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ABSTRACT In a smart grid environment, advanced metering infrastructure (AMI) and intelligent sensors
have been deployed extensively. As a result, large-scale and fine-grained smart grid data are more convenient
to be collected, in which outliers exist pervasively, caused by system failures, environmental effects, and
human interventions. Outlier deletion is always implemented in data preprocessing for improving data
quality. However, due to the fact that real records that reflect rare and unusual patterns are also recognized
as outliers, outlier mining is necessary to be carried out with the aim of discovering knowledge on abnormal
patterns in power generation, transmission, distribution, transformation, and consumption. To the best of
our knowledge, a comprehensive and systematic review of outlier data treatment methods is still lacked
in the smart grid environment. We, in this paper, aim at presenting the review of outlier data treatment
methods toward smart grid applications and categorize them into outlier rejection and outlier mining groups.
Since we do this survey from the perspective of data-driven analytics and data mining methods, information
security technologies are barely discussed in this paper. Based on a general overview of outlier data treatment
methods, we make the contribution of providing the application scenarios of outlier rejection and outlier
mining in the smart grid environment. With the construction of smart grid throughout the world, dealing with
outlier data has become more crucial for the security and reliability of power system operation. Therefore,
we also discuss some future challenges of outlier data treatment toward smart energy management.

INDEX TERMS Outlier data treatment, outlier rejection, outlier mining, smart grid, data preprocessing.

I. INTRODUCTION
Traditional energy systems are becoming more and more
intelligent as they continuously integratewith emerging infor-
mation technologies [1]. Worldwide deployment and con-
struction of smart energy systems are being accelerated [2].
In smart grid environment, the wide deployment of advanced
metering infrastructure (AMI) [3] makes it more conve-
nient and easier to obtain massive and detailed smart grid
data. Big data in smart grid are increasingly regarded as
important strategic resources considering their potential busi-
ness values [4], [5]. Besides, data driven analytics is always
important for efficient and optimal operation of smart grid
systems [6]–[9], especially for power supply demand balance,
power supply reliability and state estimation. Zhou et al. [10]
discovered household electricity demands based on a fuzzy

clustering-based model. The discovered electricity demands
of typical household groups could support production plan-
ning, thus to contribute to supply demand balance. Faza [11]
used particle swarm optimization (PSO) algorithm to deter-
mine the optimal placement of photovoltaic (PV) sources
with the objective of maximizing system reliability. Rahman
and Venayagamoorthy [12] used genetic algorithm (GA) to
improve the result of the proposed cellular computational
network framework, and applied the hybrid estimator in state
estimation of large power systems.

However, outlier data always exist in the smart grid data.
Outlier data are the abnormal values that do not consist with
the overall data distribution. Outlier data like noise reduce
data quality and have adverse effects on the performance
of data-based models [13], [14], thus to be regarded as
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‘‘bad data’’. For the purpose of improving data quality, outlier
rejection is always carried out in the process of data prepro-
cessing. Furthermore, according toHawkins’s definition [15],
‘‘An outlier is an observation that deviates somuch from other
observations as to arouse suspicion that it was generated by
a different mechanism.’’ As Hawkins described, outlier data
can be real collected records instead of bad data, and such
real collected records always indicate significant abnormal
patterns. Analyses on outliers with the aim of discovering
valuable knowledge of rare but unusual patterns are known as
outlier mining. Outlier mining is an interesting and important
task in data mining. It has expansive applications in network
intrusion detection [16], financial fraud detection [17], traffic
anomaly detection [18], and price trend prediction in stock
market [19]. Especially for smart grid applications, abnormal
cases such as electric larceny [20] and equipment failure [21]
can be discovered through outlier mining.

In the smart grid environment, previous research works
mainly focused on data quality improvement, where outlier
data were regarded as bad data and the purpose was to elim-
inate interferences in the built model [13], [22], [23]. To the
best of our knowledge, a comprehensive review of outlier data
treatment, including both outlier rejection and outlier mining,
is still absent toward smart grid implications.

In this paper, a general overview of outlier data treatment
methods is provided, followed by the application scenarios of
outlier rejection and outliermining in smart grid environment.
With the further development of smart grid, the scale of power
system becomes larger and its complexity is increasing. More
challenges are brought by complex data like multi-source
heterogeneous data and large scale real time data. In this
paper, future challenges of outlier data treatment toward
smart energy management are also discussed.

