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ABSTRACT Transient impulse analysis is an effective way to detect the bearing fault at its early stage.
However, it is hard to precisely extract these so-called transient impulses because these collected vibration
signals usually are non-stationary, nonlinear, and drowned by heavy background noise. Variational mode
decomposition (VMD) can play the role as an adaptive signal processing tool to reveal the weak transient
impulses from complex vibration signals. However, its reasonablemode number is difficult to pre-set and this
would make the loss of useful transient impulses. To solve this issue, an improved VMD strategy is presented
in this paper . For this method, it can not only utilize the advantages of traditional VMD and empirical mode
decomposition (EMD) but also adaptively select sensitive intrinsicmode function (IMF) components for fault
component analysis by proposed indexed values. EMD is first used to process the collected vibration signal
into a series of IMFs, and the so-called useful IMFs are then evaluated by a sensitive IMF evaluation index
which is based on the conjoint analysis of relatedness and kurtosis. Afterward, VMD is further improved to
effectively decompose the denoised signal reconstructed from these selected useful IMFs of traditional EMD.
Finally, the improved VMD is used for incipient fault diagnosis by a defined transient impulse monitoring
index and Hilbert envelope analysis. Experiments are performed to demonstrate the effectiveness of the
proposed method. The experimental results confirm that the proposed method can accurately extract the
features of an incipient fault of a bearing.

INDEX TERMS Improved variational mode decomposition, incipient fault detection, empirical mode
decomposition, rolling bearings.

I. INTRODUCTION
Rolling bearings are one of the widely used elements in
rotating machinery and their failure is one of the most com-
mon causes of machine breakdown and accidents [1], [2].
Consequently, it is of great significance and increasingly
attract attention in bearing fault diagnosis to increase the
reliability of requirements and decrease loss owing to bear-
ing faults. Vibration signal-based feature extraction has been
verified to be an effective way to solve the problem of fault
diagnosis of rotating machinery because the vibration signals
collected from sensors include abundant fault-related infor-
mation [3]– [5]. Our work employs vibration signals to

diagnose faults of rotating machinery. To precisely extract the
so-called features from complex vibration signals, the first
step is to analyze the vibration signals by adopting a suit-
able signal processing method. In the past, many traditional
techniques have been put forward to perform signal analysis
in the time domain, frequency domain, and time-frequency
domain [6]. Signal analysis in the time domain is the sim-
plest method used for mechanical fault diagnosis. Frequency
domain methods employ Fourier transform-based signal pro-
cessing techniques, such as fast Fourier transform (FFT) [7]
and interpolated discrete Fourier transform (IpDFT) [8].
However, the time domain and frequency domain methods
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used separately can only extract a portion of the useful infor-
mation from the vibration signals and information in each of
the other domains is lost.

As time-frequency methods can perform signal analysis
in both the time and frequency domains simultaneously,
many techniques have been introduced for processing the
collected signals for condition monitoring, fault diagnosis,
and mechanical life prediction, such as short-time Fourier
transform (STFT) [9],Wigner-Ville distribution (WVD) [10],
wavelet transform (WT) based methods [11], [12], empirical
mode decomposition (EMD) [13], ensemble empirical mode
decomposition (EEMD) [14], and variational mode decom-
position (VMD) [15]. Among these, the last three methods
employ adaptive time-frequency analysis algorithms. In [16],
a suitable merit index was introduced to improve traditional
EMD and HT and this method can automatically select
sensitive IMFs for fault diagnosis. Du and Yang [17] sub-
stituted the conventional envelope mean with the average
mean based on EMD for the diagnosis of bearing faults.
In [18], a new fault diagnosis method for low-speed rolling
bearings was presented using the parameter estimate of
alpha-stable distribution (ASD) and an EMD-based vibration
signal processing approach for filtering the trend and noise
components. A fault detection method for roller-bearing sys-
tems was constructed using a wavelet denoising scheme,
and proper orthogonal values (POV), of an intrinsic mode
function (IMF) covariance matrix [19]. However, traditional
EMD suffers from the mode mixing problem when analyzing
vibration signals. To solve this problem, a new improved
version, named EEMD, was proposed byWu and Huang [14]
and it also has been employed for fault diagnosis. In [20],
EEMD and Hilbert marginal spectrum analysis were com-
bined for multifault diagnosis of axle bearings based on
an IMF confidence index for adaptive self-selection of the
useful IMFs. In [21], EEMD and multiscale fuzzy entropy
were introduced to extract features for the diagnosis of
motor bearing faults. An effective fault diagnosis method was
presented using improved EEMD and Hilbert square demod-
ulation (HSD) [22]. In [23], a EEMD-based multiscale
independent component analysis (ICA) method was pro-
posed for slewing bearing fault detection and diagnosis.
Lei and Zuo [24] presented an improved Hilbert-Huang trans-
form (HHT) based on EEDM and sensitive IMFs for the
fault diagnosis of rotating machinery. However, the decom-
position results of EEMD do not meet the definition of a
strictly IMF [14].

