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ABSTRACT Pre-weakening of solid materials using electric discharge is a new technique aiming at
reducing significantly the costs and energy consumption as compared with the traditional raw materials
processing in mining and recycling industries. However, the absence of an effective pre-weakening process
monitoring and control prohibits its introduction into the market. The present contribution aims to fill
this gap by investigating the feasibility of combining acoustic emission with machine learning for process
monitoring. Hence, this paper is a supplement and enrichment of existing studies on in situ and real-time
process monitoring and diagnosis associated with failure mechanism problems. Three categories and six
subcategories are defined to describe the major pre-weakening scenarios of solid materials. The acoustic
signals are collected and labeled according to the visual control of specially prepared transparent samples
subjected to discharge exposure. The acoustic signals are decomposed with data adaptive M -band wavelets
and the relative energies of the extracted frequency bands are used as features. Principal component analysis
is applied to select the most informative features whereas several classifiers are applied to recognize
the pre-weakening quality. The classification accuracy of the defined categories ranges between 84–93%
demonstrating the applicability of the proposed method for in situ and real-time control of pre-weakening
of solid materials using electric discharge.

INDEX TERMS Electric discharge, pre-weakening of solid materials, high voltage, underwater acoustic,
M -band wavelet, support vector machine, machine learning.

I. INTRODUCTION
COMMINUTION (mechanical crushing and grinding of
minerals) in mining and recycling industries is known to
require a high energy consumption. Its share accounted for
0.4% of the total energy consumption of the USA in 2001 [1].
In mining countries, such as Canada, Australia or South
Africa, this proportion raises up to 1 – 2% [1]. Therefore,
any technology having the potential to reduce the energy
consumption attracts attention. Today, pre-weakening of
solid materials using high voltage electric discharge is the
only solution that aims to induce multiple cracks inside a
solid without necessary provoking its complete disintegra-
tion [2]–[4]. The preliminary trials by Cho et al. [4] and
Bluhm [5] showed the potential of this technology for a
significant reduction in energy consumption. Unfortunately,

the lack of any in situ and real-time pre-weakening process
monitoring and control systems prohibits this technology to
be used in a wide practice. This is essentially due to the
extremely complex physical phenomena taking place during
the pre-weakening process. Actually, the only process control
is made ex situ either via a drop weight test method [6]
or JK Rotary Breakage Tester [7]. These methods require
treating a large amount of samples and several steps of sieving
and weighing to measure the size distribution of the broken
pieces. The results are, then, compared with a reference sam-
ple (not treated by electric discharge) in terms of amount of
energy requires to achieved a given particle size. Obviously,
these manual methods are very time consuming (≈1 week
per type of sample) and cost intensive. To face this issue,
the development of process monitoring methodologies able
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to check the process stability based on in situ and real-time
sensing was indicated as a priority research area by many
key mining companies. Hence, in this work, we propose to
fill this gap with an innovative approach which combines
acoustic emission (AE) with machine learning (ML) for in
situ and real-timemonitoring of pre-weakening of solid mate-
rials. The novelty of our method lies in mixing these three
technologies, and in case of success, this will have a huge
industrial potential.

Pre-weakening of solid materials with electric discharge
exploits the dielectric properties of natural and most of con-
struction materials (ores, natural rocks, cements, etc.). By
adjusting the process parameters, the discharge can occur
preferentially inside the material [4], [5], [8]. However, this
process depends on the number and configuration of dis-
charges induced cracks [7]. The pre-weakening quality is
determined by comparing the amount of energy needed to
mechanically fragment the solid materials with or without
prior application of electric discharges [4], [5].

The high voltage pre-weakening process has been industri-
alized by SELFRAGAG [2], [9], [10] and their approach is to
keep the process parameters, such as voltage and capacitance,
within a certain dynamic range to guaranty that most of
the material is pre-weakened. Though, the pre-weakening
quality over the total processed volume is not constant. The
reason is the complexity of the underlying physical phenom-
ena [3], [11], [12] and strong heterogeneity and variability
of both: the local dielectric and mechanical properties in the
natural solid materials. Details on the physical phenomena
of the discharge can be found in fundamental researches
[3], [11], [12], while this study focuses on statistical analysis
of the AE signals from the electrical discharge.

In the field of fracture mechanics, cracks initiation and
propagation are investigated by means of acoustic emis-
sion (AE) as they induce stress waves [13]–[15]. The content
of AE is an interference of acoustic waves from multiple
local cracks and the AE intensity is proportional to the
total number of all local crack events. Due to the stochastic
nature of the pre-weakening process, the interpretation of AE
remains a complex problem. Nevertheless, the feasibility of
acoustic characterization of pre-weakening was shown for
porous materials by Van Dalen [16]. Fourier signal anal-
ysis was applied to extract the AE frequency content and
the unique combinations of frequencies for different pre-
weakening scenarios were demonstrated. However, Fourier
transform (FT) has known limitations when applied to non-
stationary signals that are characterized by abrupt changes
in frequencies [17]. Additionally, FT provides analysis only
in the frequency domain, ignoring the development of the
process in time. This prevents the identification of AE
signals with identical Fourier spectra but with different
pre-weakening consequences.

