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ABSTRACT Current methods for encoding and comparing shapes are computationally demanding and
are not suitable for image processing in small portable devices. Here, we describe a simple scan encoding
method for transcribing shape information into a 1-D summary. Summaries were derived from an inventory
of unknown shapes, and these values were used to scale the degree of similarity of pair combinations. The
scale values provided a significant level of prediction of human judgments in a match recognition task,
suggesting substantial correspondence with human perception of shape similarity. Similarity scores derived
with the Procrustes method did not predict human judgments.

INDEX TERMS Shape encoding, shape similarity, retinal encoding, human judgments.

I. INTRODUCTION
‘‘Achieving a better understanding of the brain’s visual per-
ceptual mechanisms will be critical for developing robust
visual cognitive computing, building compact and energy-
efficient intelligent autonomous systems, and establishing
new computing architectures for visual perception and under-
standing of complex scenes.’’ Pengju Ren and associates [1].

In recent decades, there has been increasing interest in what
some have called ‘‘brain inspired computing,’’ wherein the
operations are designed to simulate neuroanatomical and neu-
rophysiological mechanisms [2]. These efforts often draw on
computational concepts developed by neuroscientists, with
much of the energy being devoted to neural network (connec-
tionist) models for processing of visual images. These models
provide not only for recognition of various two- and three-
dimensional shapes, but also for mediating translation, size,
and rotation invariance [3]–[11].

There is some doubt, however, as to whether connec-
tionist models can deliver computationally efficient image
processing. They were designed to simulate interactions
among large populations of cortical neurons, with tens of
thousands of interconnections and generally requiring many
thousands, or tens of thousands, of training trials to achieve
invariant shape recognition. It could be useful to focus on
simpler systems, such as those which allow fish to navigate
the intricacies of coral reefs, recognize predators, and identify
members of their own species [12]–[17]. Fish have no cortex,

so those visual skills are made possible by circuitry in the
retina and/or optic tectum. Providing neuromorphic systems
that match the visual skills of fish, in itself, would provide a
major advance for robotic vision.

We have additional reasons to urge development of non-
connectionist models for shape encoding, based on demon-
stration of human shape-recognition skills that do not require
extensive training trials. Our laboratory has demonstrated that
an unknown shape that is seen only once can be identified
just a few moments later. It can be recognized even if the
location of the shape is translated, or if it is rotated or changed
in size [18]. The reported experiments made use of shape
outlines that were discretized into strings of dots that we
describe as ‘‘boundary markers,’’ and the stimuli can be
described either as a pattern or as a shape. The shape outlines,
i.e., dot sequences, were constructed with arbitrary turns and
straight alignments that did not resemble known objects.

Each shape in the inventory was displayed as a brief flash,
followed within a few moments by a comparison shape that
was ‘‘low density,’’ meaning that only some of the boundary
markers were displayed. The comparison shape was either a
low-density version of the original target shape, or was a low-
density version of a different shape, and the respondent was
expected to judge whether the second display was a ‘‘match’’
to the original target shape. The judgment process can be
described as ‘‘match recognition.’’ The data were assessed
using bias-correcting methods developed by information
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theory, and the judgments were found to be reliably above
chance even with large reductions in the density of boundary
markers [18]. Further, as stated above, the match judgments
were reliably above chance when the location of the compar-
ison shape differed from that of the target shape, or when it
was increased in size, or was rotated [18].

It is significant that an unknown shape can be encoded
and compared for potential match within moments without
any requirement for training trials. It is possible that shape
encoding is already beginning within the circuits of the retina,
and is passed to other brain areas on the basis of fast and effi-
cient population responses. Greene and Patel [19] suggested
that the locations of boundary markers is transcribed into
simultaneous ganglion-cell spikes by scanning waves that
sweep across the retinal image. The hypothesis was supported
by finding that an encoding model that used horizontal and
vertical scans to tally the frequency of encounter provided
a scale of shape similarity that predicted performance in the
match-recognition task described above.

The Greene and Patel [19] experiment provided consis-
tent regression models for each subject and the group data
achieved very high statistical significance. Nonetheless, only
eight respondents were tested, so it would be good to repli-
cate the findings. Further, it is not clear whether one would
get similar results with other methods for scaling shape
similarity. Any number of alternative ways for assessing
marker locations might yield predictions of performance on
the match-recognition task. The underlying concept needs to
demonstrate special predictive benefit before being consid-
ered by neuromorphic computing engineers.