Recently, an adaptive signal decomposition algorithm,
called variationalmode decomposition (VMD), was proposed
by Dragomiretskiy and Zosso [15]. VMD can adaptively
find the frequency center and bandwidth of each component
by iteratively searching the optimal solution of variational
modes. Over the past few years, many scholars used it to
analyze complex signals. Tang et al. [25] usedVMD to design
an underdetermined blind source separation method and it
was successfully introduced for the compound fault diagnosis
of roller bearings. In [26], a novel vibration signal processing

method based on VMD and the Teager energy operator
was presented for the fault diagnosis of wind turbines.
Zhang et al. [27] constructed a fault diagnosis method for
multistage centrifugal pumps by using VMD and the com-
parison results of VMD and EMD showed that the former
can accurately extract the principal mode for fault feature
extraction. Lv et al. [28] combined VMD and a multikernel
support vector machine (MKSVM) to diagnose mechanical
faults and the immune genetic algorithm (IGA) was used to
optimize theMKSVM. These methods testify that VMD is an
effective signal processing method for complex signals.

Using appropriate models or algorithms can accurately
detect system abnormality and component fault to identify the
root causes of these failures in time [29]. In this work, a novel
method based on EMD and VMD, called improved VMD,
is presented to precisely extract the transient impulse infor-
mation of bearing faults from the nonlinear and nonstation-
ary vibration signals. First, EMD is used to process the
collected vibration signal into several IMFs. The number
of so-called useful IMFs are then evaluated for denoised
signal by the conjoint analysis of relatedness and kurtosis.
Second, VMD is further improved to effectively decompose
the denoised signal according to its vibration characteristics.
Finally, the improved VMD is used for incipient fault diagno-
sis with a defined transient impulse monitoring index (TIME)
and Hilbert envelope analysis, and experiments are then
performed to demonstrate the effectiveness of the proposed
method.

The remainder of this paper is structured as follows.
Section II introduces theories, and includes the principles
of EMD and VMD, and simulation analysis. Incipient fault
diagnosis with IVMD is provided in Section III that covers
four subsections: denoising with EMD based on sensitive
IMF selection, the principle of IVMD, and transient impulse
monitoring components. In Section IV, an explanation of
experiments performed on a multifunction mechanical fault
simulator. Conclusions are made in Section V.

II. THEORIES
A. EMD
The self-adaptive time-frequency analysis method,
named EMD, was developed by Huang et al. [13] with
three assumptions: (1) the target signal must have at least
two extrema (one maximum and one minimum); (2) the
characteristic time scale is defined by the time lapse between
the extrema, and (3) if the data were totally devoid of extrema
but contained only inflection points, then they can be differ-
entiated one or more times to reveal the extrema. The process
of EMD is shown as follows [13], [16]– [19].

(1) All local extrema points are found, and their upper and
lower envelopes are obtained by cubic spline line.

(2) The mean of the upper and lower envelopes is cal-
culated and marked as m1, and then the difference between
original signal x(t) and m1 defined h1 as, i.e.,

h1 = x(t)− m1. (1)
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Determine whether h1 is an IMF. if yes, the result of (1)
is defined as the first IMF; otherwise, h1 is regarded as
the original signal x(t), and above steps are repeated until
h1k becomes an real IMF. After this, the first IMF is decom-
posed by

c1 = h1k . (2)

(3) Separate the first IMF c1 from x(t) by

r1 = x(t)− c1, (3)

where r1 is defined as the residue signal.
Repeat the above steps K times until the stop condition

takes place. Then, K IMFs will be obtained and they satisfy
r1 − c2 = r2;

...

rK−1 − cK = rK .

