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ABSTRACT It is important to obtain the location of an access point (AP), such as in the scenario of finding
rogue AP in public places or designing indoor positioning system based on AP locations. Most of the existing
AP localization methods depend on additional equipment with high cost or the path loss model suffering
from indoor multipath. In this paper, an AP localization algorithm based on channel state information and
Fresnel zone is proposed, which can just draw a semicircle with one hand to estimate the AP location. The
algorithm is divided into two phases: preparations and positioning. Preparations’ phase includes calibrating
AP direction and identifying Fresnel zone cutting points which are obtained by combining the least squares
fitting method in the time domain. Positioning phase consists of AP direction determination and AP position
determination; the final AP position is confirmed according to the geometrical information. The experimental
results show that the median error of our algorithm can achieve to 0.58 m, which significantly improve the

AP positioning performance than other methods.

INDEX TERMS Channel state information, MIMO, position measurement, wireless LAN.

I. INTRODUCTION

With the widespread deployment of Wi-Fi access point,
wireless networks have been perceived everywhere. It is nec-
essary to find the location of an AP in some scenarios. For
example, a rogue AP nearby is detected, but it is hard to
find the accurate location of this AP in a wide range public
area. Besides, a known AP location can be advantageous to
optimize wireless coverage of access points within a service
area and designing indoor accuracy positioning systems.

AP locations are usually known by default in most
Wi-Fi-based indoor positioning systems [16], [19], [20], even
for some applications that examine the effect on position-
ing performances when new AP is added [5]. Obtaining the
location of these APs generally uses manual measurement
methods, which are time-consuming and laborious. Therefore
it is highly desirable to determine AP locations in an easy-to-
use and accurate method.

The problem that we want to solve in this paper is how to
determine the AP location easier and more accurate.

Some methods of locating AP are based on special hard-
ware, such as deploying multiple directional antennas in
suspicious areas, and estimating the AP location using sig-
nal contour maps based on signals received from multiple
directional antennas [4]. But it is high-cost. Some other AP
positioning methods utilize the path loss model based on

the Received Signal Strength (RSS), which considers the
area that is closer to the AP, where the Line-of-Sight (LoS)
path is not blocked by obstacles, should have a higher signal
strength. But RSS is significantly affected by multipath and
shadow in the complex indoor environment. Experimental
studies have shown that in the indoor environment of a sta-
tionary receiver, there is 5dB fluctuation of the received signal
strength for a period of about one minute [7], this means that
the RSS-based AP localization method hard to achieve an
ideal accuracy.

There are also ways to use channel state information (CSI)
for AP positioning. Zheng et al. [15] require people to stand at
eight different positions, and then walk along a certain arc to
compute the AP direction. SpinLoc can use the Energy of the
Direct Path (EDP) of CSI to estimate the direction of the AP,
where the user is expected to rotate once. But even assisted
by multiple APs, the methods mentioned above are also hard
to determine the accurate angle [16]. Our basic idea is to
use a single receiver to collect CSI information to determine
the AP direction, and further to obtain the location of AP
by combining with the direction of three different locations.
We have found that the CSI data collected at the Wi-Fi receiv-
ing device are affected by moving gesture, especially when a
hand passes through the LoS path of the first Fresnel zone.
Therefore, analyzing the CSI data collected by the moving as
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a specific gesture, the AP direction can be determined more
accurately.

The main contributions of this paper are as follows:

« We use only such a simple gesture as drawing a semicir-
cle, analyzing the variation of corresponding CSI value,
to determine the direction of AP more accurately without
additional hardware cost and extensive labor.

o To our knowledge, Fresnel zone model is firstly applied
to AP positioning, and the feasibility of using Fresnel
zone model to detect specific gesture is verified by our
experiments.

o We propose a LoS path identification method, using the
delay distribution and outlier detection in the channel
impulse response (CIR) to identify the existence of LoS
path, and CIR can be obtained by applying inverse fast
fourier transform (IFFT) on CSIL.

