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ABSTRACT The ac–dc hybrid distribution network is a credible path for the future evolution of distribution
network. State estimation is a paramount foundation for the safe and stable operation of the complex
distribution network. The application of the centralized state estimation method in an ac–dc distribution
network has some obstacles, such as low computational efficiency, large communication capacity, and
privacy protection problem. Based on the three-stage state estimation theory, this paper established a three-
stage state estimation model for the ac–dc hybrid distribution network integrating supervisory control and
data acquisition system and phasor measurement unit. The proposed three-stage estimation model achieves
linearization of the nonlinear state estimation for the ac–dc hybrid distribution network. That is, the first and
third stages simply solve the linear state estimation problem, and the second stage is a one-step nonlinear
transform. Moreover, the alternating direction method of multipliers (ADMM) is applied to solving the
distributed problem. Thus, an accurate and efficient three-stage distributed state estimation method for the
ac–dc hybrid distribution network is proposed. In this method, ac subsystems and dc subsystems execute
state estimation tasks based on local information and eventually achieve the overall consistency of the system
state estimation through the transfer iteration of the boundary information, respectively. The combination
of bilinear theory and ADMM ensures the convergence of distributed state estimation while improving
computational efficiency. The simulation results verified the advantage of the proposal over the existing
methods in many aspects.

INDEX TERMS Distributed state estimation, ac-dc hybrid distribution network, phasor measurement
unit (PMU), three-stage state estimation modeling, alternating direction method of multipliers (ADMM).

I. INTRODUCTION
A. MOTIVATIONS
With the increasing penetration of distributed generation
and electric vehicles, more and more DC equipment will
be embedded into the distribution network in the future.
The traditional AC distribution network will face severe
challenges such as power quality and power supply reli-
ability. Considering that the distribution network is still
dominated by AC loads, AC-DC hybrid distribution net-
works would become an important form of smart distribution
network [1]–[4]. Against the background of the present
AC/DC hybrid mode in the current distribution network, it is

crucial to grasp the actual state of the dynamic source and
load in the distribution network. State estimation is the basis
of power system operation analysis and coordination control,
which is a key part of energy management system [5], [6].
It is necessary to study the state estimation technology of
AC-DC hybrid power distribution network.

Unlike traditional distribution networks, AC-DC hybrid
distribution networks are interconnected by multiple AC
and DC subsystems, therefore the topology and operating
mode of AC-DC distribution network are decentralized [7].
Compared to the centralized method, distributed methods
have advantages in computational efficiency, communication

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

39027

https://orcid.org/0000-0003-3021-9903
https://orcid.org/0000-0002-9067-8020
https://orcid.org/0000-0001-5989-3497


X. Kong et al.: Three-Stage Distributed State Estimation for AC–DC Hybrid Distribution Network

pressure, and information protection [8], [9]. Currently,
some studies have been made on the decentralized operation
control of AC-DC hybrid distribution network [10]–[12].
However, there is a lack of extensive and in-depth discussion
on the application of decentralized state estimation methods
in AC-DC hybrid distribution network.

References [13] and [14] study centralized state estimation
for AC-DC hybrid power grids, but when the system is large,
computational efficiency will limit its application. The litera-
ture [8] has studied the distributed state estimation method of
the AC-DC microgrid, but this method is only applicable to
the case that the measurement equation is linear. With nonlin-
ear measurements, literature [15] proposed a fully distributed
robust state estimation method that is applicable to multiarea
power systems. The proposed method was proved of good
robustness and convergence, but it did not discuss its applica-
bility in AC-DC hybrid power grids. The literature [16]–[18]
use a decomposition-coordinated two-level approach to dis-
tributed state estimation, but generally, only sub-optimal
solutions can be obtained [19]. Compared with the two-level
distributed method, the literature [20] proposes a distributed
method that directly exchanges boundary bus information in
adjacent areas and does not require a central coordination
side based on the Lagrangian relaxation optimization theory.
This kind of distributed method is easier to implement and its
estimation result is closer to the integral method, but the con-
vergence performance is weaker [19]. Based on Lagrangian
Relaxation method, distributed state estimation methods for
AC/DC network were proposed in [21]. However, the pro-
posed method requires relatively large number iterations to
converge and the convergence would become worse when the
system is larger.