The rest of this work is organized as follows. In Section II,
we give the background. Then, a general overview of outlier
data treatment methods is provided in Section III, and their
application scenarios in smart grid environment are presented
in Section IV. SectionV proposes the future challenges of out-
lier data treatment toward smart grid applications. Section VI
makes conclusions.

II. BACKGROUND
A. SMART GRID
From the perspective of power line communication (PLC),
bidirectional flow of electric power and interactive infor-
mation communication between power grid companies and
consumers are realized in smart grid [24], as shown in Fig. 1.
Load balancing and efficiency improvement are enhanced
due to timely interaction between power supply side and
demand side [25]. Smart grid is considered to be an ecosys-
tem where various kinds of renewable energy sources are
connected [26]. As shown in Fig. 2, smart buildings and
smart homes are equipped with power generation facilities to
produce electric power for themselves and share the redun-
dant part [26]. With the extensive deployment of intelligent

FIGURE 1. Smart grid power system architecture [24].

FIGURE 2. Smart grid ecosystem [26].

FIGURE 3. Smart grid data.

transmission and distribution networks, connections among
smart grid units become more extensive and complex [27].
Various data are involved in smart grid data analyses.

Outlier data exist pervasively in electricity consumption
data, asset management data, and external data. Fig. 3 gives
the details of the mentioned three types of smart grid data.
As shown in Fig. 3, large amount of electricity consump-
tion data are generated by different kinds of customers in
smart grid, mainly including residents, commercial enter-
prises, industrial enterprises, and industrial parks. In the pro-
cess of power generation, asset management data are mainly

39850 VOLUME 6, 2018



L. Sun et al.: Outlier Data Treatment Methods Toward Smart Grid Applications

categorized into equipment operating data and transaction
data. External data outside power systems are commonly
applied to provide references and assist smart grid data anal-
yses.

B. CAUSES OF OUTLIER DATA IN SMART GRID DATA
Complex and diverse outlier data are generated in the con-
struction of automated, interactive electric power networks
of smart grid. Major causes of outlier data are as follows.

(1) Data acquisition ability [28], [29]. The data acquisition
devices such as smart meters and sensors have different per-
formances in data acquisition frequency and accuracy. Mea-
surement errors are usually caused by the limited capability
of the devices. Besides, noise data can be generated when the
anti-interference ability of the devices is weak.

(2) Failures in power systems. Many system failures, such
as failures of data transmission system, faults of transmission
equipment and power outage all can lead to the generation of
outlier data [21], [30].

(3) Human factors. Activities in power systems such as
hand off control, responding to contingencies and outage
control are intervened by human [31]. Besides, human are
also involved in the data collection process. Outlier data can
be produced in these works because of human errors [32].

III. OUTLIER DATA TREATMENT METHODS
A. SVM-BASED METHODS
Support vector machine (SVM) learning method has shown
prominent superiority in solving text classification and
high dimension pattern recognition problems [33], [37].
Let n represent the size of the sample set X =

{(x1, y1), . . . , (xi, yi), . . . , (xn, yn)}, where i = 1, 2, . . . , n,
yi ∈ {+1,−1}, xi ∈ Rd and d denotes the dimension.
SVM is designed to find the maximal margin hyperplane
that classifies the samples into the two classes with label
of +1 or −1. The described hyperplane can be denoted as
w ·x+b = 0, where w ∈ Rn and b ∈ R. w and b are estimated
by minimizing the following objective function in (1), using
training data.

min
w

1
2
‖w‖2

subject to yi (w · xi + b) ≥ 1, i = 1, 2, . . . , n (1)

However, the maximal margin hyperplane is very sensitive
to outliers because it is determined by very few sample data.
So considering the influence of outliers, a penalty factor C
is introduced to develop (2). ξi means slack variable that
expresses training error corresponding to xi. It is calculated
by input training samples and the user-specified constant C .
Then, w and b are estimated by minimizing the following
objective function in (2). Apparently, the introduced penalty
factor C promotes SVM to become more tolerant to outliers
and then it turns out to be the most commonly used method.
Lin and Wang [14], [34] proposed a fuzzy SVM (FSVM)
model to adjust the slack variable ξi of each training sample
to reduce the impact of outliers. Actually, finding out how to

reduce the sensitivity to outliers of SVM has already aroused
widespread attention [35]–[39].