« In order to minimize the influence of multipath, we use
Discrete Wavelet Transform (DWT) to eliminate the
background noise, and gained good effects of denoising.

o A linear fitting peak searching algorithm is proposed to
identify Fresnel zone cutting point for improving the
accuracy of AP direction, and the correlation charac-
teristics of the CSI subcarriers found in the experiment
were further used for AP direction correction.

The rest of this paper is organized as follows. In Section II,
we present the related works. In Section III, we proposed
the framework of our algorithm, introduce the knowledge of
CSI and describe each part of the framework in detail. The
experiment and evaluation are shown in Section IV. Finally,
we summarize our work in Section V.

Il. RELATED WORK

The existing AP positioning method can be divided into
three categories: special hardware-based, RSS-based, and
CSlI-based.

A. SPECIAL HARDWARE-BASED

Most of the existing methods for positioning AP are based
on the deployment of specialized hardware (e.g., multiple
sniffers, directional antennas) [4], [8]-[10]. The rogue AP
location can be estimated by using a signal contour map
based on the distributed monitoring system which running
wireless sniffing software [4]. The monitoring server will
receive the received signal strength from wireless sniffers and
determine AP position. Adelstein er al. [8] utilize a plurality
of rotating directional antennas to collect the information
of the signal strength, then to determine the AP position.
Awad et al. [23] use a swarm of wireless connected mobile
robots to detect the AP location by gathering a small amount
of non-uniform distributed AP RSS samples collaboratively
and autonomously. However, the cost is high in the above sce-
nario of deploying multiple sniffers or directional antennas.

B. RSS-BASED
Most of RSS-based AP positioning methods assume the area
closing to AP or getting the LoS path should have a higher
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signal strength. Some research works have used RSS data
to achieve AP positioning [5], [10]-[13]. Han et al. [11]
show a method using a gradient algorithm to locate AP
position by combining the directional estimates from the RSS
direction information of multiple advantageous points . The
position of the unknown AP is obtained in [5] by manag-
ing the distance between the user at known locations and
the unknown AP, which are calculated by using attenuation
model based on the signal strength information. The arrival
angle of the data frame transmitted from the AP is estimated
by the signal strength of different directional beams which are
collected from continuously rotated directional antenna [10].
Zhang et al. [6] show that the AP direction can be determined
by estimating the greatest signal strength decline which is
caused by the obstacle of the human body at the different
directions of the wireless receiver. A point-to-point guid-
ance system is implemented using a gradient method [13].
Wilson and Patwari [14] proposed a method of Radio Tomog-
raphy Imaging (RTI) to track actions at the target area with
sensor nodes deployed, and use the extra investment to
mitigate the effects of multipath. Awad er al. [22] utilize
received signal strength to estimate the distance between
the AP transmitter and some known locations around, and
proposed a Particle Swarm Optimization algorithm to search
for the AP optimal location by matching the given sample
set. The received signal strength sample set, along with their
corresponding known locations will be the input of their
algorithm. However, The RSS-based AP positioning method
hard to achieve an ideal accuracy due to the complex indoor
environments.

C. CSI-BASED

The fading characteristics of the human body in blocking
AP are analyzed in [15]. People are required to stand in
different positions and make a series of actions, then the
AP direction is obtained by using the amplitude correlation
and the amplitude orthogonal transformation in the time
domain. Based on [15], Wang et al. [21] leverage the fre-
quency domain CSI phase and the multiple antennas on the
device to further improve the direction estimation accuracy.
The determined direction of the rogue AP can facilitate the
rogue AP localization by directly pinpointing the rogue AP
using spatial diversity (with the directions determined at
multiple locations). In SpinLoc [16], the power delay pro-
file (PDP) is used to obtain EDP, and the user need to rotate
for estimating the direction of the AP. The signal attenu-
ates in different ways due to the human blocking, therefore
the attenuate can reveal the direction of AP in the indoor
environment.

Above methods either require high infrastructure cost and
extensive labor or lack of precision, meanwhile these meth-
ods are also complicated. We proposed a new method that
just uses a simple gesture (i.e. drajwing a semicircle with
one hand) without any additional hardware to estimate the
AP location.
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FIGURE 1. Framework overview.

lll. ALGORITHM DESIGN
In this section, we introduce the basic conception of CSI and
explain the workflow of our algorithm in detail.