In addition, the configuration of the phasor measurement
unit (PMU) facilitates the development of distributed state
estimation. The sampling frequency and measurement accu-
racy of PMU are better than that of the SCADA system [22].
However, the higher cost currently restricts its overall config-
uration in the distribution network. Thus the mixed measure-
ment environment in which the SCADA system is combined
with the proper deployment of the PMU is in line with practi-
cal engineering applications. The combination of PMUwould
improves the accuracy of the state estimation. The distributed
approach of [23] and [24] take into account SCADA systems
and PMU mixed measurements, but the main focus is on
transmission network. The literature [25] uses PMUmeasure-
ment to convert the state estimation into a linear least-squares
problem. It is solved by the alternating direction multiplier
method (ADMM). This method has higher estimation accu-
racy and convergence speed. But the model assumes that all
themeasurements are obtained from PMU, so the engineering
application background is not strong. Overall, although the
modern power grid is equipped with a certain number of
PMUmeasurements, it is still difficult to ensure that the entire
network can be observed, so taking into account the mixed
measurement of SCADA systems and PMU state estimation
has more engineering research value.

This paper aims to propose an efficient and robust dis-
tributed state estimation method for AC/DC distribution net-
works under mixed measurement environment.

B. CONTRIBUTIONS
The contributions of this paper include the following:

1. This paper establishes a three-stage state estimation
model of AC-DC hybrid distribution network with voltage
converters under mixed measurement environment integrat-
ing SCADA and PMU. The bilinearization of the state esti-
mation for AC-DC hybrid distribution network, which is a
nonlinear problem, is realized in the proposed model.

2. This paper proposes a distributed state estimation
method based on the proposed three-stage model and
ADMM. ADMM is used to realize the decoupling of
AC-DC system and to solve the distributed state estimation.
Compared with the centralized distributed state estimation
method, the proposed method has higher computational effi-
ciency. Moreover, the proposed method has higher accuracy
and better convergence characteristics compared with exist-
ing distributed state estimation method.

II. THREE-STAGE STATE ESTIMATION MODEL FOR
AC-DC HYBRID DISTRIBUTION NETWORK
A typical AC-DC hybrid distribution network structure is
shown in Figure 1: AC subsystem and DC subsystem are con-
nected through the voltage converter for the coordinated oper-
ation between subsystems. Meanwhile, each subsystem has
strong independence and autonomy. Among them, the equiv-
alent circuit of the voltage converter is also shown in Figure 1.

The power PACVSCk , Q
AC
VSCk , P

DC
VSCk transmitted between

the AC and DC systems in Figure 1 can be described in
equations (1)-(3):

PACVSCk =
µkMk
√
2
V AC
VSCkV

DC
VSCklYk sin

(
θACVSCk − αk

)
+

(
V AC
VSCk

)2
Yk sinαk (1)

QACVSCk =
−µkMk
√
2

V AC
VSCkV

DC
VSCkYk cos

(
θACVSCk − αk

)
+

(
V AC
VSCk

)2
Yk cosαk −

(
V AC
VSCk

)2
/Xk−c (2)

PDCVSCk =
µkMk
√
2
V AC
VSCkV

DC
VSCkYk sin

(
θACVSCk + αk

)
−

(
µ2
kM

2
k

2

)(
VDC
VSCk

)2
Yk sinαk (3)

In the equations above, Yk = 1
/√

R2k + X
2
k−l andMk denote

the voltage converter variable ratio µk represents the voltage
utilization of voltage converter. In the hybrid system, the state
variables of AC subsystem are xACk =

[
VACk , θACk

]T , and
the state variables of DC subsystem are xDC = [VDC ]T . The

state variables of system are x =
[
xTAC1

, · · · , xTACK , x
T
DC

]T
,

where K denotes the total number of the subsystem in the
hybrid system.
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FIGURE 1. AC and DC distribution network structure and voltage converter equivalent circuit diagram.