min
w

1
2
‖w‖2 + C

n∑
i=1

ξi

subject to yi
(
wT xi + b

)
≥ 1− ξi

ξi ≥ 0, i = 1, . . . , n (2)

As we know, numerous dimensions in outlier mining can
trigger the ‘‘curse of dimensionality’’, which refers to sta-
tistical significance problems that aroused by the sparse
data. SVM has unique advantage towards high dimensional
data [37]. The exploration of SVM based outlier mining
methods were carried out. In 2009, Rajasegarar et al. [40]
proposed an SVM based global outlier mining method. But
the accuracy was not quite satisfying because of overlooking
the spatial correlation of data. Zhang et al. [41] presented
quarter-sphere based SVM outlier mining technique, and it
was only applicable to spherical distributed data. Li [42]
designed a spatiotemporal-attribute one-class hypersphere
support vector machine, which improved the detection rate
meanwhile reduced the false alarm rate and computational
complexity. But the stability was badly affected by the num-
ber of attributes.

As an advanced machine learning method, SVM has been
used in pattern recognition, classification, and regression
analysis since it was proposed [43], [44]. SVM models have
certain superiority for high dimension data and large scale
data [45]. SVMmodels used to be sensitive to noise, but they
were then improved and able to reach low outlier sensitivity.
Further, SVM based outlier mining methods were developed.

B. PROXIMITY-BASED METHODS
Proximity-based methods ascertain outliers by defining rules
of proximity measurement rather than building up models to
fit data distribution. Specifically, proximity-based methods
can be categorized into distance based methods and density
based methods.

Distance based methods measure the proximity between
objects through calculating distances. The lower value
of the distance metric indicates the closer proximity.
Ramaswamy et al. [46] suggested simply adopting the dis-
tance between object p and its kth nearest neighbor as the
score of being an outlier and noted the score as kNN (p),
as shown in (3). k should be pre-determined by users. Then,
the distance between object p and its kth nearest neigh-
bor, dk (p), was calculated as the kNN score of being an
outlier, commonly using Euclidean distance and Manhat-
tan distance. Outliers shall be the objects that with highest
kNN scores. Angiulli and Pizzuti [47] synthesized distances
between object p and its k nearest neighbors. They were
no longer just applying a single dk (p) to calculate the score
of being an outlier, agg_kNN (p), as shown in (4). With a
user pre-determined k , all the di(p) (i from 1 to k) for an
object p were added up to calculate the agg_kNN score
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of being an outlier. Outliers shall be the objects that with
highest agg_kNN scores. Yu et al. [48] combined (3) and (4).
They used the Local Isolation Coefficient of object p, which
denoted as LIC(p), to figure out the score of being an outlier.
That is described in (5).

kNN (p) = dk (p) (3)

agg_kNN (p) =
k∑
i=1

di(p) (4)

LIC(p) = dk (p)+
k∑
i=1

di(p)
k

(5)

The distance based methods were easy to suffer from local
density of a dataset, so density based methods were devel-
oped. Breunig et al. [49] proposed local outlier factor (LOF)
which estimated the density around p through the reachability
density between object p and q. First, a k − distance(p) of
object p is defined as follows. Denote the distance between
object p and q as d(p, q), then k − distance(p) = d(p, q) if:
1) d(p, o) ≤ d(p, q), for at least the number of k objects

o(p 6= q);
2) d(p, o) < d(p, q), for at most the number of k − 1

objects o (p 6= q).
Then, LOF is shown in detail in (8) where Nk (p) represents
the set of k nearest neighbors of object p, namely,

Nk (p) = {q|d(p, q) ≤ dk (p), q 6= p} (6)

where Irdk (p) denotes local reachability density,

Irdk (p) =
|Nk (p)|∑

q∈Nk (p)max{k − distance(q), d(p, q)}
(7)

Higher LOF score than 1 indicates the bigger possibility
of being an outlier. Since then, it has become one of the
most commonly used outlier mining methods [50]–[52].
Tang et al. [53] did not believe that low density was a nec-
essary condition of being an outlier. So they put forward
connectivity based outlier factor (COF). COF selects a set of
nearest neighbors using a set-based shortest path [53]. The
selected set is further applied to find the relative density of test
points within average chain distance. When the outlier is in
the middle of two clusters with similar density, COF behaves
more effective. But when the outlier is between a sparse and
a dense cluster, LOF and COF both have poor performance.
Jin et al. [54] offered a new algorithm based on symmetric
neighborhood relations named influenced local outlier factor
(INFLO). The forward and reverse neighbors were both taken
into account when evaluating the density distribution, thus to
overcome the mentioned shortcoming of LOF and COF.