(4)

Finally, the original signal x(t) can be decomposed into

x(t) =
K∑
k=1

ck (t)+ rK (t). (5)

B. VMD
VMD is a new self-adaptive and quasi-orthogonal signal pro-
cessing method based on Wiener filtering, one-dimensional
Hilbert transform, and heterodyne demodulation. Unlike
EMD and EEMD, VMD can decompose a complex mul-
ticomponent signal into a series of sub-signals, which are
mostly compact around a center pulsation, with a limited
frequency bandwidth. To evaluate the bandwidth of a mode,
the following constrained variational problem should be
solved.

min
{uk },{ωk }

{

∑
k

‖αt [(δ(t)+
j
π t

) ∗ uk (t)] exp−jωk t ‖22},

s.t.
∑
k

uk = f (6)

where t is the time script and δ is the Dirac distribution; uk
and ωk are shorthand notations for the set of all modes and
their center frequencies, respectively.

To render the problem unconstrained, a quadratic penalty
term and Lagrangian multipliers are employed in [15] and a
new solution expression can be obtained as follows:

L({uk}, {ωk}, λ) = η
∑
k

{

∑
k

‖αt [(δ(t)+
j
π t

) ∗ uk (t)]

× exp−jωk t ‖22} + ‖f (t)−
∑
k

uk (t)‖22

+〈λ(t), f (t)−
∑
k

uk (t)〉 (7)

where η is the data-fidelity constraint parameter and λ is the
Lagrangian multiplier.

Here, a sequence of iterative sub optimizations called alter-
nate direction method of multipliers (ADMM), as can be seen

in [15], is introduced to solve the above formula, and hence,
the solution to the original minimization problem of (6) is
now found as the saddle point of (7). Then, the modes uk and
their corresponding center frequency ωk can be updated as

un+1k ← argmin
uk

L(un+1i<k , u
n
i>k , ω

n
i , λ

n) (8)

and

ωn+1k ← argmin
ωk

L(un+1i , ωn+1i<k , ω
n
i>k , λ

n). (9)

Through continuous iteration updates, all the sub-signals,
called IMF modes, can be decomposed from the solution and
are described as follows:

∧
u
n+1

k (ω) =

∧

f (ω)−
∑

i<k
∧
u
n+1

i (ω)+
∧

λ
n
(ω)
2

1+ 2η(ω − ωnk )
2 . (10)

C. SIMULATION ANALYSIS
Before constructing IVMD to decompose vibration signals,
the performances of EMD, EEMD, and VMD are studied by
simulation analysis and their results used to guide the param-
eter setting of VMD. The simulation signals are expressed as

y1 = 2sin(10π t)
y2 = 1.5cos(80π t)

y3 =
∑
i

sin(200π t) exp(−T1(t−i∗T2)
2)

ycom = y1 + y2 + y3,

(11)

where T1 = 1000, T2 = 0.25, and i = 1, 2, 3.
Equation (11) shows that the simulation signal ycom is

made up of oscillation signal y3, and low-frequency signals y1
and y2. Usually, an actual sensor signal is accompanied by
noise. Therefore, we defined ycom,e(t) = ycom + e(t) and
e(t) = 0.2 ∗ std(ycom) ∗ rand(L), where e(t) is the noise and
L is the length of the simulation signal. The waves of these
simulation signals are plotted in Fig. 1. This figure shows
that identifying these components of the composite signal
by directly observing it is difficult. Fig. 2 shows the decom-
position results of simulation signal ycom,e(t) with traditional

FIGURE 1. The waves of simulation signals.
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FIGURE 2. The decomposition results of simulation signal ycom,e(t) by
using: (a) EMD and (b) EEMD with the default parameters defined in [23].

EMD and EEMD. From this figure, themodemixing problem
of EMD is seen to be serious when it is used to deal with com-
posite signal ycom,e(t). In fact, no one completed sub-signal
has been decomposed successfully by EMD. From the plots
shown in Fig. 2 (b), it can be seen than themost information of
y1, y2, and y3 are decomposed into c6, c4, and c3. However,
part of the simulation signal y1 is falsely decomposed into
IMF c5, and the reason is that the parameter settings are
not optimal. Meanwhile, these decomposed components of
EEMD are not strictly IMFs.

