
Received May 28, 2018, accepted June 19, 2018, date of publication July 5, 2018, date of current version July 30, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2853100

Multi-Temporal Remote Sensing
Image Registration Using Deep
Convolutional Features
ZHUOQIAN YANG 1, TINGTING DAN2, AND YANG YANG 2,3
1College of Software, Beihang University, Beijing 100083, China
2School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China
3The Engineering Research Center of GIS Technology in Western China, Ministry of Education, Yunnan Normal University, Kunming 650500, China

Corresponding authors: Tingting Dan (dandycn721@gmail.com) and Yang Yang (yyang_ynu@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 41661080 and in part by the National
Basic Research Program of China (973 Program) under Grant 2010CB434803.

ABSTRACT Registration of multi-temporal remote sensing images has been widely applied in military
and civilian fields, such as ground target identification, urban development assessment, and geographic
change assessment. Ground surface change challenges feature point detection in amount and quality, which
is a common dilemma faced by feature-based registration algorithms. Under severe appearance variation,
detected feature points may contain a large proportion of outliers, whereas inliers may be inadequate
and unevenly distributed. This paper presents a convolutional neural network (CNN) feature-based multi-
temporal remote sensing image registration method with two key contributions: (i) we use a CNN to generate
robust multi-scale feature descriptors and (ii) we design a gradually increasing selection of inliers to improve
the robustness of feature point registration. Extensive experiments on featurematching and image registration
are performed over a multi-temporal satellite image data set and a multi-temporal unmanned aerial vehicle
image dataset. Our method outperforms four state-of-the-art methods in most scenarios.

INDEX TERMS Remote sensing, feature matching, image registration, convolutional feature.

I. INTRODUCTION
Image registration is the process of finding the optimal align-
ment between images. It is a fundamental task in order to be
able to integrate and compare images captured from differ-
ent viewpoints, at different times or with different sensors.
Registration of multi-temporal remote sensing images has
been widely applied in military and civilian fields such as
ground target identification, urban development assessment,
geographic change assessment.

Approaches of image registration can be classified into two
major categories: (i) area basedmethods and (ii) feature based
methods [1]–[5]. Instead of working directly with image
intensity values (area-basedmethods), feature-basedmethods
employs feature descriptors that represent high-level infor-
mation, thus is more preferable in multi-temporal analysis
where appearance variation is expected [6]. Since we mainly
focus on developing a feature based method in this work,
we introduce and discuss current methods amongst (ii).

The majority of feature based methods rely on SIFT [7]
or its improved version to detect feature points due to its
outstanding invariance against scale and rotation [8]–[11].

Nevertheless, in multi-temporal or multi-sensor image reg-
istration where certain extent of appearance difference exists,
feature points detected by SIFT may contain severe outliers.
In worse cases, SIFT cannot detect sufficient number of
feature points. Such issues limit the application of image
registration.

In this work, we propose a novel non-rigid image regis-
tration method. Two of our essential contributions can be
summarized as follows. (i) We generate a multi-scale fea-
ture descriptor using layers from a pretrained VGG [12]
network. Aiming at the effective utilization of convolu-
tional neural networks in image registration, our feature
utilizes high level convolutional information while preserv-
ing some localization capabilities. (ii) We design a point-
set registration that works in accordance with the proposed
feature. Instead of using a stationary distinction of inliers
and outliers, we design a gradually increasing selection of
inliers. At the early stage of registration, the rough trans-
formation is rapidly determined by the most reliable feature
points. After which the registration details are optimized by
increasing the number of feature points while restricting the
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mismatches simultaneously. The point-wise correspondence
is evaluated by both the convolutional features and geometric
structural information.

We compare our feature detection method against SIFT.
Our image registration method is tested on multi-temporal
satellite images and UAV images, compared against four
state-of-the-art works. We compare feature detection meth-
ods by measuring the precision of feature prematching. The
performance of registration is evaluated by measuring the
distance between corresponding pixels.

The rest of this paper is organized as follows.
Section 2 reviews classic and cutting-edge researches regard-
ing feature-based registration problem. Section 3 presents the
detailed methodology of our work. Section 4 demonstrates
our experiments. Conclusion is drawn in Section 5.

II. RELATED WORKS
Feature-based image registration methods typically consists
of four stages.

1) A sufficient number of feature points are detected in
a pair of images (i.e., the sensed and reference image)
using feature descriptors like SIFT [7].