LOF(p) =
1

|Nk (p)|

∑
q∈Nk (p)

Irdk (q)
Irdk (p)

(8)

C. HYBRID METHODS
In order to enhance the efficiency and accuracy, models are
usually combined in outlier data treatment. Nagi et al. [55]

developed a hybrid GA-SVM model to combine Genetic
Algorithm (GA) with SVM to discover outlier patterns.
Fei and Zhang [56] used GA to select appropriate param-
eters for SVM in outlier mining. Higher accuracy were
achieved in fault diagnosis. Yang et al. [57] conducted local
outlier mining by associating clustering with distance based
approaches. Firstly, they used hierarchical clustering algo-
rithm and K-means algorithm to divide the dataset into sev-
eral clusters. Then distance based outlier mining algorithm
was employed to recognize local outliers in each cluster.
Qian et al. [58] proposed an outlier mining algorithm based
on genetic clustering. It gave full play to the local con-
vergence of K-means algorithm, also, the global search-
ing ability of genetic algorithm. Ping et al. [59] proposed
PMLDOF algorithm based on multiple DBSCN clustering
to prune data. PMLDOF was an improvement of the dis-
tance based algorithm LDOF. It could successfully select
cluster edge points, meanwhile avoided the false shear of
outliers.

In this section, we introduce several outlier data treatment
methods, including SVM-based methods, proximity-based
methods, and hybrid methods. Table 1 divides proximity-
based methods into distance based and density based meth-
ods, and gives the advantages and disadvantages of each
method. Now taking efficiency and accuracy both into
account, explorations and improvements of outlier data treat-
ment are still based on these approaches [52], [57]–[61].

TABLE 1. Comparisons among outlier data treatment methods.

IV. APPLICATION SCENARIOS OF OUTLIER DATA
TREATMENT IN SMART GRID
A. RELATIONSHIP BETWEEN OUTLIER REJECTION AND
OUTLIER MINING
In Fig. 4, the process model of outlier data treatment in
smart grid is provided. As shown in Fig.4, outlier rejec-
tion takes place in the process of data cleaning for the
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FIGURE 4. A process model of outlier data treatment in smart grid.

TABLE 2. Applications of outlier rejection in smart grid.

purpose of improving data quality. Data cleaning is con-
sidered to be a repeated process which aims at continu-
ously discovering data quality problems such as incomplete,
inconsistency, duplicate data, and solving them [70], [71].
Besides, data preprocessing technologies including data
cleaning approaches and data integration approaches are
developed in order to improve the quality of data min-
ing [72], [73]. Outlier mining are explored based on the
preprocessed data and aimed at discovering knowledge in
smart grid. In the following two Sections, outlier rejection
and outlier mining scenarios in smart grid are provided in
detail.

B. OUTLIER REJECTION
Outlier rejection is implemented in the process of data clean-
ing, in which case outlier data are regarded as bad data. The
existing studies in smart grid environment explored outlier
rejection from the following two perspectives. The first one
focused on conducting outlier detection with the aim of
removing them or realizing outlier correction. The second one
aimed at developing models that were robust or insensitive
to outliers. All these works have been concluded in Table 2.
As shown in Table 2, except the aforementioned methods
in Section III, there are some traditional statistical meth-
ods which are seldom used recently [76]–[78]. The statisti-
cal model based methods try to build the data distribution
model from the complex real world and usually have limited
accuracy.

C. OUTLIER MINING
Fig. 5 concretely provides the knowledge discovery scenarios
in smart grid based on outlier mining. Next, outlier mining
in electricity consumption data, asset management data and
external data is presented respectively.

FIGURE 5. Applications of outlier mining in smart grid.