Analysis of AE in the time domain was reported by Grosse
and Ohtsu [18] and Ohtsu [19]. The acoustic wave rise time,
raise angle and oscillation around a fixed threshold were
taken for describing the process on homogeneous materials

in a well-controlled environment [15]–[19]. Unfortunately,
this method cannot be employed for heterogeneous materials
such as stones or ores in an industrial plant. The present study
employed wavelets to analyze the pre-weakening AE signals.
This choice was stipulated due to some advantages of this
technique and the physical particularities of the discharge
process in natural rocks. Wavelets provide the information
in both, time and frequency domains and are free from the
inherent constraints of the traditional Fourier transform while
analyzing non-stationary signals [17]. The latter is important
taking into consideration the non-stationary nature of the AE
signals in the present application. At the same time, the dis-
charge dynamics in natural rocks always follows several
consecutive stages that alternate with one another [12]. This
fixed scenario of the process development makes wavelets
an optimal tool to capture the individual particularities of
each stage in time domain. The further processing linked this
valuable information with the pre-weakening impact within
the machine learning framework described later. Wavelets
were already successfully applied in a number of practical
applications in the last decade and more details can be found
in [20].

The products of wavelet decomposition are the narrow fre-
quency sub-bands, localized in the time-frequency domain.
In this contribution, the energies of those are used as features
for the pre-weakening quality characterization. To reduce the
approximation errors and to get a more detailed tiling of
the time-frequency space, the data adaptiveM -band wavelets
were employed. The classification of the pre-weakening qual-
ity was carried out using three classifiers, namely: i) support
vector machine (SVM), ii) random decision trees (RDT), and
iii) feed-forward neural network (FFNN). Those represent
three main state-of-the-art machine learning techniques that
recommended as efficient analysis tools. At the same time,
those methods are well developed, being a ready to use tool,
thus minimizing the implementation time to industrialization.

The main objective of this work is to demonstrate the
feasibility of combining AE and ML to monitor in situ and in
real-time the pre-weakening taking place due to the discharge
process. This is carried out by treating artificial transparent
samples with similar properties to the rocks. The transparent
samples ease the labelling directly of the acquired AE signals
between the defined categories and subcategories. The collec-
tions of the AE signals are used to train and test the machine
learning algorithm.

This paper has 4 sections. Section II presents the trans-
parent artificial samples (TAS), the experimental setup for
data acquisition and the particularities of the AE signals.
Section III summarizes the extraction of the AE signal
decomposition using M -band wavelets and computation of
the energies of the narrow frequency bands, which are taken
as features. The reduction of feature spaces using principal
component analysis (PCA) is discussed and the classifiers
are described. Section IV presents the categorization of pre-
weakening quality in terms of industrial process significance
and the classification results.
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II. MATERIALS, EXPERIMENTAL SETUP AND ACOUSTIC
DATA ACQUISITION
A. TRANSPARENT ARTIFICIAL SAMPLES (TAS)
The pre-weakening quality subjected to an electric discharge
was studied by using specifically prepared transparent artifi-
cial samples; hereafter referred to as TAS. Those TAS allowed
characterizing the discharge effects using post mortem visual
inspection of the inner medium of the solids and to label the
AE signals accordingly.

Two types of TAS were manufactured from two poly-
mers based materials; poly methyl methacrylate (PMMA)
were made from Clarofast powder from Struers GmbH
(see Fig. 1a), and epoxy water-clear casting resin
(epoxy resin) from R&G Faserverbundwerkstoffe GmbH
(see Fig. 1b). The dielectric constants for PMMA and epoxy
are 3 and 4, respectively, and so fit the range of dielectric
constants of most natural solid materials (natural rocks) [21].
The dielectric properties of the TAS can be compared to the
one of quartz, which is a component of a broad range of
natural solid materials. In contrast, the dielectric strength of
the PMMA and epoxy varies in the range of 15–20MV/m and
are higher as compared to the ones of natural solid materials
(1.9 – 7 MV/m) [21]. Hence, to facilitate the dielectric
breakdown of the TAS, a metallic pin was embedded inside
the sample to provide an electric field enhancement, thus,
increasing the probability to have the electric discharge inside
the TAS medium. The pin is shown for the two types of TAS
in Figs 1(a) and 1(b), and its position with respect to the
electrodes is schematically shown in Fig. 1(c).

TAS with and without inclusions were produced. TAS with
inclusions were used to simulate the disordered grain struc-
ture of real solid materials in a simplified way. The variations
in the TAS inner structure provided a wider content in the
AE signals. Several types of inclusions were incorporated
into the TAS at various concentrations and different positions.
As inclusions, glass pieces of various shapes (ball, cylinder,
cube) and sizes (5–40 mm), were employed. Additionally,
different inclusions made of various materials were employed
as well and included table salt, mineral particles (2–8 mm)
from magnetite (Fe3O4) and hematite (α-Fe2O3). Typical
examples are presented in Fig. 1(a) and 1(b).