A. ABOUT CSI

The majority of commercial off-the-shelf WiFi devices
typically consist of multiple transmitter and receiver antennas
due to support MIMO technology, and each MIMO channel
includes multiple subcarriers. The channel state informa-
tion (CSI) estimates the channel information by indicat-
ing the channel attribute of the communication link [17].
Channel state H(f, t) at time ¢ with carrier frequency f can
be described by channel frequency response (CFR) or CIR.
By modifying the firmware of the operating system’s wireless
network card [18], a sampling version of the CFR can be
obtained from a commercial WiFi transmitter. In this paper,
we use Intel 5300 wireless network card in 2.4GHz frequency,
with 20MHz bandwidth, which can collect 30 subcarriers’
CSI information. The CFR of CSI can be described as fol-
lows:

H(k) = |[H(K)|[e/£H® (1)

where H (k) is the CSI value of the k-th subcarrier, ||H (k)||
and ZH (k) are the amplitude and phase of the k-th subcarrier.
The CIR can be obtained by inversing Fourier transform of
the CFR as follows:

n
h(r) =) aie st — i) )
i=1
For the i-th path, ai is the amplitude attenuation, 6i is phase
offset, tiis time delay, n is the total number of paths, and §(7)
is the Dirac pulse function.

B. FRAMEWORK OVERVIEW

Our experiments show that the CSI of the Wi-Fi receiving
device will be affected by moving gestures, especially when
the gesture moves through the first Fresnel zone. The Fresnel
zone is a series of concentric elliptical regions, caused by
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multipath when a wave passes by an object in the propagation
process. Due to the in phase and out of phase paths of different
lengths, constructive and destructive interference are caused.
We design a specific gesture which draws a 180-degree semi-
circle in front of the receiving end with one hand. The start
and end point are shown in Fig. 2. When the moving hand
cuts through the Fresnel zone between the AP and receiving
end. The LoS path will be blocked and induce a greater
impact on the CSI value. Therefore, by analyzing the CSI
variation, the AP direction can be estimated more accurately.
The main workflow of AP positioning algorithm is described
in Fig.1. Firstly, we determine whether there is an available
LoS path or not by analyzing the CSI in the time domain. If it
exists, the waveform in the time domain is further analyzed to
obtain the AP direction information. Otherwise, the AP posi-
tion is re-determined by changing the measurement position.
The final position of AP is obtained by using the geometrical
information based on the AP direction and combining with
the weighted centroid algorithm. The whole framework is
divided into two phases as shown in Fig. 1.

Rouge AP. é
| Rectiving End

S = i
vfw\ Rouge AP ||
Emii';/ S ———

Start coeiving End —_—— — =
1%t Fresnel Zone S =—————
Boundary of the 1% Fresnel Zone S — =
. = § =

(@) ®

FIGURE 2. Methods expressed in sketch: (a) Side view of proposed
method; (b) Top view of proposed method.

1) PREPARATION

This section consists of two steps, adjusting the direction
of measurement and identifying the Fresnel zone cutting
point. The reason why we need to adjust the direction of
measurement is that we draw a semicircle in front of the
human body with one hand rather than a complete circular
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trajectory, which avoids the occlusion of the LoS path caused
by the human body in the Fresnel zone. This means that we
can only get information in front of the human body, and
the information behind the body is unknown. If the LoS path
does not exist in the range of front semicircle the user will
be informed that turns back to measure the available data.
In this paper, we use the CIR in the time domain to analyze the
delay distribution to identify the existence of LoS path, which
is important for the AP direction calculation. Identification
of Fresnel zone cutting points mainly includes two steps:
CSI preprocessing and peak and trough identification. In CSI
preprocessing, the energy of the LoS path obtained from
the CIR is further smoothed using discrete wavelet trans-
forms (DWT). The peak and trough identification algorithm
is used to determine the position of target valley, the start and
end position of the target valley can be considered as the begin
and end of the first Fresnel zone cutting point.