Toward these ends, the current work has derived scales
of shape similarity using Procrustes analysis as well as the
scan-encoding method of the earlier report [19]. Procrustes
analysis is a statistical method for comparing shape pairs that
normalizes distances of boundary markers, e.g., landmarks,
relative to the centroids, centers the shapes at their centroids,
and then derives the minimum Euclidean distance among all
pairs of boundary markers. The method has strong mathemat-
ical roots [20]–[23]. The range of applications includes con-
trol of tolerance in the manufacture of ‘‘free form’’ parts [24],
comparison across species in the field of paleontology [25],
classification of rock formations in geology [26], and classi-
fication of human facial features [27]. It has become a cor-
nerstone method in biology, where it is known as ‘‘geometric
morphometrics’’ [28]–[33]. Dryden and Mardia [34] provide
an overview of the alternative techniques, with examples
across a wide range of applications. With a proven record of
utility for specifying similarity of diverse shapes, Procrustes
analysis should provide a good standard against which to
compare other tools for specifying shape similarity.

II. COMPUTATIONAL MODELING
A. SHAPE INVENTORY
The modeling and subsequent test of human judgments
used an inventory of 480 amorphous shapes that were
designed to minimize similarity to known objects. Each was

generated as a single continuous string of dot locations within
a 64×64 array, meaning that one could ‘‘step’’ from one dot
to the next around the boundary with no branches in the path.
The shape was displayed as simultaneous brief flashes of
light from the specified dots. In the discourse that follows,
the light-emitting dots may also be described as ‘‘boundary
markers.’’

An inventory of 480 shapes provides for 114,960 pairs
(combination, choose 2). Three-hundred twenty pairs were
chosen for shape-similarity modeling and for perceptual test-
ing, wherein each member of the pair had the same number
of boundary markers. This constraint was not needed for the
scan encoding method, described below, but simplified the
task of assessing similarity for the Procrustes method.

B. DERIVING PROCRUSTES SIMILARITY VALUES
FROM SHAPE PAIRS
Procrustes Analysis is a statistical method for specify the sim-
ilarity of shapes that is designed to assess minimal Euclidean
distances among matching points [34]. Full Procrustes anal-
ysis adjusts for differentials in orientation and normalizes
distances from centroids. If the number of boundary markers
is unequal, the method interpolates so that the two shapes
being compared will have an equal number of markers.
Rotation steps may be required, but were not applied here
because respondents were instructed that a matching compar-
ison shape would not be a rotated version of the target shape.

For each pair member, the net distance from the centroid
was normalized by dividing each new dot address by the root
mean squared distance from the origin. A pair of dots on
each shape was chosen and the Euclidian distance between
the two normalized addresses was calculated and squared.
Proceeding around the boundaries from there, the squared
distance for each successive pair was calculated and summed.
The square root of that sum provided a candidate Procrustes
value. These steps are illustrated in Figure 1.

An optimum Procrustes measure of similarity needs to
be the minimum that could be derived by the procedure
described above. A single pass through all pairs, starting
with an arbitrary choice of starting dots will seldom provide
a minimum value. Therefore, the calculation was repeated,
starting at the same dot for one shape, choosing a new dot
in the second shape for pairing, and then iteratively choosing
successive pairs to provide candidate Procrustes values for
all pair combinations. The smallest candidate value provided
the acceptable Procrustes value for a given shape pair, and
these were designated as P-difference values for the inventory
of 320 non-matching pairs.

C. DERIVING SCAN SIMILARITY VALUES FROM
SHAPE PAIRS
Deriving shape similarity values using scan encoding was
based on several basic steps, derived here using only horizon-
tal and vertical scans. For each shape, the following encod-
ing was applied: a) A transcription wave was passed across
successive columns of the display, tallying the number of
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FIGURE 1. Illustration of Procrustes analysis. A. Shapes were normalized for distance and were centered on their centroids (orange), here showing shape 1
in red and shape 69 in green. Distances between pairs of dots were assessed, starting with an arbitrary choice of starting position (purple). Arrows show
a few of the spans that would be included in the Procrustes calculation. B. These panels show the first three steps, illustrated with a magnified view of
the initial starting position that was chosen. Step 1 sampled the spans that were measured for successive pairs of dots, with this continuing around the
boundaries to provided distances for all dot pairs. Step 2 shifted the pairing one position and again provided measures of spans around the full
boundary. Step 3 shifted the pairing by two positions and repeated the process. This continued until all possible dot parings were evaluated.
The square of the spans were summed, and the square root provided a candidate index for each pairing step. The pairing step yielding the
smallest value provided the best Procrustes index for each shape pair. These are designated as P-difference values.