System measurement variables, including node volt-
age amplitude measurement, injection power measurement,
branch current measurement and branch power measure-
ment, etc., can be divided into AC subsystem measurement,
DC subsystem measurement and the measurement of con-
verter position. This paper extends the converter position
measurement to the DC subsystem. Thus the systemmeasure-
ments can be uniformly expressed as the following forms:

z =


zAC1
...

zACK
zDC

 =

hAC1

(
xAC1

)
...

hACK
(
xACK

)
hDC (x)

+

rAC1
...

rACK
rDC

 (4)

where zACk , hACk and rACk denote the
measurement, the measurement equation and the measure-
ment residual of AC subsystem k , respectively. zDC , hDC
and rDC denote the measurement, the measurement equation
and the measurement residual of DC subsystem, respectively.
Based on weighted least square method, the state estimation
model of the hybrid system is established as:

min JDC (x)+
K∑
k=1

JACk
(
xACk

)
(5)

JDC (x) = rTDCR
−1
DCrDC (6)

JACk
(
xACk

)
= rTACkR

−1
ACk rACk (7)

whereRACk andRDC are the measurement covariance matrix
of AC subsystems and DC subsystems, respectively. The
measurement variable zACk of AC subsystems can be repre-
sent by the state variable xACk . As for the DC subsystems
measurement zDC , however, the measurement variable of
voltage converter from is related to both the state variables
of DC subsystems and AC subsystems. Resulted from the
weak coupling between the state variables of DC subsystems

and AC subsystems, the model of the hybrid distribution
network can not be solved directly in a distributed form. Also,
under normal circumstances, the measurement equation in
the power system is not linear with the state variables, and
the state estimation model is non-convex. If the distributed
optimization algorithm is used, the convergence can not be
guaranteed.

Therefore, based on the three-stage state estimation theory,
a three-stage state estimation model for AC-DC hybrid dis-
tribution network is constructed in this paper by introducing
intermediate variables and constructing linear measurement
equations.

A. THE FIRST-STAGE STATE ESTIMATION MODEL
In this stage, the state estimation is based on the system
measurement z. It is defined that the first-stage state vari-
ables of AC subsystem and DC subsystem are yACk and yDC
respectively. The first-stage state variable y of the system is
the union of yACk and yDC .

yACk =
{
UACk ,i;KACk ,ij;LACk ,ij

}
i,j∈ACk

(8)
KACk ,ij = VACk ,iVACk ,j cos θACk ,ij
LACk ,ij = VACk ,iVACk ,j sin θACk ,ij
UACk ,i = V 2

ACk ,i

(9)

yDC =
{
UDC,i;KDC,ij;KVSCk ;LVSCk

}
i,j,k∈DC (10)

KDC,ij = VDC,iVDC,j
UDC,i = V 2

DC,i
KVSCk = VDC

VSCkV
AC
VSCk cos θ

AC
VSCk

LVSCk = VDC
VSCkV

AC
VSCk sin θ

AC
VSCk

(11)

y =
[
yTAC1

, · · · , yTACK , y
T
DC

]T
(12)

It is not difficult to verify that any element in the measure-
ment z can be expressed linearly by y, that is, z = Ay + r.
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The first-stage state estimation model based on the weighted
least square method has the following form:

min J f (y) = rTWr (13)

In the formula, theW is the weight coefficient matrix of the
measurement, W = R−1. Because R is diagonal matrix and
A is full rank array, the model is convex. Let the calculation
result of the model be y, the gain matrix and the covariance
formula can be described as:

Gy = ATR−1A (14)

cov (y) = G−1y (15)

B. THE SECOND-STAGE NONLINEAR TRANSFORMATION
In this stage, the calculation result y of the first-stage
model is nonlinearly transformed to obtain the second-
stage intermediate variable u. Among them, the conver-
sion process of AC subsystems and DC subsystems is
shown in equation; intermediate variablesuis expressed in
equation (16)-(18).