Demand side management [79] theory reveals that cus-
tomers adjust their behaviors because of the changing elec-
tricity prices and incentives [80]–[82]. Customer groups
with outlier electricity consumption patterns (e.g., high
amount and fluctuation in the load curve) are recognized
as potential customers of demand response (DR) projects
for realizing energy conservation and emission reduc-
tion [10], [83], [84]. Besides, mining outlier consumption
patterns during the special time period like Chinese Spring
Festival is believed to support the production planning, thus
to balance electricity supply demand [84]. Rush hour out-
age is of high probability to be avoided if outliers like
extremely high consumptions are discovered and the cor-
responding strategies on load reduction or transmission are
provided.

In addition, detailed consumption data provide innovative
ideas for identifying electric larceny based on outlier min-
ing [62], [68]. Traditional theft detection methods such as
regular inspection, regular meter checking, and user report-
ing have low efficiency and poor accuracy. Nizar et al. [85]
compared load data and time domain data in a feature
extraction based non-technical losses detection method. They
found that load data were more representative to describe
consumption behaviors. Sheng et al. [20] held that the cur-
rent electric larceny identification followed the following
two kinds of ideas. One assumed that for a certain user,
there would be obvious differences between an ordinary
load curve and a curve with electric larceny. Based on that,
electric larceny could be ascertained by extracting historical
characteristics of the user. Another viewpoint focused on
classifying customer groups. Then in each group, conducting
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comparisons among customers’ load curves. From the for-
mer idea, Cheng et al. [66] applied distance based outlier
mining for electric larceny detection. They believed that
three-phase voltage and current unbalance rate was nearly
a fixed value for normal customer’s ordinary usage. So,
if there exists a stealing, the reflected voltage and current
abnormality would make the customer become a global out-
lier. Depuru et al. [63] focused on detecting electricity theft
through data classification. They trained SVMs with histor-
ical data to identify abnormal electricity consumption pat-
terns. As for the second perspective, dos Angelos et al. [65]
used C-means based fuzzy clustering to group customers.
Electric larcenies were consequently detected and identified
according to a unitary index score.

Asset management data are mainly equipment data, which
produced by instrumentations and sensor equipment in the
process of power generation, transmission, distribution and
substation. As we know, outlier data are usually bad data that
do not consist with data distribution. Therefore, they have
negative impacts on fault diagnosis [78] and state estima-
tion [86]. However, outlier data can also be helpful to esti-
mate the running state because of their exposure of abnormal
changes in equipment operation. Jamali et al. [87] presented
a new method to find the fault location by applying outlier
identification technique, which did not require the fault type.
Yan et al. [30] held that it was necessary to extract effective
fault information from transmission equipment state data.
Compared with delete outliers directly, it could avoid the loss
of useful information. Yu et al. [88] believed the variations
of harmonic data include normal variations and abnormal
changes. The former were caused by load changes while the
later aroused from equipment failures and acquisition errors.
They identified outliers from harmonic currents and discov-
ered abnormal changes in a timely manner, also, with rare
mistake faults. Shen et al. [21] analyzed the relationship of
transmission equipment’s adverse conditions, failure modes
and abnormal symptoms. They used bias causal network to
conclude fault patterns that power transmission equipment
may suffer from.

External data can affect the stability and reliability of
power systems. Geographic Information System (GIS) data
describe the location of devices or power grids. They play
an important role in the selection of sites and the dispatch
work. Besides, since power load is extremely sensitive to
temperature and weather conditions, electric outages are
frequently triggered by abnormal temperature or climate
changes [89]. Kenward and Raja [90] pointed out that nearly
80% of large-scale outages were caused by abnormal severe
weather between 2003 and 2012. Smart grid is prone to
failures if affected by the abnormal weather. Storms and
hurricanes usually cause failures and damages of overhead
transmission lines. But as described in [91], such outliers can
be applied to predict outage and locate fault area, speeding
up the process of fault warning and recovery. In addition,
considering that renewable energy generation is sensitive to
climate changes [92], [93], outlier mining in the external data

plays a vital role in coordinating renewable energy power
generation. Hence, outlier mining in external data are really
important for maintaining safe and stable operation of power
systems.