boundary markers in each column. Each column was treated
as a bin of a histogram, therefore the count for succes-
sive columns provided a complete 64-bin histogram for the
horizontal scan. b) A vertical scan provided the count of
boundary markers in successive rows, yielding a second
64-bin histogram. c) The two histograms were placed in
tandem, providing a 128-bin raw histogram. Note that any
columns or rows having zero counts would not contribute
to the histograms, so these were trimmed. d) Raw histogram
values were re-binned to provide a 20-bin count summary. e)
The histograms were normalized to adjust for size differences
across pairs. These steps are illustrated in Figure 2. Having
derived a summary histogram for each shape, the members
of 320 pairs were compared as a simple sum-of-squared-
differences calculation across corresponding bin positions.
These were designated as S-difference values.

D. RANKING OF DIFFERENCE VALUES TO PROVIDE
SHAPE-SIMILARITY SCALES
For purposes of scaling shape similarity, the P-difference
values were divided by 100, which coincidentally provided

a value range that was approximately the same as the
S-difference values.

The left panel of Figure 3 shows a ranking of P-difference
values for all pair combinations of the inventory with red
tokens, and the corresponding S-difference value at each rank
position is shown with a green token. The right panel of
Figure 3 shows the reverse. Clearly it is feasible to use the val-
ues to derive similarity scales, but the lack of correspondence
in the two scales is striking. Correlation of the two scales at
corresponding rank positions yielded a correlation of −0.14.
In other words, what small correlation exists is negative,
so there can be no doubt that the two similarity scales
are not assessing common features of the non-matching
pairs.

III. JUDGMENT OF SHAPE SIMILARITY WITH
A MATCH TASK
A. STIMULUS DISPLAY EQUIPMENT AND
CHARACTERISTICS
Shapes were displayed on a custom designed LED board
that was fabricated by Digital Insight. The display system
consisted of a 64× 64 array of AlGaInP LEDs (Super Bright
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FIGURE 2. A. A polling wave passes across shape 1 transcribing the number of boundary markers into counts that are entered as bin values.
B. Bin values reflect the number of successive boundary markers that were encountered by the polling wave. C. Empty bins found by the
B step are trimmed and the bin counts for the scan across rows and columns are placed in tandem. D. The raw histogram at C has been
re-binned and normalized to provide a summary of shape 1 (cyan). The corresponding histogram for shape 69 is shown to the right
(in orange). The two shapes can be compared for similarity by calculating a sum-of-squared differences across corresponding
bins (not illustrated).

FIGURE 3. Difference values from Procrustes analyses are shown with red tokens and those derived from scan encoding are shown in green. The left
panel plots P-difference values ranked by size and the corresponding S-difference value for each pair. The right panel does the reverse. The scattered
plot-points in each panel reflect the negative low correlation of the two methods for assessing shape similarity.

part # RL5-R8030) that have peak emission at 630 nm (red).
This kind of LED has a typical rise/fall time of 300 ns.
The shape of stimulus pulses (flashes) was established using
the slowest component of the driving circuit, which pro-
vided a rise/fall time estimated to be 70 ns. Diameters and

center-to-center spacing of the LEDs were 5 mm and 9.4 mm,
respectively, and horizontal and vertical spans of the full array
were each 60 cm. Distance from the respondent was 3.5 m,
so the corresponding visual angles were 4.92 arc′, 9.23 arc′,
and 9.80 arc◦, respectively.
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A Mac Mini controlled the system using Tcl/tk custom
applications written for OS-X. Temporal resolution of all
system components was in the nanosecond range. The global
timing clock had a minimum period of 1 µs, which provided
the limit of experimental control of flash timing.

None of the experimental work involved color com-
parison, so it is appropriate to report the intensity in
radiometric units (µW/sr). Further, physiological studies of
photoreceptors with monochromatic or LED light sources
often report stimulus energy in radiometric units [35]–[40].
With such narrow-range light sources the responses of
red and green cones as a function of intensity are very
similar [39].