According to the principle of VMD, before the signals
are processed, the mode number, balancing parameter of the
data fidelity constraint, and the time step of the dual ascent
should be preset, and among these the mode number is the
most important one. Although theVMDalgorithm can extract
the characteristic information hidden in vibration signals, its
decomposition effect depends on accurate parameter selec-
tion. That is, improper parameter setting will reduce its ability
in signal decomposition. In theory, we should first deter-
mine the mode number and then select suitable balancing
parameters of the data fidelity constraint and the time step
of the dual ascent. Therefore, in this section, we discuss the
effect of the mode number on decomposition results of VMD
when the balancing parameter of the data fidelity constraint
is set as 1500 suggested in [27]. Fig. 3 shows the processing
results of simulation signal ycom and ycom,e(t) by VMDwhose
mode number and balancing parameter are set as 3 and 1500,
respectively. In Fig. 3 (a), the simulation is without noise,

FIGURE 3. The processing results of simulation signals by VMD (mode
number is 3 and the balancing parameter is 1500). (a) simulation
signal ycom; (b) simulation signal ycom,e(t).

and hence we can easily determine that its real mode number
is equal to those of its components. That is, here, the mode
number of VMD is 3. From the plots shown in Fig. 3 (a),
we can see that the simulation sub-signals are all successfully
decomposed into three IMFs. However, if there are some
noise components in the final simulated composite signal.
This means that the real mode number of VMD is larger than
that under the simulation without noise. Here, we still set the
mode number of VMD as 3 and its decomposition results
are plotted in Fig. 3 (b). In this figure, it can be noticed that
the main simulation sub-signals are divided into the first two
IMFs and the first IMFs include two simulation sub-signals
with signals y1 and y3, i.e., these sub-signals with various
structures are not successfully separated. Through the above
comparative analysis, it can be found that traditional EMD,
EEMD, and VMD all have some problems that need to be
directly addressed before they can be used to deal with com-
plex signals. In this paper, a new signal processing approach
combining the best characteristics of EMD and VMD is
proposed for incipient fault detection of rolling bearing.

III. INCIPIENT FAULT DIAGNOSIS WITH IVMD
VMD is a novel signal decomposition method that is theo-
retically well founded and can deal with nonlinear and non-
stationary signals. However, it is hard to select a reasonable
mode number for VMD. For the EMD method, the number
of its IMFs can be obtained adaptively. Therefore, this work
combines the best features of EMD and VMD to construct
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an approach for signal processing and weak fault extraction.
Meanwhile, transient impulse analysis can reveal the char-
acteristic information related to bearing faults. Therefore,
the proposed method includes two parts: vibration signals
processing with the proposed IVMD method and envelope
analysis-based transient impulse information extraction; its
main flow chart is shown in Fig. 4.

FIGURE 4. Flow chart of the proposed method.

A. DENOISING WITH EMD BASED ON SENSITIVE
IMF SELECTION
A set of IMFs can be obtained by using EMD to process the
collected vibration signals and the fault-related information
may be decomposed into several IMF components. There-
fore, how to select the sensitive IMFs is important for con-
structing a precise fault diagnosis method. For a mechanical
system, a structure failure make its resiliencemetric or impact
performance will be different from this under normal con-
dition [30]. In this work, an index combining kurtosis and
the correlation analysis between the decomposed IMFs with
the original vibration signal is designed to select the sensitive
IMFs, and the procedure is presented in the following steps.

(1) Compute correlation coefficient rci,x between the ith
IMF and its original vibration signal x(t) by

rci,x = ‖

∑n
t=1(x(t)− x)(ci(t)− ci)

σciσx
‖ (12)

where ci(t) is the ith decomposed IMF of EMD; σci and σx
are the deviations of ci and x(t); and ci and x are the mean
values of ci and x(t), respectively.
(2) Calculate the kurtosis of the IMFs with

kci =

∑
(ci(t)− ci)4

(N − 1)σ 4
ci

(13)

where N is the length of signal ci(t).