ϕACk ,i = lnUACk ,i

ϕACk ,ij = ln
((
KACk ,ij

)2
+
(
LACk ,ij

)2)
θACk ,ij = θACk ,i − θACk ,j

(16)


ϕDC,i = lnUDC,i

ϕDC,ij = ln
(
KDC,ij

)2
ϕVSCk = ln

((
KVSCk

)2
+
(
LVSCk

)2)
θ sVSCk = ac tan

(
LVSCk /KVSCk

) (17)

u =
{
ϕACk ,i, θACk ,ij, ϕACk ,ij, θ

AC
VSCk , ϕDC,i, ϕDC,ij

}
(18)

For a more convenient description, the non-linear conver-
sion process is expressed as a non-linear function u = f (y).
Let Fu be the Jacobi matrix of f (y) at y, then the covariance
matrix of u and its gain matrix Wu can be obtained by
equation (19),(20).

cov (u) = Fcov (y)FT (19)

Wu = cov−1 (u) = F−Tu GyF−1u (20)

C. THE THIRD-STAGE LINEAR STATE ESTIMATION MODEL
In this stage, the state estimation is based on the calcu-
lation result u of the second-stage model. Let the third-
stage state variables of AC subsystem and DC subsystem
be xtACk and xtDC . The state variables of hybrid system is
defined as xt .

xtACk =
{
lnVACk ,i; θACk ,i

}
(21)

xtDC =
{
lnVDC,i

}
(22)

xt =
[
xtAC1

T
, · · · , xtACT

T
, xtDC

T
]T

(23)

It is not difficult to verify that the intermediate variable u
can be expressed linearly by x, that is u = Cxt + ru. There-
fore, the third-stage state estimation model can be established

in equation (24) and (25).

min J t (x) = (u−Cx)T Wu (u−Cx) (24)

C =

 I 0∣∣AT∣∣ 0
0 ATτ

 (25)

D. THREE-STAGEE STATE ESTIMATION MODEL
CONSIDERING PMU MEASUREMENT
Compared with the traditional SCADA systemmeasurement,
PMU can directly measure the phase angle of the bus voltage.
In the distributed state estimation, the PMUmeasurement can
be configured on the reference bus in each area to achieve
the conversion from the reference bus to the reference bus
of each area. However, although the PMU measurement
accuracy is high, there is also some random noise. It is not
precise enough to directly use the PMU measured value of
each sub-area reference bus as the true value, and multi-
ple sub-zones may be configured with PMU measurements.
Therefore, in addition to the reference bus of the whole
network, it is necessary to participate in the state estima-
tion together with the measurement of the PMU and the
SCADA system measurement. Based on the above bilinear
model, the PMU measurement can be considered in the third
stage: [

u
θP

]
=

[
C
CθP

]
xt (26)

where: θP is the measured value of PMU, and CθP is a
constant matrix composed of 0 and 1, which guarantees the
linear relationship between the measurement variables and
the state variables in the third stage.

III. ADMM BASED DISTRIBUTED STATE ESTIMATION
METHOD FOR AC-DC HYBRID DISTRIBUTION NETWORK
A. THE FIRST-STAGE DISTRIBUTED STATE ESTIMATION
In the first stage, the measuring equations of AC subsystem
and DC subsystem are expressed in equation (27)-(28):

zACk = AACkyACk + rACk (27)

zDC =
K∑
k=1

UAC
VSCk



0
...

Yk sinαk
Yk cosαk − 1/Xk−c

0
...