FIGURE 1. Transparent artificial samples (TAS) before electric discharge:
(a) top and side views of a pressed PMMA sample with mineral
inclusions and (b) a pressed epoxy sample with cylindrical glass
inclusions, (c) schematic of the discharge chamber setup.

TAS made of PMMA without inclusions possessed a
homogeneous medium and were manufactured by cutting off
samples from a square rod of pure PMMA into slices with a
thickness of 20 mm. In contrast, TAS made of PMMA with
inclusions were produced by vacuum hot pressing of acrylic
hot mounting resin powder (Clarofast from Struers GmbH)
at 170◦C and 25MPa for 15 min followed by cooling. The
inclusions were incorporated inside the powder before hot
pressing. These samples were produced as cylinders with a
diameter and a thickness of 50 and 20 mm, respectively, and
are shown in Fig. 1(a).

TAS from epoxy were produced by chemical reaction of
the two components of the epoxy resin (Wasserklar from
R&G Faserverbundwerkstoffe GmbH) inside a 50 mm square
mold. To add inclusions, the epoxy samples were composed
of two layers as shown in Fig. 1(b). After solidification of the
first layer, the inclusions were placed inside the second layer
at different positions.

B. HIGH VOLTAGE GENERATOR AND ACOUSTIC
DETECTION
Discharge events inside the TAS were initiated using a
big scale voltage generator from SELFRAG AG (Kerzers,
Switzerland) [9]. It allowed tuning the operating voltage and
storage capacitance in the range of 90–200 kV, negative
polarity, and 2.5–37.5 nF, respectively. The voltage exposure
of the TAS was carried out in a chamber filled with water.
The setup was a standard industrial environment to provoke
discharge preferentially inside the solid materials by applying
short electric pulse (<50 µs). The setup is schematically
represented in Fig. 1(c). The gap between the electrodes was
set to 50 mm with the cathode (as the polarity is negative)
touching the pin electrode of the TAS.

To produce a variety of damages in the TAS, several capac-
itance and voltage values were used. The corresponding AE
signals were recorded simultaneously to the discharge via a
record trigger. The detection of the acoustic signals was made
directly inside the water filled chamber using an acoustic
hydrophone sensor R30UC (Physical acoustics corporation,
USA). It was grounded and placed at a distance of 20 cm from
the electrode gap (Fig. 1(c)). The AE signals were recorded
with a 10 MHz sampling rate and a duration of 16 ms. An
electrical signal amplification of 20 dB was also applied.

It is important to mention the very high cost of a single
experiment which is around 2-3 ke. This is a major limitation
on the number of experiments that can be performed.

III. TIME-FREQUENCY ANALYSIS USING M-BAND
WAVELETS
The uniqueness of our approach in this study is in the
combination of AE sensors and the state-of-the-art machine
learning (ML) method to monitor the pre-weakening of solid
materials. This work is not the development of a new ML
algorithm, but only the application of existing techniques and
adaptation of those regarding the pre-weakening monitoring
problem.
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A. M-BAND WAVELETS
The analysis of the signals was carried out using M -band
wavelet transform (MWT), which is a suitable technique
for operating with non-stationary signals [22]. MWT is an
extension of traditional wavelets [17] and is an alternative to
the Fourier transform, expanding the analysis from only the
frequency to the time-frequency domain. This is necessary
since a discharge propagating inside a solid is a multistage
process that evolves in time [12]. Therefore, wavelets are
expected to capture the features of each process stage sep-
arately. The extension to MWT, as applied in this work, is
made to operate at different signals subspaces, being sensitive
to different process features. The MWT wavelet transform
can be expressed as filtering the signal using M -channel
quadrature filter bank [17]–[22]:

ϕ (n) =
∑

k
h0 (k)

√
Mϕ (Mn− k), k ⊂ Z (1)

ψ (n) =
∑

k
hm (k)

√
Mϕ (Mn− k), k ⊂ Z (2)

where m = 1, .., (M − 1) is a channel number, ho is a
low pass filter and hm are bands and high pass filters for
0 < m < M − 1, m = M − 1, respectively, ϕ() and ψ() are
the approximation and details coefficients, respectively, j is
the current decomposition level, and n is the current sampling
point of the digitized signal S. The wavelet function is charac-
terized by the vanishing momentsN , satisfying the condition:∫
nkψ (t) dt = 0, where k = 1, ..,N . The larger number of

vanishing moments allows representing the complex signals
with the smallest number of wavelet coefficients.

The full MWT includes multiple decomposition lev-
els [17]–[22]. At each level, the split of the low frequency
content (h0) is carried out according to Eqs (1) and (2),
resulting in the division of the signal into narrow frequency
bands as illustrated in Fig. 2. Those narrow frequency bands
are localized in time [17]–[22] and the ones from the band
and high pass filters (hm, 0 < m < M − 1) were taken for the
further analysis following the scheme shown in Fig. 2(b).

