repeatedly in
alternation.

2) No super-node is removed from Ncandidate, since super-
nodes that conflict with any of the selected super-nodes
have already been removed.
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3) For at least two of the common super-nodes, opti-
mization of the multiple execution paths disagree on
whether the super-nodes should be selected for instru-
mentation or not.

To detect and prevent deadlocks, we incorporate a
Deadlock Prevention mechanism in the Global Super-node
Selection algorithm, which runs every time the algorithm
finishes optimizing a path (Lines 16-30). It detects poten-
tial deadlocks by checking conditions 1) and 2) above.
If no candidate super-node is removed from Ncandidate
(Line 16), a deadlock may occur in the future, and the Dead-
lock Prevention mechanism is triggered. We maintain a set
Ndeadlock containing candidate super-nodes on the paths that
are recently optimized since the last time Ncandidate starts
to remain unchanged. If Ndeadlock has not converged to a
fixed set, i.e., a candidate super-node on the current path
has not been added to Ndeadlock (Line 23), then the current
path has not been optimized since the last time Ncandidate
remains unchanged, and there is no deadlock. In this case,
all candidate super-nodes on the current path are added to
Ndeadlock (Line 24). If Ndeadlock has converged to a fixed set,
then a potential deadlock is detected.

To resolve the deadlock, we can force progress by remov-
ing a super-node from Ncandidate. We choose to remove the
candidate super-node that is the most likely to cause dis-
agreement. When optimization for a path disagrees with opti-
mization for another path on whether a common super-node
on the paths should be selected for instrumentation or not,
it changes the selection state of the super-node, i.e., it either
selects the super-node that was not previously selected for
instrumentation, or de-selects the super-node that was previ-
ously selected. We assume a super-node that has experienced
the most selection state changes is the most likely to cause
disagreement, and maintain a state change counter scn for
every super-node n ∈ Ndeadlock . When Ncandidate remains
unchanged and a candidate super-node n on the current path is
added to Ndeadlock , if the super-node has not been previously
added to Ndeadlock , then its state change counter scn is set
to zero to indicate that it has not experienced any change
in its selection state (Line 21). For a super-node that is
already in Ndeadlock , if its selection state changes, its state
change counter is incremented (Lines 18-20). When a poten-
tial deadlock is detected, the super-node in Ndeadlock that has
experienced the most selection state changes is marked as un-
instrumented and removed from Ncandidate (Line 26) to force
progress, and its header is removed from Bcovered (Line 27).
Meanwhile, since the deadlock is broken, Ndeadlock is cleared
(Line 28).

With the Deadlock Prevention mechanism, the Global
Super-node Selection algorithm always terminates. Every
time a path is optimized, the algorithm either makes progress
by removing a super-node fromNcandidate (Line 15), or checks
Ndeadlock to detect a potential deadlock (Line 23). If Ndeadlock
converges to a fixed set, then the algorithm forces progress
by removing a super-node from Ncandidate (Line 26). Other-
wise, it adds all candidate super-nodes on the current path

FIGURE 4. Framework of WCET-aware Partial CFC Instrumentation. The
CFC partial instrumenter (shaded box) implements the proposed
WACFC-SN algorithm.

to Ndeadlock (Line 24). Ndeadlock definitely converges to a
fixed set after a finite number of paths are optimized, since
Ncandidate is a finite set. In the worst-case, Ndeadlock converges
to Ncandidate when all super-nodes in Ncandidate are added to
Ndeadlock . The convergence of Ndeadlock to a fixed set will in
turn force progress by removing a super-node fromNcandidate.
In all cases, a super-node is removed from Ncandidate after a
finite number of paths are optimized, and the algorithm can
always make progress.

IV. EVALUATION AND RESULTS
A. EXPERIMENTAL SETUP
We evaluate the WACFC-SN algorithm with fault injec-
tion experiments. Fig. 4 shows the overall experimental
setup. We use the commercial WCET analyzer aiT from
the company AbsInt (https://www.absint.com/). aiT takes
as input a binary executable file and the hardware pro-
cessor specification, and derives the program WCET esti-
mate and the corresponding WCEP. We use the Freescale
PowerPC 5554 processor, a widely-used ECU in automo-
tive systems, and one of the processor models supported
by aiT. The instrumentation overhead OH inst is assumed
to be 80 cycles, which is the maximum observed execu-
tion time incurred by the instrumentation code plus a safety
margin.