+ADCyDC + rDC (28)

where zAC is linearly related to yAC , and zDC is linearly related
to
{
yDC ,UAC

VSCk

}
. Define new variables UAC ′

VSCk = UAC
VSCk

and the system variable yDC can be extended to yDC+ =[
UAC ′
VSC1

, · · · ,UAC ′
VSCK , yDC

]T
. Thus the first-stage state esti-
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mate is equivalent to the following form:

min
K∑
k=1

J fACk
(
yACk

)
+ J fDC (yDC+)

s.t UAC ′
VSCk = UAC

VSCk , ∀k (29)

J fACk
(
yACk

)
= rTACkR

−1
ACk rACk (30)

J fDC (yDC+,) = rTDCR
−1
DCrDC (31)

In equation (29), the overlap UAC
VSCk in yAC and yDC+

is included in the state estimation model as an equality
constraint. In the objective function of this model, the
AC-DC subsystem is decoupled, and the equality con-
straint is the only reason for the coupling of the
AC-DC subsystem state estimation. In the theory of decen-
tralized optimization, the constraints that make the optimiza-
tion problem difficult to disperse are generally called ‘‘hard
constraints’’.

As a decentralized optimization algorithm, alternating
direction multiplier method (ADMM) is to make ‘‘hard
constraint’’ relaxed into the objective function, so that the
original problem is decomposed into multiple sub-problems
for parallel solution [26]–[28]. When the original problem
is convex, ADMM theoretically can eventually converge.
The Lagrange function is constructed using the ADMM as
follows:

min LR (yAC, yDC, λ) = JAC,1 (yAC)+ JDC,1 (yDC)

+ λ(UAC ′
VSCk − U

AC
VSCk )+

ρ

2

∥∥∥UAC ′
VSCk − U

AC
VSCk

∥∥∥2
2

(32)

λk = λk−1 + ρ
(
EACykAC−CA+η

(
EDCykDC−CD

))
(33)

λ is the Lagrange multiplier, which is updated based on
the second derivative method. Its role is to coordinate yAC
and yDC to ensure that the relaxation of the equation con-
straints. And ρ represents the penalty factor. In this paper,
the subderivative method is used to iterate the multiplier. The
concrete steps are as follows:

ymACk := argmin J fACk
(
yACk

)
− λm−1k UAC

VSCk (34)

ymDC+ := argmin J fDC (yDC+)+ λ
m−1
k UAC ′

VSCk (35)

λmk = λm−1k + ρλ

(
UAC ′−m
VSCk − U

AC−m
VSCk

)
(36)

In equation (34)-(36), the superscript m indicates the num-
ber of iterations. Equation (34) and equation (35) are state
estimation subproblems, where λm−1k is a known value and
the subproblems therefore can be solved in parallel in AC and
DC subsystem. Equation (36) represents the Lagrange multi-
plier iterative formula, involving the amount of the boundary
UAC ′
VSCk and U

AC
VSCk . The multiplier update can be implemented

in twoways. The first is to set up an intermediate coordination
mechanism between the AC and DC subsystems. The sub-
system transmits the boundary information to the intermedi-
ate coordination mechanism. The intermediate coordination
mechanism updates the multiplier and sends it to the related

subsystem. The other is that without the intermediate coor-
dination mechanism, the boundary between the AC and DC
subsystems is transferred to each other, and the subsystem
respectively performs multiplier update. This paper utilizes
the latter way as an implementation. Iteration convergence
condition is set to (for a very small amount) be as follows:∥∥∥λm − λm−1∥∥∥ ≤ ελ (37)

The realization of the first stage distributed state estimation
mechanism is shown in Figure 2.

FIGURE 2. The mechanism of the first-stage state estimation.