V. FUTURE CHALLENGES OF OUTLIER DATA
TREATMENT IN SMART GRID
The construction of smart grid makes traditional power sys-
tems gradually expose to big data problems [94]. Com-
plex data such as multi-source heterogeneous data and large
scale real-time data have brought great difficulties in outlier
data treatment. Except that, outlier data visualization is also
directed to severe challenges in smart grid.

A. INTEGRATION OF MULTI-SOURCE
HETEROGENEOUS DATA
Now in the smart grid, data are obtained from hundreds of
millions of smart meters, smart appliances, and distributed
storage devices. Plus, different power companies or orga-
nizations adopt different definition, storage and manage-
ment standards. So, the acquired multi-source data are usu-
ally heterogeneous and independent. Fig. 6 provides data
integration scenarios in smart grid. Now, the integration
requirements of Energy Management System (EMS), Dis-
tribution Management System (DMS), Energy Storage Sys-
tem (ESS), and other information systems are increasing.
Based on that, the business integration is carried out [95].
Meter data management of AMI is integrating with other
business management systems. Then, data sharing among
automatic measurement systems, marketing management
systems, and production scheduling systems is gradually
accomplished.

FIGURE 6. Data integrations in smart grid.

In the mentioned background of data integration in smart
grid, multi-source heterogeneous data integration techniques
become crucial.

Multi-source heterogeneous data in smart grid bring many
challenges for outlier data treatment [96]. Spatial outliers
widely exist in power systems. These outliers must be consid-
ered in the detection of abnormal sensors and abnormal space
weather patterns. Janeja and Atluri [97] held that the existing
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spatial outlier mining methods basically focused on sepa-
rated autocorrelation but ignored the heterogeneity among
spatial objects. They proposed heterogeneous neighborhood
spatial outlier mining method, but the time complexity was
very large. Solaimani et al. [98] used statistical techniques to
perform outlier mining on heterogeneous dataset. They inte-
grated heterogeneous data streams through separating data
collection, data preprocessing, and data analysis. However,
it was not realistic to attach the ‘‘global’’ technology directly
on heterogeneous data to discover all outliers. The results of
data analysis need to be acquired in time, which was also a
great challenge to processing efficiency.

Finally in this section, we summarize 3 key research issues
on outlier data treatment for multi-source heterogeneous data
in smart grid.

(1) Multi-format data integration. New technologies in
smart grid are generally based on sensor networks and
information systems. The integration of heterogeneous data
sources is closely related to database structure [99]. Due
to the lack of data description (e.g. primary keys, foreign
keys, etc.), format conversion of heterogeneous data is along
with information loss. This increases the difficulty of outlier
pattern mining in power systems.

(2) Data interoperability among systems. Different data
formats are hard to be supported at the same time by a certain
system. So studies on the compatibility requirements and the
translation toward common formats are crucial to outlier data
treatment.

(3) Cooperation of multiple data centers. The integra-
tion of multi-source heterogeneous data tends to correlate
with network server and local storage. As higher require-
ment on integration efficiency is expected in the smart grid
environment, the development of information sharing plat-
forms among multiple data centers is quite vital to efficiency
enhancement.

B. REAL TIME PROCESSING OF LARGE-SCALE DATA
Large amounts of electricity production and consumption
data are being generated, collected and stored in power sys-
tems. Smart meters usually collect consumption data every
15 minutes. For a utility company with AMI deployment,
the amount of collected data dramatically increases from
24 million a year to 220 million a day [91]. With the expo-
nential growth of smart grid data, large-scale scheduling
problems [100] in smart grids become more severe.

Outlier data treatment requires high efficiency in massive
amount of power data. Data processing needs to be completed
in very short time. Moreover, supply-demand balance and
instantaneous response are increasingly important for power
systems, which requires large-scale data to be dealt with in
real time [101]. This requirement is especially reflected in
the monitoring of equipment, as well as the operation status
of power grids. Besides, smart grids are exposed to many
malicious attacks [6], making it important to deal with abnor-
mal situations timely [74]. In recent years, distance based
and density based outlier mining methods are often being

discussed and improved. But they have obvious disadvan-
tages on space and time complexity when applied to large
datasets. The traditional statistical methods tried to use sim-
ple models to summarize complex situations of real data.
Besides, the threshold values should be pre-set by human so
that the detection accuracy was limited [102]. When these
methods were used to deal with real-time outliers, they per-
formed quite inefficiency [103]. Besides, the existing outlier
mining methods, like decision trees, the optimal path of for-
est [104], fuzzy C means clustering [105] and kd-tree [52],
were mostly offline methods. SVM was really limited to deal
with real-time data because it required to pre classify all the
normal and abnormal situations [106]. Neural networks were
used in real-time mining, and performed well when there
was only few outliers. But training data as well as threshold
setting became two greatest difficulties that limited the better
application [107].