Intensity was measured using a Thorlabs PM100 radiome-
ter with S120C calibrated silicon photodiode sensor. The
calibration process started with power measurements of the
display at a distance of one meter, with a single LED turned
on and taking readings across a range of LED voltage set-
tings. The reading in µW was converted to radiant intensity
in µW/sr by dividing with the solid angle of the sensor.
[At one meter the sensor solid angle in sr is essentially
the same as its area in square meters.] Then, power mea-
surements were recorded over a wider range of voltages,
at small increments, with the sensor placed directly against
the display. These readings were scaled to match the one-
meter intensities for corresponding voltages. This calibration
produced a table of 100 samples from 0.0001 to 70000µW/sr.
Experiment applications used linear interpolations from this
table to convert a requested intensity to the necessary
LED voltage.

Voltage measurements were taken at one LED within a
group to confirm that the number of dots turned on at one time
hadminimal effect on actual intensity. Turning on 48 dots on a
64-dot module reduced the voltage by less than 3% compared
to turning on a single dot.

Oscilloscope traces from a fast photodiode were captured
to verify the timing and relative intensity control of ultra-
brief flashes. An Advanced Photonix PDB-C156 PIN silicon
photodiode was used in unbiased, unamplified photovoltaic
mode, with an appropriate load resistor to convert the current
output into a voltage that was measured by a 1X voltage
probe. Flash intensity was verified by comparing oscilloscope
traces for flashing and steady emission.

To account for imperfections in the intensity vs. time
shape of brief flash emissions, additional radiometer mea-
surements were taken during periodic flashing at 500Hz and
higher – well above the meter analog averaging bandwidth
of 30Hz – for a range of flash durations and inten-
sities. These measurements were compared to steady
intensity, and an empirical time-dependent compensa-
tion formula for the voltage-to-intensity conversion was
determined.

The total energy of a flash as seen by a subject, in photons,
can be computed as radiant intensity (µW/sr)×flash duration
(µsec) × 34.26, this being for: wavelength = 633 nm, pupil
diameter = 6.66 mm, source distance = 1.8 m.

B. RESEARCH AUTHORIZATION AND INFORMED
CONSENT
Experimental protocols were approved by the USC Institu-
tional Review Board. Respondents were recruited from the
USC Psychology Subject Pool. Twenty respondents provided
judgments for each of the experiment (four males, nineteen
females, with age range being 18-23). Each was provided
with instructions about the nature of the task, was told that
participation was voluntary, and that they could discontinue
at any time without penalty. Each completed the experiment
without difficulty, and the data from each respondent that was
recruited has been included in the statistical analysis.

C. TASK DESIGN AND PROTOCOLS
Discrimination of shape differences can be very sharp, with
respondents claiming dissimilarity over minor variations.
To counter this issue, pair members were displayed as brief
flashes and the second member was displayed at a reduced
(12%) density. Also, the instructions provided to respondents
included the claim that about half of the trails would be
displaying the same shape.

The random sample of 320 pairs was used in amatch recog-
nition taskwherein respondents were asked to saywhether the
pair members were the same. Another 40 shapes were chosen
from the inventory for display as matching pairs. Judgement
of these pairs provided a baseline against which judgments of
non-matching pairs could be compared. Each of the 360 pairs
was displayed once, the order being determined at random
for a given respondent. Each pair member was displayed as
a simultaneous flash of all the dots for 10 µs, with 300 ms
of separation between the displays. Pair members were dis-
played in different corners of the board, chosen at random,
requiring that at least one dot be in the outermost row and
one be in the outermost column, as illustrated in Figure 4.

Between trials the respondent maintained attention on a
fixation stimulus that is at the center of the board. Upon
launch of the trials the fixation stimulus disappeared, and the
pair sequence was displayed. Respondents observed the two
shapes and immediately voiced a judgment as to whether the
two were the ‘‘Same’’ or were ‘‘Different.’’ This response
was logged into the computer records by a keystroke, which
automatically initiated the next trial. Neither the experimenter
nor the respondent was provided with information about the
pairs being judged.

D. CONSISTENCY OF MATCH JUDGMENTS
Each pair was shown only once to a given respondent, so the
decision about a given pair was binary, i.e., scored as a
1 or 0, depending on whether the judgment was ‘‘same’’ or
‘‘different,’’ respectively. To evaluate whether the judgments
were consistent, the mean probability of judgments across all
pairs was calculated for a random selection of 10 respondents,
and this was compared to the probability for the remaining
10 respondents. This comparison was done separately for
the 40 matching pairs, i.e., where the same shape was used
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FIGURE 4. The members of a pair were each displayed for 10 µs, with the interval between the two displays being 300 ms. The second member of
the pair was shown at a 12% density, and the respondent judged whether the two shapes were the same. The goal here was to determine if the
frequency for judging non-matching shapes as being the same was predicted by the size of the similarity values provided by Procrustes
analysis or the scan-encoding method.

for both displays, and for the 320 non-matching pairs. This
process was repeated 1000 times with random selection of
which respondent data would be included in the two groups,
and the results of this analysis are shown in Table 1.