We use a diverse collection of programs from the
Mälardalen WCET benchmark suite [18] in our experiments.
We use the LLVM compiler framework [19] to compile each
benchmark program into LLVM Immediate Representation
(IR), which is the input for further analysis and transfor-
mation. To obtain average execution frequencies of BBs,
the LLVM IR is linked with a program-specific module that
generates random inputs for the program at runtime. The pro-
gram is run 1000 times with different random inputs, and the
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FIGURE 5. Fault-injection workflow.

execution frequency of every BB is collected using the pro-
filer llvm-prof. We use the collected execution frequency of
every BB as the average-case execution frequency of the BB.
We then generate target binary executable from the LLVM IR
by using a suitable LLVM backend in preparation for WCET
analysis. The LLVM IR and the BB execution frequency
profile are fed into the WCET-aware CFC partial instru-
menter, along with the designer-specified WCETub. To facil-
itate comparison among different programs, we use the nor-
malized WCET upper bound ratio (WCETub/WCETorig) in
the experimental results. The partial instrumenter invokes the
external WCET analyzer with information about currently
instrumented super-nodes to update itself with the current
WCEP andWCET, and finally produces the enhanced LLVM
IR with instrumentation.

We conduct fault injection experiments with an in-house
fault injector, which simulates CFEs by processing the instru-
mented LLVM IR. The WCET-aware CFC partial instru-
menter is run on each benchmark program with a series of
different WCET upper bound ratios. For each one, 2000 fault
injection experiments are conducted to evaluate the fault
detection coverage. Fig. 5 showsworkflow of each fault injec-
tion experiment. For each experiment, a single random CFE
is injected into the instrumented LLVM IR to simulate the
effect of a transient fault, consistent with the common SEU
fault model. To ensure that each injected fault is activated,
the program is run twicewith the same random inputs for each
fault injection experiment. During the first run, no fault is
injected and the execution trace is extracted. In particular the
number of executions of each BB (which is also the number of
executions of the CFI in the BB) is collected in a similar way
as BB execution frequency profiling. During fault injection,
the fault injector chooses a random CFI, which is executed
at least once on the execution trace of the first run, as the
source CFI of the CFE, and ensures the CFE is activated only
once during a program run. For the second run, the program
with the CFE is run. The program output and the exit code
are collected and examined to determine whether the CFE is
detected or not.

FIGURE 6. CFE Detection Capability for the benchmark programs vs. WCET
upper bound ratio.

FIGURE 7. Proportion of BBs covered by instrumented super-nodes for
the benchmark programs vs. WCET upper bound ratio.

B. EXPERIMENTAL RESULTS
For each benchmark program, we vary the WCET upper
bound ratio from 1.0 to 2.0. Fig. 6 shows how the Pro-
gram CFE Detection Capability varies with the WCET upper
bound ratio. We can see that a significant increase in the
Program CFEDetection Capability is achieved at the expense
of a small increase in the programWCET for most programs.
Similarly, as can be seen in Fig. 7, a significant increase in
the number of BBs that are covered by instrumented super-
nodes is achieved at the expense of a small increase in the
programWCET formost programs. Note that a larger number
of covered BBs does not imply a higher CFE Detection
Capability. For example, when a large super-node is instru-
mented, all basic blocks in the super-node are covered. But
invalid control flow between different parts within the super-
node cannot be detected. An increase in the WCET upper
bound ratio may allow two or more inner nodes of the large
super-node to be instrumented instead of the large super-
node. The instrumented inner nodes may not cover all BBs
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FIGURE 8. Comparisons between Fault Detection Ratios of WACFC-SN and WACFC-BB. All bars are rooted on the horizontal axis and the bars for
WACFC-SN (lighter shade) are partially hidden behind the bars for WACFC-BB (heavier shade).

of the large super-node, but invalid control flow between the
inner nodes can be detected.

For fault detection ratios, we compare with the algo-
rithm WACFC-BB (WCET-Aware Control-Flow Checking

based on Basic Blocks) in [5]. Fig. 8 shows comparisons
between fault detection ratios for the benchmark programs.
As expected, the fault detection ratios for both algorithms
increase with increasingWCET upper bound ratio in general.
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FIGURE 9. CFG of a simple program for the toy example.