The state estimator is located in each subsystem to collect
the topology, parameters, measurement information and the
bounds of the connected subsystems. And the state estimation
subproblems are calculated and the Lagrange multipliers are
updated. AC subsystems and DC subsystems respectively
execute state estimation tasks based on local information,
and eventually achieve the overall consistency of the system
state estimation through the transfer iteration of the boundary
information.

In this process, the AC-DC subsystem state estimator com-
putes in parallel, which improves the computational effi-
ciency and the local information of the subsystem does not
need to be uploaded uniformly, so the traffic is significantly
reduced.

Let the results be yAC and yDC , and within the allowable
range of error, UAC ′

VSCk = UAC
VSCk .

B. THE SECOND-STAGE DISTRIBUTED STATE ESTIMATION
The intermediate variable u in the centralized state estimation
is split into the AC part and the DC part, and the intermediate
variables of theAC subsystem and theDC subsystem are uACk
and uDC , respectively.

u =
[
uTAC1

, · · · , uTACK , u
T
DC

]T
(38)

uACk =
{
ϕACk ,i, θACk ,ij, ϕACk ,ij

}
(39)

uDC =
{
ϕDC,i, ϕDC,ij, ϕVSCk , θ

AC
VSCk

}
(40)

From Section 2.2, it can be seen that the non-linear con-
version steps of the AC subsystem and the DC subsystem
can be represented as the equation (41) and equation (42),
respectively. When the subsystems perform non-linear trans-
formations, they do not need to transfer information and
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can be directly solved according to the local first-stage state
estimation results.

uACk = fACk
(
yACk

)
(41)

uDC = fDC (yDC ) (42)

C. THE THIRD-STAGE DISTRIBUTED STATE ESTIMATION
In AC subsystem, uACk can be expressed linearly by
xACk :uACk = CACk xACk + r tACk . In DC subsystem, in addi-
tion to the linear correlation with xDC , uDC is also associ-
ated with elements

{
lnV AC

VSCk ; θ
AC
VSCk

}
from xACk . Define new

variables lnV AC ′
VSCk and θAC

′

VSCk , where lnV AC
VSCk = lnV AC ′

VSCk ,
θACVSCk = θ

AC ′
VSCk .

Expand xDC to xDC+, then uDC can be linearly represented
by xDC+.

xtDC+ =
{
lnVDC,i; lnV AC ′

VSCk ; θ
AC ′
VSCk

}
(43)

uDC = CDCxDC+ + r tDC (44)

According to the derivation of Wu in the appendix, the
specific expression of J t (x) is as follows:

J t (x) =
K∑
k=1

(
r tTACkW

ACk
u r tACk

)
+r tTDCW

DC
u r tDC

+ 2
K∑
k=1

(
lnV AC ′

VSCk−lnV
AC ′
VSCk

){(
θACVSCk−θ

AC ′
VSCk

)
·θV

+

(
ϕVSCk − lnV AC ′

VSCk − lnVDC
VSCk

)
· ϕV

}
(45)

The sub-objective functions of the AC and DC subsystem
are defined in equation (46) and equation (47), respectively.
The third-stage system state estimation model is equivalent
to the following problem in equation (48). Among them,
the overlap between the state variables of AC and DC sub-
system is included in the state estimation model in the form
of equality constraint.

J tACk
(
xACk

)
=
(
r tACk

)T WACk
u

(
r tACk

)
(46)

J tDC (xDC ) =
(
r tDC

)T WDC
u

(
r tDC

)
+ 2

K∑
k=1

(
lnV AC

VSCk − lnV AC ′
VSCk

)
×

{(
θACVSCk − θ

AC ′
VSCk

)
βk

+

(
ϕVSCk − lnV AC ′

VSCk − lnVDC
VSCk

)
γk

}
(47)

J t (x) =
K∑
k=1

J tACk
(
xACk

)
+ J tDC (xDC )

s, tlnV AC
VSCk = lnV AC ′

VSCk , ∀k

θACVSCk = θ
AC ′
VSCk (48)