TABLE 1. Correlation of match-recognition judgments across
respondents.

Judgments of non-matching pairs were consistent across
respondents, as reflected in a high level of correlation of the
mean probability of judgments for randomly selected groups
of half the respondents compared to the other half. Matching
pairs manifested a very low correlation. This outcome likely
reflects the fact that all the matching shapes had similarity
scores of zero. Further, the overall proportion of ‘‘same’’
judgments was 0.875. Likely any variation for this treatment
condition was due to random fluctuation of attention or other
judgment factors having little to do with the specific features
that each shape provided.

E. PREDICTION OF NON-MATCHING JUDGMENTS BY
COMPUTED SIMILARITY VALUES
A major goal of the present work was to determine whether
computed shape-similarity measures would predict human
judgments of shape similarity. The major relevant data was
provided by the 320 non-matching shapes. Valid assessment
of whether the pairs were the same should yield consistent
judgments that the two displays were different. To the extent
that respondents judged non-matching pairs as being the
same, they were affirming that the two members were similar
to some degree.

The probability of ‘‘same’’ judgments was calculated for
the 320 non-matching pairs and the mean for each shape
pair was analyzed using binomial regression against the
corresponding P-difference values for the pairs, and again
against the corresponding S-difference values. The regres-
sions were constrained by requiring that the resulting model
be monotonic on the principle that a non-monotonic pre-
diction would not provide a useful index of the perceived
similarity of shapes. This restriction yielded models where
only the linear regression component was included, though
one should note that binomial regression allows some curva-
ture in the model even when it is based only on the linear
component.

Figure 5 shows the regression models that were derived for
the two computed similarity scales. Clearly the P-difference
values did not provide differential prediction of the proba-
bility of ‘‘same’’ judgments as a function of the size of the
values, whereas the S-difference values provided significant
predictions (p < 0.0001).

Binomial regressions do not provide a proper way to mea-
sure R2, but one can specify the correlations between the
computed similarity scales and the judgment data. The Pear-
son correlation for the P-difference values was 0.004, and the
correlation for S-difference values was 0.40.

IV. DISCUSSION
The values of the Procrustes-similarity scale were com-
pletely uncorrelated with those in the scan-similarity scale.
The two methods of assessing similarity are clearly regis-
tering different characteristics of the shapes. The Procrustes
method is not registering any shape attribute other than the
spans that separate local markers. In fact, using the smallest
net differential between dot pairs as the similarity met-
ric requires that the summary captures only local distance
differentials.
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FIGURE 5. A. Procrustes difference values did not predict the proportion of ‘‘same’’ judgments for the non-matching pairs. To the extent that a trend
can be seen, the pairs that scored as more different based on the P-difference score were more frequently judged as having the same shape. B. The
S-difference scores did predict the probability of ‘‘same’’ judgments. Those with a low difference score were judged as having the same shape for
more than half of the pairs, and less than 10% of those with a high difference score were judged as having the same shape.

Procrustes analysis is computationally demanding, so if
the scale values had yielded effective prediction of similarity
judgments, providing a plausible explanation for how neu-
ronal mechanisms could derive the minimum net distance
would have been a major challenge. By comparison, the scan
method registers boundary information from markers that are
often widely separated, which means that global relationships
contribute to the summary. It is interesting that this simple
method for summarizing shapes provides some ability to
predict human judgments of similarity. This finding may
suggest new options for development of neuromorphic image
encoding tools.

In recent years a number of laboratories have proposed
new concepts for how spatial information is encoded by the
retina, some of these having implications for how to register
shape boundaries. Gollisch and Meister [41] proposed that
retinal ganglion cells are synchronously activated by local
contrast features at the end of saccadic eye movements. This
would provide a wave of spikes from the array of cells that
received a triggering stimulus, such as the boundary of a
shape. Rucci and Victor [42] report that visibility of high spa-
tial frequencies is enhanced by the drift that occurs between
fixation movements, which argues that small eye motions can
contribution to contour detection. Ahissari and Arieli [43]
suggest a similar process wherein small drift motions of the
eye that occur during ‘‘steady’’ fixation can register contours
as temporal codes.