WACFC-SN significantly out-performsWACFC-BB onmost
of the benchmark programs, and achieves similar fault detec-
tion ratios on the others (with a few exceptions, e.g. fdct). It is
not surprising that the fault detection ratio does not increase
strictly monotonically with the WCET upper bound ratio,
due to the heuristic nature of our algorithm and optimization
objective, as well as the inherent randomness of fault injection
experiments.

We attribute the better efficiency of WACFC-SN to several
reasons:

1) Super-node based CFC provides a larger design space
than BB-based CFC, since a BB is a singleton super-node,
leading to potentially better results.

2) The optimization objective CFE Detection Capability
is an improvement over the simplistic optimization objective
in [5].

3) For reducing execution time of the current WCEP at
each iteration of the algorithm, we formulate and solve an
ILP problem (Section III-B) to select the set of super-nodes to
be instrumented on theWCEP. This is more effective than the
simplistic approach of iteratively selecting and un-instrument
the BB on the WCEP that contributes the least to the ACET
in [5].

For most benchmark programs that are relatively small,
the algorithm running time is several minutes. For larger
programs, e.g., nsichneuwith 4000+ lines of code, the frame-
work finishes within several hours.

V. CONCLUSIONS
In this paper, we present WCET-Aware Control Flow Check-
ing based on Super-Nodes (WACFC-SN), which trades
off real-time performance for error resilience by applying
CFC instrumentation on a select subset of super-nodes.

We evaluate fault detection coverage of WACFC-SN under
various WCET upper bounds by fault injection experiments,
and demonstrate significant improvements compared with
related work.

APPENDIX
In the appendix, we use a toy example to illustrate the Global
Super-node Selection algorithm.

Fig. 9 shows the CFG of a program with 10 BBs. There are
two loops in the CFG, one containing BB b9, and the other
containing BB b10. The loop counts of both loops are context-
dependent: The loop count for the loop containing b9 is 1 if
the left branch is taken, and 10 if the right branch is taken.
The loop count for the loop containing b10 is 10 if the left
branch is taken, and 1 if the right branch is taken. Each BB
has the same execution time of 5 (unit is arbitrary; may be
cycles); the CFC instrumentation overhead for each BB or
super-node is 1, and WCETub = 85.

We start from a program with full CFC, where all BBs
b1 to b10 are instrumented, so each BB has execution time
of 5+1=6. The program WCET is 90 (6∗4+6∗10+6∗1),
with both left and right paths as WCEPs. All possible super-
nodes, including all singleton super-nodes from (b1, b1) to
(b10, b10), and non-singleton super-nodes (b2, b5), (b6, b7),
(b7, b8), (b6, b8), (b1, b9), (b9, b10) and (b1, b10), are identi-
fied, and added to the set Ncandidate of candidate super-nodes.
The set of headers Bcovered for keeping track of instrumented
super-nodes are initialized to contain all BBs.

Suppose the right path b1, b6, b7, b8, b9, b10 is identi-
fied as the current WCEP. The Path-local Super-node Selec-
tion algorithm, described in Section III-B, chooses the set
of super-nodes (b1, b1), (b6, b6), (b7, b8) and (b10, b10) to
be instrumented. The super-nodes instrumented previously
on the path are un-instrumented, and all BBs on the cur-
rent path, i.e., b1, b6, b7, b8, b9 and b10, are removed
from Bcovered . Then, the selected super-nodes are instru-
mented, and their headers, i.e., b1, b6, b7 and b10, are added
back to Bcovered . Ncandidate is also updated. Candidate super-
nodes that conflict with the selected super-nodes are un-
instrumented and removed from Ncandidate. For the current
path, singleton super-nodes b7 and b8 are removed from
Ncandidate, because they are inner nodes of (b7, b8). (b6, b7)
is also removed, because it partially overlaps (b7, b8). Note
that outer nodes of a selected super-node, e.g., (b6, b8), are
not removed, in case they may be selected in future. At this
point, the execution time of the current path is decreased to 79
<WCETub.Bcovered contains b1, b2, b3, b4, b5, b6, b7 and b10,
and Ncandidate contains (b1, b1), (b2, b2), (b3, b3), (b4, b4),
(b5, b5), (b6, b6), (b9, b9), (b10, b10), (b2, b5), (b7, b8),
(b6, b8), (b1, b9), (b9, b10) and (b1, b10).
The next WCEP identified by the WCET analysis tool