FIGURE 2. (a) Standard DWT, where h0 and h1 are the low pass and high
pass filters respectively; (b) M-band DWT with M-channels, where h0 is
the low pass, h1-hM−2 are narrow and hM−1 is the high pass filters.

The energy for each frequency band was computed
according to:

Ej,m =
∫ ∣∣dj,m(t)∣∣2 dt =∑k

∣∣dj,m∣∣2 (3)

where d are the wavelet or scale function coefficients
extracted from Eqs (1) and (2). The relative energies were the

normalized versions of the sub-band energies from Eq. (3),
computed as:

ρnormj,m =
Ej,m
Ej

(4)

where Ej =
∑M j

k=0

∣∣Ej,m∣∣2 is the total energy accumulated
in all frequency bands at a resolution level j. The results of
Eq. (4) were considered as features and were the input of the
classifier.

The choice of the wavelets is crucial to capture the local
particularities of the signals [22]. For this reason, the data
adaptive wavelets were used in this application. Several meth-
ods were considered for adaptive wavelets design [22]–[27].
We used the method proposed by Gupta et al. [22] as it had
the best compromise between computational complexity and
design limits. It also allows the construction of both, orthog-
onal and bi-orthogonal wavelet basis using the self-similarity
as a global likelihood criterion. The other methods put some
limitations in our specific application: a limited number of
adaptive wavelets that is possible to design [23], [24], com-
putational complexity in the case of many M -band channels
[25], [26], the splines method is limited only to bi-orthogonal
wavelets [27]. More details on the wavelet designed by
Gupta et al. [22] are given in Section IV.C.

B. FEATURE SPACE REDUCTION
Before classification, the most informative features were
preselected to avoid computational redundancy. We used
principal component analysis (PCA) [28] to remove the non-
informative features, thus, reducing the noise in classification
input [28]. In other words, PCA allows saving computational
time without losses in accuracy.

In PCA, the features from the original feature spaceU0 are
projected into a linear subspace U1 with a lower dimension,
which is a linear approximation ofU0. The projection is done
following the expression [28]:

XU1 = wTXU0 (5)

where XU0 is the matrix of dimensions [n, p] with the feature
coordinates in the original space, XU1 are their projections,
n and p are the numbers of measurements and the dimension-
ality of U0, w is the principal components matrix with the
weights [w1, . . . ,wp]. The projection w is chosen to provide
with the maximum variance of Eq. (5):

max {var XU1} = max
{
var wTXU0

}
= max

{
wT Sw

}
(6)

where S is the covariance matrix of XU0 [28]. The solu-
tion of Eq. (6) can be obtained by a diagonalization of S
using singular value decomposition. The elements in w are
known as principal components and the selection of infor-
mative features is achieved by employing w with the greatest
variance values. All details about PCA methods can be found
in [28].
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C. CLASSIFIERS
We tested three competitive machine learning techniques
that are the state-of-the-art in classification tasks. First,
support vector machine (SVM) was used as proposed by
Cortes and Vapnik [29]. The technique analyses the features
in the abstract feature space and tries to define the margin
between the features from different categories. The margin
search is an optimization problem that is solved during train-
ing with a labeled dataset [29], [30]. The advantage of SVM
is in the possibility to process very complex features con-
figurations in the feature space employing kernel trick [30].
In the present study, the radial based kernel (RBF) was used
as it showed the best classification results [31].

Feedforward neural networks (FFNN) is another compet-
itive technique with a high efficiency in classification tasks
that is mainly due to the advances in the gradient propagation
methods during its training. We employed a general imple-
mentation from da Silva et al. [32].
Random decision trees (RDT) is a probabilistic approach

that constructs a number of tree classifiers, each of which
splits the input data in individual way. The split rules are
established during training and are based on features distri-
butions within the training dataset. The final classification
is a voting between many individual tree classifiers. The
realization of the original algorithm from Breinman [33] was
used, as it is state-of-the-art in classification efficiency [34].

IV. RESULTS AND DISCUSSIONS
A. ACOUSTIC EMISSION OF ELECTRIC DISCHARGE IN TAS
As already mentioned, natural solid materials possess a dis-
ordered grain structure, resulting in a stochastic development
of discharge inside their medium. This causes a statistical
diversity in the AE signals as illustrated in Fig. 3. Two TAS
were subjected to electric discharges with identical voltage
and capacitance of 160 kV and 20 nF, respectively. Both
TAS were made of epoxy with glass inclusions of 5 mm