Thorpe and associates [44]–[47] have provided evidence of
very fast shape recognition that requires new image encod-
ing concepts. They argue against the traditional view that
the stimulus information is reflected in neuron firing rates,

and propose that the image features are captured and con-
veyed by the latency of firing of retinal ganglion cells. This
‘‘latency encoding’’ concept was presaged by Bullock and
associates [48] and was elaborated by Hopfield [49], [50].
The basic concept calls for registering local patterns of bright-
ness differentials in the image, essentially providing filters
that detect textures and contours. The hypothesized latency
code that is sent forth from the population of retinal ganglion
cells would depend on the stimulus pattern.

Several recent studies of retinal physiology support this
new approach. There is now clear evidence that the exci-
tatory receptive field of retinal ganglion cells may have a
micro-architecture of synaptic influence that registers spa-
tial information within the stimulus. High-contrast spa-
tial frequencies can elicit a complex profile of response
that reflects non-linear encoding of the stimuli [51]–[53].
Turner and Rieke [54] examined non-linear responses of
parasol ganglion cells of Macaque monkeys in response to
naturalistic movies. Their results indicate that the cells are
especially activated by the edge elements within the scenes.
Onken et al. [55] use tensor factorization to evaluate popula-
tion responses of salamander retina and provide evidence that
the first-spike latencies capture information about the spatial
contrast relationships.

While we have no objection to the concept that local spatial
information, e.g., textures, might be encoded by registering
latency of firing within a neuron population, we are con-
cerned about the scale of the supporting data. Discussions of
spatiotemporal encoding by the retina appear to have much in
common with models of orientation selectivity, wherein the
local differentials of light and dark are the critical stimuli.
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The present result argues that shape recognition is far more
dependent on global positioning of boundary markers than on
local stimulus cues. Match recognition was found when the
target was at 100% density and the density of the comparison
shape was as low as 4% [56], which requires a mechanism
for encoding shape properties with large-scale separation of
boundary markers. Greene [57], [58] has presented a number
of reasons why local contour attributes are not essential for
shape recognition. The boundary markers do not make their
locations known using coordinate addresses, but a polling
mechanism might provide a way to transcribe that informa-
tion. On balance, we are positive about the use of a population
code, perhaps one that focuses on a wave of first spikes, and
we favor the concept that a pollingmechanism is used to elicit
the spikes from marked boundary locations.

V. NEUROMORPHIC RELEVANCE
Returning to the issue of neuromorphic implementation,
many have used electronic circuits to detect motion and
mark contours in an image. The silicon retina developed
by Mahowald and Mead [59] registers the contours of a
moving object. Two-dimensional sheets of e-neurons provide
so-called ‘‘excitablemembranes’’ that can detect motion [60],
register motion speed [61], or mark the contours of gray-scale
images [62]–[65]. The Rasche design [65] uses spreading
waves of subthreshold spikes that selectively activate high-
contrast differentials. This kind of global contour-marking
mechanism could be an essential first step toward encoding
the spatial relations among the marked boundary locations.

Far less effort has be directed toward summarizing the
shape information. Tara Hamilton and associates describe an
unconventional method for connecting elements of a hexago-
nal array of sensors that provides for effective encoding of
shape contours [66]. They implement a process that polls
successive concentric locations on the array, sending a signal
from those elements that have registered a portion of the
contour. The polling wave passes from the outer ring to the
inner one, generating a pulse if a contour-marked element is
encountered. This temporal coding concept is essentially a
count of the number of markers within each ring. Whereas
the scanmethod described in the present work used horizontal
and vertical scans, theHamiltonmethod [66] scans concentric
rings. Both methods provide a one-dimensional shape sum-
mary wherein contour markers are counted through polling,
with the number of markers encountered at any givenmoment
provide a signal that can be formally represented as height of
a histogram bin.

Several alternative polling methods might be needed to
achieve effective shape encoding, each providing a different
benefit. But even if several were required, the speed and
efficiency would be substantially greater than for current
computational methods. Hamilton and associates [66] make
the point that the encoding done with such ‘‘miniscule ner-
vous systems’’ would be useful for autonomous imaging
sensor networks, wireless phones, and other embedded vision

systems that must deal with problems of limited size, power,
and real-time operations. We agree.
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