It can be found that the state estimation model in the third
stage is similar to the first stage, so a distributed method

similar to the first stage can be used. The specific solution
process is as follows:

xmACk := argmin J tACk
(
xACk

)
− πm−1lnV AC

VSCk

− νm−1θACVSCk (49)

xmDC := argmin J tDC (xDC )+ π
m−1lnV AC ′

VSCk

+ νm−1θAC
′

VSCk (50)

πmk = πm−1k + ρπ

(
lnV AC ′−m

VSCk − lnV AC−m
VSCk

)
(51)

νmk = νm−1k + ρν

(
θAC

′
−m

VSCk − θ
AC−m
VSCk

)
(52)

The final iteration convergence condition is set to:∥∥∥πmk − πm−1k

∥∥∥+ ∥∥∥νmk − νm−1k

∥∥∥ ≤ επν (53)

From the analysis of above process, the AC andDC subsys-
tem state estimator estimate the state of the subsystem accord-
ing to the equation (49) and the equation (50), and transfer the
boundary values

{
lnV AC

VSCk ; θ
AC
VSCk

}
and

{
lnV AC ′

VSCk ; θ
AC ′
VSCk

}
to

each other. The subsystem state estimators update the iterative
multipliers according to Equation (51) and (52), and so on
until it converges.
This section mainly analyzes the distributed state esti-

mation method of AC-DC hybrid distribution network. The
method is divided into three stages. The first stage and
the third stage are the state estimation processes. The
AC-DC subsystem is decoupled based on the ADMM, which
achieves the distributed solution to the system state estima-
tion. The second stage is a nonlinear transformation. In this
stage, AC-DC subsystem calculates the value of the inter-
mediate variable of the subsystem based on the results of
the first stage respectively, which is used as the equivalent
measurement of the third stage of the subsystem. The specific
process of the third-stage distributed state estimation is shown
in Figure3.

IV. SIMULATION AND RESULTS
In order to verify the validity of the proposed method, the sys-
tem in the literature [27] is used as a simulation example.
The system includes a 7-node DC distribution network. The
DC distribution network is connected to nodes #6, #7, and
#8 of the IEEE 33 node distribution network through volt-
age converters at three nodes #1, #3 and #5 respectively.
Figure 4 and Figure 5 were simulated system diagram and
33-node distribution network diagram. The system parameter
setting is consistent with the literature.
The measurement data is generated by superimposing a

normal distribution noise with an average value of 0 on the
basis of the load flow calculation. The voltage amplitude
measurement error is 0.001, the power measurement error
is 0.001, the current amplitude measurement error is 0.001,
and the PMU voltage phase angle measurement error is
0.0005. Table 1 shows the system measurement configu-
ration. In the absence of special instructions, ρ is taken
as 20 and ε is taken as 1e10−5. The simulation results
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FIGURE 3. The entire flow chart of the three-stage distributed state estimation method.

FIGURE 4. The simulated system.

FIGURE 5. The 33-node distribution network diagram.

were obtained on a desktop equipped with an Intel dual-
core 2.4 GHz CPU and 2G of memory, and the optimization
subproblem was solved using Matlab to call CPLEX.

The results of the absolute errors of voltage amplitude
and phase angle are shown in Figure 6 and Figure 7,
respectively.
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TABLE 1. System measurement configuration.

FIGURE 6. Voltage amplitude error obtained from the proposed method.

FIGURE 7. Voltage phase angle error obtained from the proposed method.

The maximum absolute errors of the voltage amplitude
and phase angle are 7.82e−4 and 9.67e−4, respectively.
And the average absolute errors are 3.81e−4 and 6.17e−4,
respectively.