diameter (Fig. 3(a1)) and 6–8mm (Fig. 3(b1)). The inclusions
had different configurations simulating a simplified model
of the disorder in natural materials. They were placed at the
periphery of the TAS in Fig. 3(a1) (TAS 1) and at its center
in Fig. 3(a2) (TAS 2). The electric discharge resulted in the
occurrence of multiple cracks without samples disintegration
(pre-weakening). Under such circumstances, the stress wave
propagation can be described as a cylindrically symmetrical
process starting from the discharge area in the middle of the
TAS and propagating to its periphery [12], [35]. This is con-
firmed when observing the cracks induced by the discharge in
TAS 1 and TAS 2. The cracks propagate radially in different
directions starting from the pin electrode in the middle of the
TAS. The stochastic nature of cracks formation during the
discharge is conditioned by the random distributions and con-
figuration of inclusions, as well as the accumulated stresses
inside the TAS. This is perfectly illustrated when comparing
Fig. 3(a1) and 3(b1). The number and positions of the cracks
formed are very different between both samples. Based on
the inset of Fig. 3(a1), it can be seen that some inclusions
were delaminated from the bulk materials. In contrast to
TAS 1, some inclusions were damaged in TAS 2 as visible
in the inset of Fig. 3(b1). This leads to a wide diversity
of content in the emitted AE signals and evidence of this
is in Fig. 3(a2) and 3(b2), where different distributions of
the AE amplitude are observed. For example, a significant
difference exists in the AE signals at 10 ms after the electric
discharge onset. The TAS 2 is subjected to abrupt changes
in frequency content. We believe that the non-stationary
behavior of the AE, shown in the inset in Fig. 3(b2), is due
to individual crack emission of acoustic waves. Besides,
differences in the AE content are visible when comparing
both signals between 2 and 7 ms after the process initiation
(see Fig. 3(a2) and 3(b2)).

The frequency energy distribution for both samples is
presented as sonograms in Fig. 3(a3) and 3(b3). The crack

FIGURE 3. (a1) and (b1) are top views of TAS 1 and TAS 2, respectively, after an electric discharge. The
red arrows mark the inclusions; (a2) and (b2) are AE signals of the electric discharge in TAS 1 and
TAS 2, respectively; (a3) and (b3) are the sonograms of AE signals from TAS 1 and TAS 2, respectively.
Both samples were exposed to the same electric discharge with voltage and capacitance
of 160 kV and 20 nF, respectively.
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formation frequencies fit the range 0–160 KHz, although
the distribution of those within this range differs for each
TAS. The differences in the AE released are indicated by
the arrows in the sonograms in Fig. 3(a3) and 3(b3). Each
signal includes a random number of fluxes that occurs at
random time. The challenge in the classification of such
signals is in the extraction of a fixed combination of
frequencies that uniquely characterize each pre-weakening
category.

B. SIGNALS CATEGORIZATION AND AE DATASET
The number of experiments was limited due to the high
experimental cost. Thus, this investigation was carried out
on 205 manufactured TAS, from which 86 were made using
PMMA and the other 119 from epoxy (See Section II.A).
All samples were exposed to electric discharges with voltage
and capacitance in the range of 90–180 kV and 2.5–25 nF,
respectively. Most samples were treated with multiple dis-
charges until the desired pre-weakening state was reached.
The AE signal from each electric discharge was recorded
leading to a total dataset with 500 AE signals. Each TAS
was visually controlled after each treatment. According to
this, the AE signals were divided into several categories
and subcategories. Table 1 presents the categorization and
labeling of the collected AE signals. It contains three main
categories and each is divided into two subcategories. The
categories describe the electric discharge propagation, while

TABLE 1. Categories, subcategories and labeling of the AE dataset results.

the subcategories indicate the electric discharge efficiency
in terms of pre-weakening. In Table 1, the number of col-
lected AE signals and tested samples are given without/with
brackets, respectively. Figure 4 shows representative optical
microscope images with the corresponding AE raw signals of
the main categories and subcategories.

The category discharge in TAS is of utmost importance for
the industries and contains the subcategories pre-weakening
and break-down. The optical views and their respective AE
signals are illustrated in Fig. 4(a) and 4(b). In both subcate-
gories, the discharge area is visible at the center of the sample
from which multiple cracks are propagating. Figure 4(a),
pre-weakening, is a side view of a TAS made of PMMA after
a discharge exposure of 120 kV and a capacitance of 8 nF.

FIGURE 4. Representative optical microscope views of all categories and subcategories of the TAS subjected to an electric
discharge and their respective AE recorded signals. The categories and the subcategories are respectively (a) discharge in TAS,
pre-weakening; (b) discharge in TAS, break-down; (c) discharge fail, no discharge; (d) discharge fail, discharge tree; (e) surface
discharge, without pre-weakening; (f) surface discharge, with pre-weakening.
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Cracks are observable around the pin electrode zone and
are confined within the sample without propagation to its
edges, preventing its disintegration into pieces resulting to
no material losses. The path of the electric discharge is also
visible. In contrast, the TAS belongings to the subcategory
break-down, Fig. 4(b), are easily recognized as the cracks are
propagating to the edges leading to the breakage of the TAS
in several separate parts. In this figure, the discharge path is
observed on a fragment (approximately half of the sample)
issue from the disintegration of the PMMA sample after a dis-
charge exposure of 160 kV and a capacitance of 12.5 nF. The
signals from both subcategories (pre-weakening and break-
down) showed similarities and the signal attenuations reach
a noise level at about 15 ms. For industries, the category
discharge in TAS is the desired process as it weakened the
solid materials at most with the least energy consumption.