(3) Design a sensitive IMF evaluation index (SIEI) with

ISIEI (i) =
rci∑
rci
+

kci∑
kci
. (14)

(4) Rank these SIEI values from the greatest to the least.
The K ′ IMFs with the biggest SIEI values are selected
as sensitive IMFs to reconstruct the clear or denoising
signal xclear (t) as

xclear (t) =
K ′∑
k=1

ck (t). (15)

According to the procedure for reconstructing the
denoising signal, in fact, searching the sensitive IMFs is a
process to determine whether an IMF is fault-related infor-
mation or noise. Here, these sensitive IMFs are regarded
as useful information and the remaining IMFs are noise
components. At the same time, the fault characteristic fre-
quencies (FCFs) of a bearing and their harmonics mainly
occur in the case of high-frequency components, and hence
these IMFs with the main frequency lower than the FCF can
also be regarded as noise. After the selection of sensitive
IMFs with SIEI and the frequency analysis, the noise in
the vibration signals can be removed by reconstructing new
vibration signals just with these selected IMFs.

B. THE PRINCIPLE OF IVMD
As we know, EMD, a self-adaptive time-frequency analysis
algorithm, can be used to decompose a complex signal into a
set of IMFs based on the characteristic of the signal. Although
the EMD method suffers from the mode mixing problem
when it is employed to analyze vibration signals, the number
of its IMFs can be obtained adaptively. Meanwhile, the IMFs
of EMD are nearly orthogonal functions and each IMF repre-
sents a simple oscillation mode with a physical meaning [13].
For EMD, if there is no so-called mode mixing problem, each
IMF can be regarded as an independent mode. Even though
a mode is decomposed into two or more IMFs at the same
time, as long as no two or more IMFs exist that only belong
to a mode, this is easy to be satisfied, and the number of
IMFs can be used to set themode number of VMD. Therefore,
in this work, the signal reconstructed just with these selected
sensitive IMFs of EMD is decomposed by VMD, and hence
its modes can be regarded as these selected sensitive IMFs.
This is the principle of IVMD.

To testify the effectiveness of the IVMD method, four
sensitive IMFs of these plots in Fig. 2 are selected to recon-
struct the denoising signal. By the proposed sensitive IMFs
assessment method shown in above subsection, the first four
IMFs are selected. For this reconstructed signal, it is made
up of four IMFs, and the mode number of VMD is set as 4
and the decomposition results are shown in Fig. 5. From
this figure, we can see that these simulation signals y1, y2,
and y3 are successfully decomposed into c1, c2, and c3.
Contrastive analysis between the plots of Fig. 2 (a) and the
plots of Fig. 5 reveals that the proposed IVMD provides
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FIGURE 5. The decomposition results of simulation signals shown
in Fig. 1 with the proposed IVMD.

better decomposition than traditional EMD. In Fig. 2 (b),
the most information of simulation signals y1, y2, and y3 are
decomposed into components c6, c4, and c3. Therefore, here,
these three IMFs are selected to be the final decomposition
results of the simulation signal with EEMD. Although the
EEMD is able to decompose these simulation components
just by judging from the general shape of these IMFs, it still
needs to evaluate the matching degree of the decomposition
signal and the real signal. The decomposition error is used to
as the index to indicate the decomposition effect.

Fig. 6 shows the decomposition errors of simulation sig-
nals with EEMD and the proposed IVMD, in which the

FIGURE 6. Decomposition error of the simulation signals with (a) IVMD
and (b) EEMD.

decomposition errors of simulation signal y1, y2, and y3
are defined as y1,erro, y2,erro, and y3,erro, respectively. From
Fig. 6 (a), it can be easily seen that the maximum error is
no more than 0.5 and the errors of almost all the points of
the decomposition components are close to zero. However,
the decomposition error of EEMD is obviously bigger than
that of the proposed method. Therefore, we can conclude
that the proposed IVMD achieves better decomposition pre-
cision than traditional EEMD. Furthermore, computational
efficiency is also an important performance parameter for
a signal processing method. Here, in the same compute,
the calculation times of EEMD with the parameters defined
in [23] and IVMD are 7.6798 s and 0.3651 s, respec-
tively. That is, the proposed IVMD is also more time-saving
than EEMD.