is the left path b1, b2, b3, b5, b9, b10, with execution time
of 89. Suppose (b1, b1), (b2, b5) and (b9, b9) are selected
for instrumentation. All super-nodes on the path are un-
instrumented, and b1, b2, b3, b5 and b10 are removed from
Bcovered . Then, the selected super-nodes are instrumented,
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and their headers b1, b2 and b9 are added back to Bcovered .
Inner nodes of (b2, b5) are removed from Ncandidate. At this
point, the execution time of the current path is 78<WCETub.
Bcovered contains b1, b2, b4, b6, b7 and b9, and Ncandidate con-
tains (b1, b1), (b6, b6), (b9, b9), (b10, b10), (b2, b5), (b7, b8),
(b6, b8), (b1, b9), (b9, b10) and (b1, b10).
However, due to re-instrumentation of (b9, b9), execution

time of the right path is increased to 88 > WCETub. The
path is identified again as the WCEP, and the same set of
super-nodes will be selected for instrumentation. But the re-
instrumentation of (b10, b10) will in turn increase the execu-
tion time of the left path to 87 > WCETub. The algorithm
would go into an infinite loop, and keep switching between
the two paths without making any progress.

With the Deadlock Prevention mechanism, the algorithm
checks Ncandidate and finds that the set stays unchanged after
the second time the right path is optimized, which indicates
a potential deadlock. So the algorithm adds all candidate
super-nodes on the right path to Ndeadlock . The state change
counter scn for each of the super-nodes n in Ndeadlock is set to
zero, since the super-nodes have not been added to Ndeadlock .
At this point, Ndeadlock contains (b1, b1), (b6, b6), (b9, b9),
(b10, b10), (b7, b8), (b6, b8), (b1, b9), (b9, b10) and (b1, b10),
and Bcovered contains b1, b2, b4, b6, b7 and b10.
After the second optimization of the right path, re-

instrumentation of (b10, b10) causes the left path to be iden-
tified as the current WCEP and optimized again. (b9, b9)
is re-instrumented, and (b10, b10) is un-instrumented. Both
the super-nodes experience a selection state change, and
sc(b9,b9) and sc(b10,b10) are increased to 1. Ncandidate remains
unchanged again, causing (b1, b1), (b9, b9), (b10, b10),
(b2, b5), (b1, b9), (b9, b10) and (b1, b10) to be added to
Ndeadlock . At this point, Ndeadlock contains (b1, b1), (b6, b6),
(b9, b9), (b10, b10), (b2, b5), (b7, b8), (b6, b8), (b1, b9),
(b9, b10) and (b1, b10), and Bcovered contains b1, b2, b4, b6,
b7 and b9.
Once again, the re-instrumentation of (b9, b9) causes the

right path to be identified as the WCEP and optimized.
(b9, b9) is un-instrumented, and (b10, b10) is re-instrumented.
Both super-nodes experience another selection state change,
so sc(b9,b9) and sc(b10,b10) are increased to 2.Ncandidate remains
unchanged again. Furthermore, Ndeadlock also converges to
a fixed set, which indicates that the algorithm is trapped in
a finite set of paths and a deadlock has probably occurred.
So the candidate super-node in Ndeadlock that has experienced
the most selection state changes, i.e., (b9, b9) or (b10, b10),
is un-instrumented and removed from Ncandidate, and its
header is removed from Bcovered . Suppose (b9, b9) is un-
instrumented and removed from Ncandidate. The deadlock is
now broken, so Ndeadlock is cleared. At this point, the WCET
of the right path is 79 < WCETub = 85.

Re-instrumentation of (b10, b10) again causes the left path
to be optimized. But this time, (b9, b9) is not in Ncandidate
and will not be instrumented. The algorithm un-instruments
(b10, b10) to decrease the execution time of the path, and
removes b10 from Bcovered . At this point, the WCET of the

left path is 77 < WCETub. Bcovered contains b1, b2, b4, b6,
and b7. Finally, super-nodes to be instrumented can be iden-
tified by searching for the innermost candidate super-nodes
that contain at least one BB in Bcovered . For b1, b6 and b7,
the innermost covering candidate super-nodes are (b1, b1),
(b6, b6), and (b7, b8), respectively. For b2 and b4, the inner-
most covering candidate super-node is (b2, b5). So (b1, b1),
(b6, b6), (b2, b5) and (b7, b8) are finally instrumented.
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