2) AP POSITIONING

This section also includes two steps: determining the direc-
tion and determining the position. First, through identify-
ing the Fresnel cutting point, we judge whether the CSI
characteristics generated during the gesture movement are
in accordance with expectations, if it does match, export
the percentage of the valley in the total data collected so
as to derive the AP direction. If not match, it is neces-
sary to make a second measurement and judge if there are
some problems encountered in the LoS path identification.
However, there is no guarantee that the data gathering process
with start/end exactly simultaneous with gesture movement
process begin/stop, data redundancy may occur under this cir-
cumstances. We find that the correlation of the 30 subcarriers
in time domain show a strong continuous rising trend during
the gesture moving processs, this phenomenon can help us
correct the direction through finding the real start and end
of the semicircle. Although the arc length between the two
corresponding cutting points is determined, the waveform
between two cutting points may not be perfect symmetry,
which means the radius of the first Fresnel zone does not
must be R sin @, where R is the radius of the semicircle, 20 is
the central angle corresponding to the arc length between
the two cutting points. Weigh the asymmetry and give an
ideal corrected direction is needed. The final position of AP
is obtained by using the geometrical information based on
the AP direction and combining with the weighted centroid
algorithm.

C. THE FOUND IN EXPERIMENT
In this section, we test the effect of gestures on CSI and verify
the method of determining whether there is a LoS path.

1) THE EFFECT OF GESTURE ON CSI

The original amplitude information of 30 subcarriers gener-
ated from moving around the red arc in Fig. 2 is plotted in
the time domain in Fig. 3. In Fig. 3(a), the abscissa axis is
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FIGURE 3. lllustration of the effect of gesture on CSI: (a) 30 subcarrier
raw dat; (b) The data in (a) is converted to a different color by size.

the number of samples, and the ordinate axis is the amplitude
value.

We find that the amplitude of 30 subcarriers show a sig-
nificant fall and rise trend (i.e. a valley)in the position of
samples from 800 to 1200 in Fig. 3(a) when gesture passing
through the first Fresnel zone. Meanwhile, the 30 subcar-
riers in Fig. 3(a) are strongly correlated during the gesture
moving due to the synchronous amplitude variation. The
data in Fig. 3(a) is converted to a different color by size
in Fig. 3(b). The abscissa axis is also the number of samples,
and the ordinate axis is 30 subcarriers. The intensity of the
color indicates the magnitude of the subcarrier amplitude.
Fig. 3(b) shows the blue ribbon appears due to the amplitude
are fall and rise in the position of samples from 800 to 1200.

2) DETERMINE WHETHER THERE IS A LoS PATH

When AP behind the tester within 180 degrees range, due to
the occlusion of the human body, the influence of gesture
is not obvious. In other words, If the LoS path is blocked,
the tester needs to turn back for obtaining the available
data.
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‘We find the CIR distribution between existence of LoS path
and absence of LoS path is different. Due to the non-line of
sight (NLoS) path has more delay than the LoS path, we can
determine whether there is LoS path according to the delay
distribution. We compare the CIR distribution between LoS
path and NLoS path in Fig. 4. For each subgraph, the abscissa
axis is the time delay and the ordinate axis is the amplitude
corresponding to each delay in the time domain. The higher
the amplitude value, the higher the energy carried by the
signal arriving at that delay.

020 30
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0102030 0102030 0 102030 0 102030 O 10 20 30

(b)

FIGURE 4. CIR comparison of LoS path and NLoS path for 5 times: (a) CIR
distribution in the existence of LoS; (b) CIR distribution of the absence of
LoS path (back to AP).

Comparing Fig. 4(a) with (b), we find that there will be at
least one packet with higher energy outliers when absence
of LoS path after about 4 x 50 ns. The occlusion of the
human body during the radio propagation lead to this delay,
we can identify such outliers through using the Local Outlier
Factor (LOF) detection algorithm. The LOF algorithm can
determine whether a data is an outlier by deriving the LOF
value, which is suitable for data clusters based on different
densities. The first 20 data of 5 x 50 ns and the subsequent
delay in CIR are sorted in descending order as the input of the
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LOF algorithm. If the local outliers of the LOF algorithm are
greater than 10, we consider this point to be an outlier, and
we believe that the data collected is likely to be back to the
AP when the number of outliers is greater than 5. The outlier
points obtained by the outlier detection algorithm are shown
in Fig. 5.
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15
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FIGURE 5. The outlier point which obtained by the outlier detection
algorithm.