C. TRANSIENT IMPULSE MONITORING COMPONENTS
If one of the bearing surfaces has a local defect, it will cause
a set of impacts when the rolling element passes through
the faulty surface. The FCFs of these impulses belonging to
various bearing faults are determined by the motor rotational
speed, fault location, and bearing geometric dimensioning.
Therefore, we can identify a bearing fault by monitoring the
FCFs and the FCFs can be formulated as follows [31]– [33].

fc =
fr
2
(1−

Bd
Pd

cos(θ ))

fo =
Nfr
2

(1−
Bd
Pd

cos(θ ))

fi =
Nfr
2

(1+
Bd
Pd

cos(θ ))

fb =
Bd fr
Pd

(1−
B2d
P2d

cos(θ ))

(16)

where fc, fo, fi, and fb are the fundamental cage frequency,
outer race fault frequency, inner race fault frequency, and
rolling element fault frequency, respectively;N is the number
of rolling elements; θ is the angle of the load from the radial
plane; Bd and Pd are the ball and pitch diameter, respectively;
and fr is the rotating frequency.

A harmonic will be made in the spectrum of vibration
signal when a defect appears on each part of the bearing.
Generally, these FCFs include the main information related
to various bearing faults and it can be extracted for bearing
fault diagnosis. The vibration signals collected from faulty
bearings include not only the resonance frequency in high
frequency range excited by impacts but also the fundamen-
tal rotating frequency and its harmonics in low frequency
range [34]. Therefore, the denoised signals obtained by the
proposed IVMD are then carried out with envelope demodu-
lation analysis to search the FCFs for bearing fault diagnosis.

As we know, some IMFs can be obtained by the proposed
IVMD method, and not all of them are suitable for bearing
fault monitoring or detecting. For a kind of bearing faults,
such as outer race fault, inner race fault, or rolling element
fault, the first thing is to monitoring the changes in the
corresponding fault characteristic frequency. That is to say,
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we should select a IMF whose FCFs are easy to be found and
the procedure is shown as follows:

(1) The envelop analysis of final IMFs, produced by the
proposed IVMD method, is executed by Hilbert transform.

(2) The fo, fi, and fb of bearing are calculated by (16).
(3) Define the frequency interval [flow, fup] for searching

the FCF. Here, we define that: flow = fcenter − 1f , and
fup = fcenter + 1f . In this paper, we set fcenter = fo. Then
the selection criteria for 1f is to make fi, fo and fb can fall
within the interval [flow, fup].

(4) Search the frequency component with the maximum
value in interval [flow, fup] defined in step (1), and which
is marked as fmax . At the same time, the mean value of
these frequencies among [flow, fup] is calculated, and which
is denoted as fmean.

(5) Set

Ifre,i =
fmax,i
fmean,i

, (17)

where Ifre,i is defined as transient impulse monitoring index
(TIMI), and i means the ordinal number of final IMFs of the
proposed IVMD method.

(6) Finally, this IMF with the biggest Ifre,i is defined as
the sensitive monitoring component for detecting incipient
bearing faults by using envelop analysis and fast Fourier
transform.

IV. EXPERIMENTAL VERIFICATION
A. EXPERIMENTAL SETTING
The data of most fault diagnosis methods for rolling element
bearings come from simulation mode or ‘‘seeded’’ detect,
and is hard to reflect the real incipient failure or the natural
damage peculiarity of bearings in the early stage. Therefore,
the data collected from the full life cycle, i.e., normal-to-
failure experiment, of bearings should be provided for the
incipient fault diagnosis of bearings.

For a new fault detection method, it is important to col-
lected reliability data sets before performing fault detection
assessment [35]. Therefore, this work designs an experiment
based on the standard prognostic vibration data collected
by the Intelligent Maintenance Systems (IMS) of Univer-
sity of Cincinnati [36]. This test bench, shown in Fig. 7,
includes an AC motor, several rub belts, a shaft, and
four bearings. The type of the used bearings is Rexnord
ZA-2115 double row bearings that were installed on the shaft.
In this system, the rotation speed was set a constant value
with 2000 RPM through the AC motor coupled to the shaft
via rub belts. Meanwhile, a spring mechanism was used to
simulate a radial load of 6000 lbs onto the shaft and bearings.
As shown in Fig. 7, PCB 353B33High Sensitivity Quartz ICP
accelerometers were installed on the bearing housing to col-
lected test data byNIDAQCard 6062Ewith the sampling rate
set at 20 kHz. Final, an outer race fault occurred after exceed-
ing designed life time of the bearing which is more than
100million revolutions. The test bearing has 16 rollers in each
row and its pitch diameter and roller diameter are 71.501 mm