Real-time data in smart grids has the characteristics of
sequence uncontrollable and large scale. They are directed
to many practical problems in outlier data treatment, which
come down to the following 3 points.

(1) Uncertainties in dynamic data. The existing outlier min-
ing methods built learning models by training history data.
Then, used the established models as the basis to recognize
outlier patterns. Due to the fact that distributions of actual
stream data are dynamic, false alarms of outlier data are
prone to appear. In [108], the influence of uncertainties on
the performances of power system were studied in detail.

(2) Pre-set of parameters. Parameters of the complex algo-
rithms need to be set up in advance. Therefore, the results will
be directly affected if these parameters are not appropriately
set [107], [109].

(3) Sparse data problems. Real time data or high frequency
data are acquired with sparsity, which greatly increases the
difficulty of getting valuable information from the large
amount of data.

C. OUTLIER VISIUALIZAION
Compared with the traditional outlier mining methods, out-
lier visualization reflects human-computer interaction more
friendly. The visualization technologies [110] can convert
complex feature description data into images or graphics. The
complexity of massive data is significantly reduced, which is
conducive to the efficiency improving. With the help of visu-
alization technologies, outliers can be quickly and accurately
distinguished from normal states.

Plenty of traditional visualization methods were designed
toward power system operation data. For node data,
two-dimensional visualization methods like thermometer
method [111] and histogram method were developed. As for
branch operation data, a simple pie chart [111] was applied,
in which diameter denoted power value and fan-shaped area
expressed loading rate. But for the large network, these meth-
ods cannot give an overview of the abnormal areas’ distri-
bution. Now in power grid, transformations that from static
to dynamic, from two-dimensional to three-dimensional have
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been realized in the visualization of real-time monitor-
ing [112]–[114]. Location display of abnormal situations is
achieved with the combination of pie chart, Gantt chart, radar
chart, and trend chart [115]. In addition, critical abnormal
alarm and warning information have combined with trend
chart in power system. For equipment failure alarm, fault
types are marked in the geographic map and fault location is
displayed. Besides, it is worth noting that three-dimensional
curves of power grid real-time monitoring have been devel-
oped. These three-dimensional curves contrast load situations
of different regions at the current day and graphically display
the trend and characteristics of power grid data. Thus, the
understanding of abnormal situation is grasped.

Through data visualization, people are effectively liber-
ated from the complex, massive data. Besides, more intu-
itive understandings of the power grid status are established
in finding outlier situations. Outlier visualization in power
systems has achieved good results. But many challenges still
need to be concentrated in the smart grid construction back-
ground.

(1) Visualization of on-line data. In smart grid environ-
ment, the automatic visualization technologies of abnormal
records are urgently required, while the dynamic property of
real-time data brings difficulties in visualization efficiency
and accuracy.

(2) Periodical variation of data. Using linear mapping tech-
niques to visualize time series data can find data trends easily
so that to find outliers. However, these methods are likely to
ignore the periodicity of data.

(3) Environment building. Outlier visualization is meant
to support the interactive analysis of complex anomalies.
Therefore, the construction of collaborative environment that
support data sharing is prerequisite for outlier visualization.

VI. CONCLUSIONS
Outlier data in power systems have become more complex
and diverse in the context of fast-growing smart grid. Outlier
data need to be properly dealt with, in order to better analyze
electricity consumption data, asset management data, and
external data. Although outlier data are usually bad data
which reduce data quality and interfere with data analysis
model, they can be unusual records that reflect true anoma-
lies. In this paper, a comprehensive review of outlier data
treatment in smart grid environment including outlier rejec-
tion and outlier mining is provided. With further construction
of smart grid, the scale of power system becomes larger and
the complexity continues to increase. Future challenges in
outlier data treatment are brought by multi-source heteroge-
neous data, large scale real time data and outlier visualization,
which are also discussed.
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