However, not all the NLoS paths appear outliers above
mentioned, therefore we using the delay corresponding to the
maximum amplitude of the three antennas to further address
this problem as shown in Fig. 6. We find the maximum
amplitude of LoS path in CIR is roughly concentrated at the
delay of 4 x 50 ns as shown in Fig. 6(b), which can account
for 98% of the total; the maximum amplitude of the NLoS
path is still distributed at 5 x 50 ns and 6 x 50 ns after
4 x 50 ns, accounting for 41.67% of the total in Fig. 6(a).
The delay of NLoS path is generally larger than the LoS path.
We can take advantage of this character to further determine
whether there is a LoS path.

delay-3 2.00% delay-1+3 1.50% delay-5 0.50%

delay:5 26.00%

ay-6 4.00%

delay-4 B

delay-4 98.00%

(a) (b

FIGURE 6. Distribution of CIR delay. ‘delay-n’ represents the position of
the maximum amplitude of the three antennas in CIR at the delay n x
50ns. (a) The delay distribution of the maximum amplitude for NLoS path;
(b) The delay distribution of the maximum amplitude for LoS path.

Further, we refer to the method in [24], which proposes that
use Rician-K factor and skewness quantify the differences
of the skewed envelope distribution under LoS and NLoS
dominant conditions. The data flow gathering during the
gesture movement is divided into slices so as to improve the
precision and accuracy of LoS path identification.
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D. IDENTIFY FRESNEL ZONE CUTTING POINTS

1) CSI PREPROCESSING

Raw CSI data from commercial WiFi device need to be
denoised. We find that the DWT method is more efficient
in eliminating noise than a simple discrete point removal
filter or moving average filter in this scenario, which can
extract totally the feature of CSI without losing important
features in waveform.

The LoS path signal can be obtained by using CIR, which
will mitigate the influence of channel environment such as
multipath. However, the bandwidth of WiFi AP is set to
20MHz, then the time interval between neighbor subcarriers
is m = 50ns. Therefore, if the length of path is less
than 15m, the multipath will be superimposed together to
result in indistinguishable. The LoS path signal most likely
travel directly to receiving end. In theory, the energy of LoS
path signal that first arrived at the receiving end should be
maximum, but the experiments show that it does not appear
this feature. It may be due to the other electromagnetic inter-
ference or multipath in the real world. Therefore, we chose
the path which has the maximum energy for further analysis.
Since the CIR and CFR are the Fourier transform of each
other, we use IFFT to transform the CFR in the frequency
domain to the CIR in time domain. In this paper, we use the
CFR data from one antenna pair for analysis.

Fig. 7 shows the CIR of a CSI stream when a single packet
is converted to time domain using IFFT. The abscissa axis
is time delay, and the ordinate axis is the amplitude value
corresponding to each delay. The higher the amplitude value,
the higher the energy carried by the signal arriving at the
delay. The amplitude value in the time domain reaches the
maximum at the delay of 4 x 50ns = 200ns in Fig. 7,
indicating that the signal energy arrives at this delay is the
highest, most likely to be transmitted from the LoS path.

Amplitude(time domain)

F ‘ ‘ LF 990000200 p00 QOGP d
0 5 10 15 20 25 30
Time delay

FIGURE 7. CIR image of a CSI stream when a single packet is converted to

time domain.

The trend of the amplitude of the different paths over time
are shown in Fig. 8. We find that the energy of the path first
arrived at the receiving end is small and noisy in Fig. 8(a),
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FIGURE 8. The trend of the amplitude of the different paths over time.
(a) is the path arrived first at the receiver first; (b) is the path with the
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and the path with second maximum energy is also full of
noise in Fig. 8(c), the maximum energy has the specific
characteristic in Fig. 8(b).