FIGURE 7. Bearing test rig and sensor placement illustration [36].

and 8.4074 mm, respectively. Therefore, the FCF of outer
race fault is 236.4 Hz. Each file consists of 20,480 points
and the recording interval time of each file is 10 min-
utes. In the normal-to-failure experiment, total 984 data
files were collected in the duration of February 12, 2004 to
February 19, 2004 and outer race defect was found in bearing
1 at last.

B. EXPERIMENTAL RESULTS AND ANALYSIS
Fig.8 illustrate the root mean square (RMS) of the vibration
signal of bearing 1 under entire life-cycle. From this figure,
the range of incipient fault probability is from 5000th minute
to 65000th minute. Considering the RMS values of incipient
bearing fault and normal condition will be different, so the
mutation points at T1 (around 5320th minute) and T2 (around
6460th minute) are estimated to be the points that the bearing

FIGURE 8. RMS for the entire life cycle of bearing 1.
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FIGURE 9. The analyzed results of the proposed method with the data
collected at: (a) 6470th minute; (b) 6460th minute; (c) 6450th minute.

TABLE 1. SIEI values of vibration signals in case 1.

become into fault from normal condition. Therefore, the data
sets nearby the mutation points are processed by the proposed
method, and which are: case 1 nearby 6460th minute; case 2
nearby 5320th minute.

First, we employ the proposed IVMDmethod to processing
the vibration signal defined in case 1 and the corresponding
SIEI and TIMI values are listed in Table 1 and Table 2, respec-
tively. For EMD processing stage, the first six IMFs with
biggest SIEI are selected for further processing by IVMD.
When calculating the TIEI values, the 1f is set as 100 Hz.

TABLE 2. TIMI values of vibration signals in case 1.

FIGURE 10. The envelop analysis results of the data collected at 6460th
minute with (a) EMD and (b) EEMD.

From these TIMI values in Table 1, it can be seen that tran-
sient impulse monitoring components of these data collected
at 6470thminute, 6460thminute and 6450thminute are all the
fifth IMFs of the IVMD. Fig. 9 shows the analyzed results of
the proposed method under case 1. In Fig. 9, (a), (b) and (c)
mean the envelope spectrums of the data collected at 6470th
minute, 6460th minute and 6450th minute with the proposed
method, respectively. According to this figure, we can see
that the characteristic frequency at 231 Hz (it is roughly
regarded as the FCF of outer race fault) and its harmonic are
successfully extracted in Fig. 9 (a) to (c), this means there
is a defect in the outer race and the mutation points T2 may
not be the time that the bearing become faulty condition from
normal. Fig. 10 plots the envelop analysis results of the data
collected at 6450th minute with EMD and EEMD. In this
figure, the FCF and its harmonics of outer race fault are
obvious. That is to say, at mutation points T2, the outer race
fault of bearing also can be easily detected by using EMD and
EEMD.

Table 3 shows the SIEI values of these IMFs of EMD.
According to this table, the first six IMFs with biggest SIEI
are also selected for further processing. After IVMD process-
ing, seven IMFs can be obtained and their ITME values are
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TABLE 3. SIEI values of vibration signals in case 2.

FIGURE 11. The analyzed results of the proposed method with the data
collected at: (a) 5330th minute; (b) 5320th minute; (c) 5310th minute.