The category discharge fail is defined when no or partial
discharges occurred. It is divided into two subcategories no
discharge and discharge tree. No discharge occurs when the
voltage of the electric discharge is lower than the dielectric
strength of the TAS. Hence, no discharge produces simply
a so-called machine click but has no effect on the TAS as
illustrated in Fig. 4(c). This figure is a side view of a PMMA
sample after an unsuccessful discharge treatment at 160kV
with a capacitance of 8.5 nF. The signals from this subcate-
gory were used for estimating the intrinsic noise of the gener-
ator. The corresponding frequency sub-bands were removed
from further analysis. For the experiments falling in this
subcategory, the TAS were treated iteratively by increasing
the voltage until the dielectric break-down level is exceeded
and the electric discharge took place and produced some
damages. In the opposite, a partial discharge creates already
some small damages in the TAS in the form of discharge
tree. This is illustrated in Fig. 4(d), with a side view of the
pin electrode area of a TAS made of PMMA treated with
an electric discharge of 120 kV and 2.5 nF. In this figure,
a tree reflecting light is visible starting from the tip of the pin.
The nature of this structure is hollow channels inside the TAS
medium created by plasma formation. This is confirmed by
visual observation during the discharge where a bright light
is visible at the location of the tree. Such events takes place
when the applied voltage was enough to start the dielectric
break-down and provide the growth of the streamer towards
the counter electrode, but the energy of the discharge was low
and was absorbed by the TAS medium before reaching the
counter electrode. For the two subcategories, no discharge
and discharge tree, all TAS preserved their integrity and their
AE signals are characterized by a low acoustic energy and
short duration as seen in the AE signals in Fig. 4(c) and 4(d).

The category surface discharge corresponds to a discharge
occurring in the surrounding water environment or at a
surface of the TAS. This happens when the break-down
voltage of the interface TAS/water is lower than the one of
the TAS. The surface discharge has two consequences that
are described by the subcategories without pre-weakening

and with pre-weakening in Table 1. The subcategory surface
discharge without pre-weakening is easily recognized by
scratches on the TAS surface as shown in Fig. 4(e), which
shows a side view of a TAS made of PMMA. Actually, in this
specific case, no cracks inside the TAS medium are observed
but only surface damage and traces indicating the discharge
propagation path are visible. Noteworthy, despite having a
discharge occurring outside the TAS, crack formations are
still possible due to the propagation, through the sample,
of pressure waves induced by the outer electric discharge.
Such events are categorized in the next subcategory sur-
face discharge with pre-weakening. To achieve this state,
the energy of the pressure waves entering the sample has to be
equal or higher than the energy required for cracks initiation.
Therefore, this phenomenon is observed almost exclusively in
TAS with brittle inclusions such as glass. This is represented
in Fig. 4(f), which is a top view of a TAS made of epoxy
treated with an electric discharge of 120 kV and 2.5 nF. The
glass inclusions (glass cylinder of 8 mm diameter and 10 mm
height) have many cracks induced by the surface discharge.
The epoxy matrix is intact around the inclusion. The cracks
occur mainly close to the TAS surface as most cracks are
visible on the inclusion closest to the corner and gradually
disappeared while propagating into the TAS center, where the
inclusion close to the center is almost intact. This cracking
behavior is in opposition with the one of discharge inside
where the cracks propagate from the center of the TAS as
shown in Figs 3(a), 3(b), 4(a) and 4(b).

Comparing all AE signals in Fig. 4, we perceive that the
ones from discharge in TAS and the surface discharge have
close identity in both time duration and amplitude levels.
Taking into account the number of cracks caused by each
individual electric discharge, the AE classification is chal-
lenging and the results of its applicability will be discussed in
Section IV.E. For reducing the costs and energy consumption
of raw materials processing in mining and recycling indus-
tries, the subcategories 1.1, 1.2 and 3.2 in Table 1 are crucial
as they provide the desired solid materials treatment.

C. DATA ADAPTIVE WAVELET
The design of the data adaptive wavelet for the collected AE
signals was carried out using a mix of the AE signals col-
lected, chosen randomly from all categories, described above.
Themethod fromGupta et al. [22] was applied for thewavelet
design. The choice of the designedM -band wavelets vanish-
ing moments and the total number of wavelets channels was
made via an exhaustive search to minimize the approximation
error. The best wavelet approximation was achieved having
4-band wavelet and 5 vanishing moments. The parameters
of the designed wavelet are presented in Table 2, whereas
Fig. 5 is the computed 4-band data adaptive wavelet. The
application of the 4-band wavelet allowed to tile the time -
frequency space into separate frequencies with bands that
fit the range from approximately 9.7 kHz to 2.5 MHz. The
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TABLE 2. High, narrow band and low pass filters for using the M-band wavelet.

FIGURE 5. The 4-band data adaptive wavelet computed with the method described in Gupta et al. [22] using the signals
collected from the TAS.