To achieve a better denoising result, the DWT method is
utilized to denoise the signal with maximum energy. We per-
form five-layer wavelet decomposition to get the coefficient
of five layers of decomposed components (connected in a
vector) and the length of each component. Then through
reconstructing the five-layer approximation, the denoised
data obtained. By using the DWT method for time-varying
amplitude information, we can obtain the denoised waveform
of amplitude information. The effect of denoising is shown
in Fig. 9, where the blue line represents the original data and
the red line represents the data after executing DWT method.

15

Amplitude

O L L L L
0 500 1000 1500 2000
Sample

FIGURE 9. The effect of denoising using DWT.

2) PEAK AND TROUGH IDENTIFICATION

A linear fitting peak searching algorithm is proposed to
extract the waveform information, where the sensitivity of the
recognition is controlled by the critical value of the slope and
the amplitude threshold. We can obtain the location, ampli-
tude, peak width, duration, continuity and other parameters
of the peaks and trough by combining the rising and falling of
curves with the amplitude difference and the slope. We detect
the valleys by looking for upward zero-crossings in the first
derivative that exceed the critical value of the slope, and
return a list containing valley number and position, depth, and
width of each valley. The number points around the bottom
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part of the valley are fitting to a parabola to determine the
valley vertex and width. The position of peak is obtained
using the similar method for finding valleys. We adopt the
least squares linear fitting method, and use quadratic function
and Gaussian function separately to derive a series of trough
and peak points. Finally, we get the valley most likely to be
cut in the first Fresnel zone, and get the Fresnel zone cutting
point.

The effect of peak and trough identification method is
shown in Fig.10. Fig. 11 further shows the accuracy of the
peak and trough identification method. It can be found that
the median accuracy of our method is 98.84%.

14 .

12

10

Amplitude

0 500 1000 1500 2000 2500
Sample

14 ;

Amplitude

O L 1 L L
0 500 1000 1500 2000 2500
Sample
(b

FIGURE 10. The effect of peak and trough Identification. The location and
serial number of the peaks and troughs are marked with red circles and
numerals. (a) is the trough we found; (b) is the peaks we found.

Many factors such as the amplitude of the peaks and
troughs, the law of variation, etc. should be taken into account
when we analyze the relationships between all the peaks and
troughs, finally obtain a ‘valley’ and find the Fresnel cutting
points as shown in Fig.12, the location of ‘start’ and ‘stop’
are the start and end point of the first Fresnel zone detected
by our method.
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FIGURE 12. The Fresnel cutting points we found.

E. AP POSITIONING

1) DIRECTION DETERMINATION

We find the scope of the first Fresnel zone through the iden-
tification of the Fresnel zone cutting point, then determine
whether the CSI characteristics generated during the gesture
movement in the first Fresnel zone are in accordance with
expectations, if it does match, we will export the percentage
of the valley in the total data and derive the direction infor-
mation.

However, there is no guarantee that the data gathering pro-
cess with start/end exactly simultaneous with gesture move-
ment process begin/stop. Therefore, there will be redundancy
before and after the collected data and direct calculation will
lead to an inaccurate result. Meanwhile, we find that the
correlation of the 30 subcarriers in time domain shows a
strong continuous rising trend during the moving of gesture
in Fig. 13. We can determine the positions of the real start and
end of the semicircle at the red dotted line in Fig. 13 by using
this signal character.

We adopt sliding window to measure the correlation of
subcarriers by using the sum of the standard deviations of
the individual subcarriers in each window. The window with
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FIGURE 13. The correlation of the 30 subcarriers in the time domain
show a strong continuous rising trend during the moving of gesture.

the gesture moving is the most relevant window which has
maximum sum of standard deviation.

The correlation of the j-th window can be measured by the
following formula:

S

s > a
window_end 1 S Z la(i) — t:ls |
. i=1
p= Y g k) - E )
window_init k=1

3)

Where both window_init and window_end are the start and
end of the j-th window, and a(i) is the amplitude of the i-th
subcarrier. S is the number of subcarriers, and in this case,
S is 30.