TABLE 4. TIMI values of vibration signals in case 2.

shown in Table 4. From this Table, it can be seen that transient
impulse monitoring components of these data collected at
6470th minute, 6460th minute and 6450th minute are all
the seventh IMFs of the IVMD. Fig. 11 shows the analyzed

FIGURE 12. The analyzed results of the comparison methods: (a) directly
envelope analysis; (b) EMD and envelope analysis; (c)denoising signal
with EMD and envelope analysis;and (d) EEMD and envelope analysis.

results of the proposed method under case 2. Meanwhile,
Fig. 9 (a), (b) and (c) mean the envelope spectrums of the data
collected at 5330th minute, 5320th minute and 5310th minute
with the proposed method, respectively. For case 2, the
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so-called FCF of outer race fault can be easily observed
in Fig. 11 (a) and (b) and this reveals the outer race
fault occurs at 5330th minute and 5320th minute. However,
the analysis of these plots in Fig. 11 (c) reveals that the
FCF of outer race fault cannot be found obviously because
many other frequency peaks are also very highlight, so it
can get a conclusion that the outer race fault may not occur.
Comparative analysis of Fig. 9 and Fig. 11 also indicates that
the mutation point nearby 5320th minute is the time that the
outer race develops from normal condition to incipient fault
and the mutation point nearby 6460th minute may be the time
that the incipient fault develops further.

To prove the superiority of the proposed method, com-
parison experiments are carried out and which are: directly
envelope analysis; EMD and envelope analysis; denoising
signal with EMD and envelope analysis; EEMD and envelope
analysis. From Fig. 11, we can see that the incipient fault
can be found at the 5320th minute with the proposed method.
Therefore, the data collected at the 5320th minute is analyzed
with these considered comparisonmethods. Fig. 12 shows the
results of these considered experiments with other analyzing
methods. For these plots in Fig. 12 (a), the peak frequency
nearby the FCF of outer race fault is 231 Hz and which is
not so obvious to be found. At the same time, the outstanding
peaks are all located away from FCF and its harmonic. That
is, the incipient fault in outer race is hard to be identified
by direct envelope analysis with vibration signals. EMD and
EEMD are famous methods for signals processing, here,
their analysis for incipient fault diagnosis are also devel-
oped. In their analysis, this one of the first five IMFs with
the biggest kurtosis is selected for envelop analysis. From
Fig. 12 (b), we can see that the frequency peak with highest
possibility to be the FCF of outer race fault is 231 Hz and
which is almost overwhelmed by other frequency ingredients.
That is, it is also hard to detect the outer race fault with
EMD and envelope analysis. The similar situations occur
in Fig. 12 (c) and Fig. 12 (d), the FCF components are also
hard to be observed. Therefore, according to the contrastive
analysis of the plots in Fig. 11 and Fig. 12, we can get a
conclusion that the proposed IVMD can decomposed out the
FCF information from complex vibration signal for bearing
fault diagnosis and has better effect than traditional envelop
analysis, EMD and EEMD do. Moreover, the time of the
proposed method for analyzing the data collected at 5320th
minute is only 20.5307 s, but the traditional EEMD with the
parameters recommended as a case in [23] needs 69.2145 s.
That is, the proposed method is also a time-saving approach
for incipient fault detection than EEMD does.

V. CONCLUSION
Transient impulse analysis is an effective way to detect the
bearing fault at its early stage because these impulse compo-
sitions include abundant information regarding bearing faults.
Variational mode decomposition (VMD) is able to reveal the
weak transient impulses from complex vibration signals if
its reasonable mode number can be pre-set. To extract the

transient impulses and detect the incipient mechanical fault
by the nonlinear and nonstationary vibration signals with
heavy background noise, this paper proposes an improved
VMD by combining the best characteristics of traditional
VMD and EMD. First, EMD is used to obtained denoised
signals the so-called useful IMFs which are evaluated by
a sensitive IMF evaluation index (SIEI) which is based
on the conjoint analysis of relatedness and kurtosis. After-
wards, VMD is further improved to effectively decompose
the denoised signal and a transient impulse monitoring
index (TIME) was designed to obtain the transient impulse
monitoring component for incipient fault diagnosis with
Hilbert envelope analysis. Experimental results shown that
the proposed method can accurately extract the transient
impulses of bearing fault in its early stage, and the detection
results are better than those of traditional envelope analysis,
EMD, EEMD and VMD. However, the so-called improved
VMD proposed in this paper only focused on selecting rea-
sonable mode number, so the next work should deal with the
optimization of the balancing parameter of the data fidelity
constraint or optimize both of these parameters to further
improve the signal decomposition effect. Meanwhile, a real-
time fault diagnosis can immediately eliminate the fault once
it occurs [37], so the online incipient fault diagnosis method
also is one of our next work.
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