FIGURE 6. Relative variance in the time-frequency domain for frequency bands extracted with the 4-band
DWT for the categories and the subcategories in Table 1. (a) the categories discharge in TAS, discharge fail
and surface discharge; the categories and the subcategories (b) discharge in TAS; pre-weakening and
break-down; (c) discharge fail; no discharge and discharge tree, and (d) surface discharge; without and
with pre-weakening. The horizontal marker on the scale bar defines the threshold for the features
selection. The correspondence between output number and the frequency bands is given in the table
below the graphs.

energies of those frequency bands were computed according
to Eq. (4) and were further fed into the classifier.

D. FEATURE SPACE REDUCTION
In this work, three types of classifier were applied
(i.e. SVM, FFNN and RDT) to provide a two-level classifi-
cation according to the structure presented in Table 1. Hence,
the first classifier differentiates the three categories and the
next three classifiers separate the different subcategories. For
this reason, four training datasets were formed and PCA
was executed for each dataset separately. The solution of the
features space reduction in the PCA is achieved by searching

the elements that provide the maximum cumulative variance
as described in Section III.B.

Figure 6 presents the relative variance of each individual
frequency band in the time-frequency domain for the different
categories and subcategories. The color encodes the relative
variance, which was computed as the variance normalized
by the cumulative variance. The horizontal marker on the
right scale bar defines the threshold of the features that
are employed for further analysis after PCA reduction. This
thresholdwas selected after an exhaustive search to determine
the optimal compromise between the classification accuracy
and the features dimension. The reduction via PCA was
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made to decrease the computational time without losses in
accuracy.

The table in Fig. 6 gives the correspondence between the
frequency bands and the output number. As can be seen,
most of the variance is provided by the frequency bands
ranging from 9.765 to 156.25 kHz (See Output number 7–15
in Fig. 6). In the time domain, the informative frequency
bands are mostly concentrated in the time span of 0–3 ms
after the discharge took place. In contrast, the features from
the surface discharge subcategories (Fig. 6(d)) possess the
maximum variance in the time span of 0–9 ms. Consequently,
the variance for surface discharge is distributed among a
greater number of features than for the other cases.

E. CLASSIFICATION TESTS RESULTS
The training of the classifiers and the tests were carried out
using the datasets based on Table 1. The results of the clas-
sification tests for each category and subcategory are given
in Table 3. In this table, the classification using SVM is given
outside brackets as the best of the three classifier methods
tested. The FFNN and RDT classifiers were less efficient as
evident from the results within brackets in Table 3. The test
sets for the categories incorporated also the signals from all
subcategories.

In Table 3, the rows of the table contain the classification
accuracy, whereas the columns represent the ground truth ref-
erences. The accuracy (correct classification) was computed
as the ratio of the true positives over the total number of test
signals and those are highlighted in dark grey. The errors
are computed as the ratio of false negatives over the total
number of test signals and are in light grey. For example and
for the SVM, the AE test data from the category discharge

in TAS was classified with an accuracy rate of 87%. The
classification error is 3%with the category discharge fail and
10% with the category surface discharge.

The accuracy for the first classification level (classification
of categories) in Table 3 is high considering the complex-
ity of the process. For the categories discharge in TAS,
discharge fail and surface discharge, they are as high
as 87, 93 and 84%, respectively. These excellent results
have attracted great attention due to the potential substantial
economic saving in terms of energy consumption; a patent
was granted [36], which demonstrate the innovative aspect of
our approach.

The largest misclassification (10%) of the category dis-
charge in TAS is made with the category surface discharge.
The reason is that in the category surface discharge, cracks
and/ or pre-weakening can take place in brittle inclusions
so that the AE signals have the same duration and intensity
from both events. In other words, this means that the AE of
both events are expected to be similar and thus lead to some
overlap of the features of both categories. In the opposite,
few errors (3%) are coming from the category discharge fail.
This can be explained by the shorter duration and the lower
intensity levels of the generated AE as compared to other
signals (Fig. 4(c) and 4(d)). The second level classification
for the subcategories pre-weakening and break-down has an
accuracy of 85 and 89%, respectively. For the subcategory
pre-weakening, 9% of the misclassification is made with both
subcategories of surface discharge. This is explained by the
fact that all TAS in these subcategories have some kinds
of defects either on the surface or even cracks as already
shown in Fig. 4(e) and 4(f). These defects are similar to the
ones occurring during discharge in TAS – pre-weakening.

TABLE 3. Classification test accuracy results.
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Therefore, it becomes obvious that the initiation of such
defects produce similar AE pattern which makes their classi-
fication challenging. In contrast, the main sources of misclas-
sification of the subcategory Break-down are in their mutual
overlapping. This is certainly due to the proximity in terms of
crack propagation of the two subcategories.