2) Estimate a preliminary point-wise correspondence by
finding the nearest neighbors in a feature space, which
we call feature prematching.

3) The non-rigid point set registration [13]–[17] which
searches for optimal transformation parameters.

4) Image transformation, which resamples the sensed
image according to the recovered transformation.

The majority of feature-based methods rely on SIFT or its
improved version to detect feature points. A variety of SIFT
based methods were developed over the last few years,
they introduce different techniques to enhance feature point
matching. Random sample consensus (RANSAC) [18] and
its variants [19]–[22] are widely used for remote sensing reg-
istration, propose to use a hypothesize-and-verify framework
to eliminate false correspondences. Point set registration by
preserving global and local structures (PR-GLS) [13] uses
local features such as shape context to assign the membership
probabilities of the mixture model, so that both global and
local structures can be preserved during thematching process.
InWang et al.’s robust registration using spatially constrained
gaussian fields (SCGF), intrinsic manifold is considered and
used to preserve the geometrical structure. Also a priori
knowledge of the point set is extracted and applied. Context-
aware Gaussian fields (CA-LapGF) [23] proposes a Lapla-
cian regularized term which is added to preserve the essential
geometry of the transformed set. Ma et al. [24] employs
a local geometric constraint which applies well on retinal
images. Yang et al.’s global local feature distance (GLMD)
[25] considers global and local structural differences of two
point sets as a linear assignment problem and recovered
correspondences by using mixture features. Zhang et al. [26]
developed an effectivemethod that maintains a highmatching
ratio on inliers while taking advantage of outliers for varying

the warping grids. Bilateral KNN spatial orders around geo-
metric centers (Bi-SOGC) [27] is a graph matching approach
based on bilateral K nearest neighbors spatial orders around
geometric centers, which enhances feature matching with
spatial relations. Optimization and iterative logistic regres-
sion matching (OILRM) [28] combines optimization model
and logistic regression to improve linear object matching.
Wu et al. [29] employed a weighted total least squares
(WTLS) based estimator to cope with control point coordi-
nates that are of unequal accuracies. Zhao et al. [30], [31]
propose to achieve robust feature point matching by remov-
ing outliers and reserve sufficient inliers for remote sensing
images. Yeand et al. [32] uses support-line voting and affine-
invariant ratios to serve the same purpose. These SIFT based
methods suffer from the problems of insufficient feature
points and high outlier ratio under severe appearance change.

There are also diverse solutions in the phase of point
set registration. A classical approach is by the means of
probability optimization, measuring the degree of alignment
with a Gaussian mixture model (GMM). One representative
GMM based method is the Coherent Point Drift (CPD) [33],
which places a Gaussian distribution centroid on each of
the sensed feature points and then iteratively update point
locations under the expectation maximization framework.
Wang et al. [16] proposes to use a mixture of asymmet-
ric Gaussian models (MoAG) and apply soft assignment
technique to recover the correspondences. This method uses
a correlation-based method to estimate the transformation
parameters. Ma et al. [34] introduced vector field consensus
(VFC) which can efficiently establish robust point correspon-
dences between two sets of points. Their successive work
SparseVFC [35] demonstrates significant speed advantage
over the original VFC algorithm without much performance
degradation. Locally linear transforming (LLT) [14] starts
by creating a set of putative correspondences based on the
feature similarity and then focus on removing outliers from
the putative set and estimating the transformation as well.
They formulate this as a maximum-likelihood estimation
of a Bayesian model with hidden/latent variables indicating
whether matches in the putative set are outliers or inliers.
Zhang et al. [36] proposed a dual-feature approach that
preserves the structure at both global and local scales dur-
ing the registration. Manifold regularized coherent vector
field (MRCVF) [37] also approach by removing outliers.
It learns coherent vector fields fitting for the inliers with
graph Laplacian constraint. An optimization strategy which
instead minimizes a residual complexity was introduced in
Myronenko et al.’s paper [38], it derives the similarity mea-
sure by analytically solving for the intensity correction field
and its adaptive regularization. A simulated, astrophysics
based Gravitational Approach (GA) [39] formulates regis-
tration as a modified N-body problem. It mimics a template
point set moving in a viscous medium under gravitational
forces induced by a reference point set. This method currently
registers rigid point sets. Vongkulbhisal et al. [40] proposed
the Discriminative Optimization (DO), which learns search
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FIGURE 1. Process diagram of our method with comparison to CPD. In feature extraction and prematching, equal number of feature points are generated
using SIFT and our CNN feature. Correct feature point matches are denoted by yellow lines, incorrect ones are denoted by blue lines. In the point set
registration stage, we use an increasing selection of inliers. Only prominent feature point pairs are used to estimate the transformation at
early iterations, other feature points are moved coherently.

directions from data without the need of a cost function.
Specifically, DO explicitly learns a sequence of updates in the
search space that leads to stationary points that correspond to
desired solutions.