Meanwhile, the comparison between the proposed method
and Lagrangian Relaxationmethod is analyzed. The results of
the absolute errors of voltage amplitude and phase angle are
shown in Figure 8 and Figure 9, respectively. The maximum
absolute errors of the voltage amplitude and phase angle are
1.38e−2 and 4.83e−3, respectively. And the average absolute
errors are 5.74e−3 and 1.62e−3, respectively.
Table 2 shows the average absolute error between the

estimated values and the true values of voltage magnitude
and phase angle under different method. As can be seen from
Table 2, the accuracy of the centralized state estimation is
the highest, and the results of the proposed method are very

FIGURE 8. Voltage amplitude error obtained fromLagrange Relaxation
method.

FIGURE 9. Voltage phase angle error obtained from Lagrange Relaxation
method.

TABLE 2. The comparison of different state estimation method.

similar to those of the centralized state estimation. Compared
with the existing distributed optimization methods, the pro-
posed method has higher accuracy in both voltage amplitude
and voltage phase angle.

The reason is that this method does not require a cen-
tral coordination side. From the mathematical point of view,
when the equality constraints in formula (29) are satisfied,
the distributed method’s estimation results are equivalent to
the centralized method. However, the sub-regions and coor-
dination sides of the existing distributed methods are solved
separately, and their estimation results are generally sub-
optimal solutions, which are difficult to be consistent with
the overall method [19], [22].

As for the convergence of the proposed method, the itera-
tive diagrams of the first stage and the third stage are shown
in Figure 10 and Figure 11, respectively.

The consistency of the boundary variables can be achieved
quickly, and due to the similarity between the first stage
and the third stage state estimation models, the convergence
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FIGURE 10. The iteration analysis of the first stage.

FIGURE 11. The iteration analysis of the third stage.

TABLE 3. The comparison of efficiency.

characteristics of the iterative convergence curves are also
similar.

Table 3 compares the distributed state estimation time of
this article with the centralized state estimation calculation
time. From Table 3, we can see that the calculation time of the
distributed state estimation in the test AC-DCdistribution net-
work system only needs 1.14s. Comparedwith the centralized
state estimation method that uses 4.83s, the calculation time
is significantly reduced. In the distributed state estimation
method proposed in this paper, each subsystem performs the
computation task in parallel, so the computational efficiency
is improved very effectively compared to the centralized
state estimation. Under normal circumstances, the calcu-
lation time of the state estimation increases exponentially
with the increase of the system scale. Therefore, when the
AC-DC hybrid system is large, the dispersion state estimation
will have a greater advantage.

Compared with the centralized state estimation, the dis-
tributed state estimation has other obvious advantages.
As described above, the distributed state estimation mecha-
nism makes each subsystem relatively independent, and the
privacy of data is ensured. Moreover, the measurement of
each subsystem does not need to be centrally uploaded to the
computing center. With the increasing number of measure-
ment devices, distributed state estimation is used. Themethod
can greatly reduce the traffic and relieve the communication
pressure.

V. CONCLUSIONS
This paper establishes a three-stage state estimation model
for AC/DC hybrid distribution network, and proposes a dis-
tributed state estimation method for hybrid systems based on
ADMM. Through simulation analysis, the following conclu-
sions can be drawn:

(1) In the distributed state estimation process, the
AC-DC subsystem only needs to transfer the boundary infor-
mation to each other, and update the Lagrangian multiplier
according to the interaction information. The communication
mechanism is simple and easy, and the communication vol-
ume is greatly reduced;

(2) Compared with centralized state estimation, the com-
putational efficiency of the distributed state estimation is
significantly improved, and it is more efficient as the system
scale increases;

(3) The accuracy of the three-stage state estimation results
is exceedingly high, which is similar to the results of the tra-
ditional state estimationmethod and has outstanding practical
engineering application value.

(4) The proposed method in this paper is suitable for the
distributed state estimation of AC-DC hybrid distribution
networks with single or mixed measurement environment.

The next research work will focus on the dynamic dis-
tributed state estimation based on Extended Kalman Filter,
which can have better real-time performance in tracking the
running state of the distribution network, and have relatively
high accuracy of system state prediction capability.
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