The only difference is that, in the subcategory break-
down, the cracks propagate until the surface of the sample
thus breaking the latter in several pieces. At this stage, it is
important to keep in mind that the category discharge in TAS
includes the pre-weakening and break-down events. Both are
of upmost importance for practical applications since it has
the potential to reduce significantly the costs and energy con-
sumption of rawmaterials processing inmining and recycling
industries.

The category discharge fail embraces the subcategories
discharge tree and no discharge. This category and sub-
categories have the highest accuracy. This is attributed to
the short duration of the signals as compared to the other
categories.Discharge fail has only 7% of errors, which are in
incorrect assigning with the category discharge in TAS. This
misclassification is certainly, for some samples, where the
partial discharge was close to reaching the counter-electrode.
For these samples, the duration and intensity of theAE signals
is much closer to the one observed for discharge in TAS.
From an industrial point of view, it is very important to
have a high confidence in the classification of this category
as it is the one that requires additional electric discharges
to achieve the desired process effect. Moreover, a too high
number of discharge fail is a sign that the process is not
running efficiently and the discharge parameters have to be
adapted.

The category surface discharge incorporates the sub-
categories with pre-weakening and without pre-weakening.
With a classification accuracy of 84%, this category is the
least accurate. It is seen that 15% of the error is made
with discharge in TAS and the mains reasons were already
given. Although, this inaccuracy is not significant, it is the
most critical error since a misclassification of this category
with the discharge in TAS decreases slightly the process
efficiency. Thus, additional investigations are pursued to
enhance this classification precision. Similarly, for surface
discharge, the subcategories with pre-weakening and without
pre-weakening remain the least accurate with 73 and 81%,
respectively. However, most of the errors come from cross-
classification between the two subcategories.

To mention also the classification efficiency, the SVM
showed the best results as evident from Table 3. The reason
may be in the rather limited training dataset, in which SVM
data representation and processing is the most efficient.
However, an increase of the training dataset may lead to
changes in the accuracies proportions between the different
classifiers, while the tremendous increase of training data
probably would give equal results for all classification meth-
ods listed in this work. Unfortunately, in this specific appli-
cation, the production of large datasets is very expensive.

Taking into account this information, the results in Table 3
may be consider as a good compromise between the training
data preparation costs and monitoring precision.

V. CONCLUSIONS AND FUTURE WORK
Pre-weakening of raw solid materials by electric discharge
is a very promising method to significantly reduce the
energy consumption in the mining and recycling industries.
However, at present, the process monitoring is made ex situ,
via a drop weight test method or JK Rotary Breakage. Both
methods are very time and cost intensive. The lack of in
situ and real-time monitoring systems prevents this technol-
ogy to enter the market and our work aims to fulfill this
gap with an innovative approach. We proposed to monitor
the highly dynamical pre-weakening process by combining
the acoustic emission and machine learning. The statistics
of the discharges inside the solids was collected using trans-
parent artificial samples (TAS) that were easier to inspect in
terms of induced damage caused by the discharges. Three
machine learning techniques were applied to the collected
dataset and those were: support vector machine (SVM),
feed forward neural networks (FFNN) and random decision
trees (RDT). All the classifiers were tested to see whether
they gave the possibility to classify correctly the discharge
events. The input features for the classifier were obtained
by decomposing the AE signals with data adaptive M -band
(4-band) wavelets with 5 vanishing moments. The experi-
mental results showed that wavelets were an adequate tech-
nique to grab the particularities of each individual discharge.
The machine learning was capable to discover stable unique
acoustic patterns that distinctly characterized the predefined
categories. The limited training database (due to the high cost
and time needed for samples preparation and testing in real
plant) brought to different classification efficiency for each
classifier. The structure of classification errors remained the
same for all three types of classifiers used and the highest
efficiency was achieved using SVM with radial basis kernel.

From an industrial perspective, the proposed strategy for in
situ and real-time control of pre-weakening of solid materials
using electric discharge is very promising. This is illustrated
by the classification results in Table 3, where the first and sec-
ond level of classification accuracies ranged from 84 to 93%
and 73 to 93%, respectively. The experiments resulted in a
patent application.

Still, for the category discharge in TAS, some errors exist
in the classification between the subcategories pre-weakening
and break-down.The possible reasons are the overlapping of
features within both subcategories that could not be separated
precisely enough separated during the labeling and/or a dif-
fused border between both events that needs to be quantified
more precisely. The surface discharge subcategories showed
the lowest classification precision. Fortunately, the errors are
mainly due to a cross-classification between those two sub-
categories which has a limited impact on the practical appli-
cations. The reason is that for both subcategories, the TAS
preserved their integrity and so requires additional electric
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discharge(s). Actually, the TAS subjected to discharge fail
and surface discharge categories indicate the need of addi-
tional electric discharges for further processing. To conclude,
the results of the present study prove the applicability of
our innovative approach is a promising solution combining
AE and ML of the solid materials pre-weakening process
and this can be straight forwardly transferred to in situ and
real-time monitoring system. The further continuation of
this work is the transfer to real rocks. Besides, some data
adaptive classifiers can increase the analysis efficiency and
both aspects are planned as a future investigation.
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