2) POSITIONING

We can use the principle of Fresnel directly to calculate
the distance from the AP, and then determine AP’s posi-
tion as shown in Fig. 14. The calculation formula is as
following:

VB H PR r G =di+d 422 =d4r2 @)

Where F is the radius of the first Fresnel zone, A is the
wavelength of subcarrier and d; and d> are the intermediate
variables used to calculate d. If F;, d; and A are known, the
distance d between the receiving end and the transmitting
end can be obtained. The corresponding center angle 6 is
calculated from the percentage of the number of samples
between the two Fresnel zone cutting points and the total
number of samples in the process of drawing semicircle,
combine with the radius of the semicircle R and trigonometric
functions the F; can be calculated. However, in the case of
fixing the transmitter, since the characteristics of the ellipse,
the gap of 6 between the different first Fresnel zone ellipse
is small caused by the change of the focal length, result in
the difference between the two Fresnel cutting points is very
small. For an example, if the total number of samples is 2500,
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Radius of the 1*' Fresnel Zone

Fresnel cutting point —— y
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FIGURE 14. Calculate the distance using the Fresnel zone model.

the distance between transmitter and receiver are 100m and
10m corresponding the number of samples between Fresnel
zone cutting point were 1292 and 1282 in theory, this 10 sam-
ples can cause a distance error of 90m.

In our method, the final position of AP is determined by
using the coordinates of three positions combined with the
direction of each position relative to the transmitter, and then
using the weighted centroid algorithm. The final position
(Xfinal, Yfinal) of the AP is calculated according to the follow-
ing formula:

n m
Z (x; x Zdj)
Hingl = ——I= 5)
m X Z d,'
i=1
n m
> i x Yo d)
Yfinal = 1_1+ (6)
m X Z di
i=1
Whered; is the maximum amplitude received from LoS
path of each position. (x;, y;) is the intersection of the straight
lines which determined by the coordinates of these positions
and corresponding directions, three positions are used in this
paper as shown in Fig. 15. The reason why the maximum
amplitude of the LoS path is used as the weight is that it can be
propagated through the LoS path without multipath affection,

and fits to be the representative of the distance between the
AP and receiver.

IV. PERFORMANCE EVALUATION

A. EXPERIMENTAL METHODOLOGY

1) EXPERIMENTAL SETUP

We use a laptop running the Ubuntu 12.04 operating sys-
tem with the kernel version number 3.13.0 assembling an
IWL 5300 wireless card with 802.11n Wi-Fi network, and a
commercial wireless AP (TP-LINK TL-WR886N) to com-
plete our experiment. The bandwidth is set to 20MHz.
Each package includes 30 subcarriers. We use the ping
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TABLE 1. The results of the LOS path identification method.

Evaluation Indicator Formula Percentage
T iti o
rue Positive Rate TPR - TP 94%
TP + FN
T 1 0,
rue Negative Rate TNR - TN 95%
TN + FP
False Positive Rat 9
alse Positive Rate FPR - FP 5%
FP + TN
1 0,
False Negative Rate FNR — FN 6%
FN + TP
Precision po_ TP 94.9%
TP + FP
Accuracy TP + TN 94.5%

“ TP+ FN + FP + TN

command to simulate the communication between the laptop
and AP, where the data transfer rate is about 150 packets
per second.

2) EXPERIMENTAL SCENARIOS

Our experiments are carried out in two classrooms, filling
with desks and students who may sit there or walk around
occasionally. This means that our experiments are surely
affected by multipath interference. Since every classroom
has its own wireless APs, The both adjacent classrooms will
receive the interference of wireless signals from each other.
The sizes of both classrooms are /6.3 m x /1.7 m and
11.6 m x 7.7 m respectively. In each classroom, we run
multiple tests for our each experiment, taking into account
the situation of the AP in all directions, including the AP in
front, behind, right front, right rear, left rear, left front of the
receiver.

B. LoS PATH IDENTIFICATION
Table 1 shows the statistic results of the LoS path identifica-
tion method in 200 time tests.

FIGURE 15. Position Estimation.
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True Positive (TP) means that the NLoS sample is pre-
dicted as NLoS. True Negative (TN) means that the LoS
sample is predicted as LoS. False Positive (FP) means that
the LoS sample is predicted as NLoS. False Negative (FN)
means that the NLoS sample is predicted as LoS. As we can
find from Table 1, the accuracy and precision of this method
on whether there is a LoS path are 94.5% and 94.9%. The
performance was an improvement as compared to compare to
an overall LoS identification rate of 90.4% with a false alarm
rate of 9.3% achieved in [24].

C. DIRECTION ESTIMATION

Fig. 16 shows the angle value obtained after running 300 time
tests. The reference angle is 90 degrees. We can find that the
CSlI-based deviation from the reference angle is quite small
and stable comparing with RSS-based.

180

160 T 11 |k

0 + . o E_ -
0 50 100 150 200 250 300
Number of experiments

FIGURE 16. The distribution of angle.
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02r fj

0.1+
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Angular Error

FIGURE 17. The CDF of angle errors.

Fig. 17 shows the CDF of the angular determination
errors. For CSI-based method, the average error is about
11.29 degrees, the median error is about 9.98 degrees,
the maximum error is 24.90 degrees, 90% errors are less than
23 degrees. Comparing with RSS-based method, the aver-
age error is about 29.05 degrees, the maximum error is
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89.87 degrees, the median error is 29.05 degrees. The per-
formance of CSI-based method has more improvement than
CSI-based method. Besides, we compare our method with the
method in [15] and [21] also shown in Fig. 17. It is obvious
that our method can achieve a smaller angular error than the
method in [15] and [21]. Importantly, our algorithm is more
simpler, which does not require people to stand in a specific
location and walk along a specific route.

D. POSITION ESTIMATION

As shown in Fig. 18, the maximum error of our CSI-based
algorithm is 8.25m, the average error is 0.99m, the median
error is 0.58 m,and over 90% of the errors are less than 2.5m.
Comparing with the RSSI channel log attenuation model
proposed in [5], the distance error is 617.17m, the average
error is 17.30m, the mean of error is 4.08m. Our method
has a much better positioning performance than RSS based
method.

0.4

03 RSS-based

CSl-based
Method in [15) 1
Method in [21]

0.2

0.1

0 5 10 15
Location Error(m)

FIGURE 18. The CDF of distance errors.

Our algorithm comparing with the method in [15] and [21]
is also shown in Fig. 18. Our method converges faster than
the method in [15] and [21] and can achieve a lower posi-
tioning error, Such as our median error of 0.58m lower than
1.06m in [15] and 3.5 feet in [21]. Meanwhile, our method
has a simpler implementationas mentioned above. Although
Awad et al. [23] achieve a lower localization error, it depends
on at least one robot and the execution time takes a minimum
of 18 min. Besides, the Particle Swarm Optimization method
in [22] is a RSS-based AP positioning depending on the
sample set size and need a legitimate access point with a
known location. the performance of their algorithm gets the
best result when the sample set size is 60, the positioning error
is 0.7m. Our positioning error is smaller, and our implemen-
tation does not need any prior knowledge of the environment.

V. CONCLUSION

In this paper, an AP positioning algorithm based on channel
state information and Fresnel zone is proposed, which can just
draw a semicircle with one hand to estimate the AP location.
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We use a single receiver to measure the CSI information with-
out high infrastructure cost and extensive labor. Based on the
CSI character of moving hand through Fresnel Zone, we can
compute the AP direction firstly, and then determine the AP
location combining with the AP directions computed in any
three positions. Our algorithm includes two phase: prepara-
tions and AP positioning. Preparations include both calibrat-
ing AP direction and identifying Fresnel zone cutting points.
AP positioning includes both AP direction determination and
AP position determination. Our experiment results show that
the accuracy and precision of our method on whether there is a
LoS path are 94.5% and 94.9%, and the median error is about
9.98 degrees of the CSI-based angle determination method,
meanwhile, the median positioning error is 0.58 m, and about
90% of the positioning errors are less than 2.5m. Our algo-
rithm taking advantage of finer-grained CSI and Fresnel char-
acteristic has a significant improvement than other methods.
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