In the past few years, convolutional neural networks
(CNNs) have been studied for processing remote sensing
data [41]. Zhang et al. developed a set of effective CNN
based methods for extracting features [42], classify scenes
[43] and detect specific ground targets [44]. A number of
works use CNNs to learn feature description. MatchNet [45]
presents a unified approach to learn feature representations
and learn feature comparison through which improved com-
putational efficiency is achieved. It consists of a deep con-
volutional network that extracts features from patches and
a network of three fully connected layers that computes a
similarity between the extracted features. In order to over-
come the shortage of labeled data, Du et al. [46] proposes
a general active learning framework that effectively fuses
the representativeness and informativeness of data and an
unsupervised deep network called the stacked convolutional
denoising auto-encoders [47], which can map images to
hierarchical representations without any label information.
Žbontar and LeCun [48] train a convolutional neural network
to predict how well two image patches match and use it
to compute the stereo matching cost. These methods use
relatively large image patches and focus on computing certain
metric from the image patches, whereas localization is not
demanded. In our approach, we attempt to utilize high level
convolutional information while preserving some localiza-
tion capabilities.

Several methods have been developed to approach cat-
egory level registration. These works attempt to train
specific networks for feature extraction and registration.
Kanazawa et al. [49] constructed a Siamese network to pre-
dict transformations and trains it on fine-grained datasets.
Rocco et al. [50] propose an architecture based on three
main components that mimic the standard steps of feature

extraction, matching and model parameter estimation, each
one is trainable network. In our proposed approach, CNN is
only utilized for feature extraction, for point set registration
we build a novel method on traditional frameworks. The
reason for such choice is that neural networks can only yield a
limited, constant number of transformation parameters, thus
is incapable of rectifying complicated distortion and unsuit-
able for remote sensing registration.

III. METHOD
A. SOLUTION FRAMEWORK
The objective of the algorithm is to transform a sensed
image IY so that it is aligned to a reference image IX .
We detect a feature point set X from the reference image and
a feature point set Y from the sensed image. Next we use
a expectation maximization (EM) based procedure to obtain
the transformed locations of Y , namely Z . Y and Z are then
used to solve a thin plate spline (TPS) interpolation for image
transformation. The main process of our method is shown
in Fig.1

Throughout the paper we use the following notations:

• XN×2, YM×2 - feature point set extracted from the refer-
ence image and the sensed image, respectively.

• Z - transformed locations of Y .
• N ,M - the number of points in X and Y , respectively.
• xn, ym - point at index n in point set X ; point at index m
in point set Y .

B. FEATURE DESCRIPTION AND PREMATCHING
1) GENERATING FEATURE DESCRIPTORS
Our convolutional feature descriptor is constructed using
the output of certain layers in a pretrained VGG-16 [12]
network, which is a image classification network that clas-
sifies 1000 categories. VGG is selected for this task due
to some of its desirable characteristics: (i) Its remarkable
performance on image classification proves its resolving
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FIGURE 2. Slightly modified VGG-16 Network Architecture. h and w
respectively represents the height and width of the input image. Since we
only use convolution layers to extract features, the input image can be of
any size as long as h and w are multiples of 32.

power. (ii) It is concise in structure, constructed simply by
stacking convolution, pooling and fully connected layers
while no branches or shortcut connections are employed to
reinforce gradient flow. Such design made adapting this net-
work for different purposes practicable. (iii) It is extremely
deep, trained on enormous and diversified image data. As a
result, its convolution filters searches universal patterns and
generalizes very well. VGG is frequently used for feature
extraction in many computer vision solutions, such as faster-
RCNN [51] object detector and super-resolution generative
adversarial network (SRGAN) [52].

Based on visualization of convolution filters and trial-
and-error experiments using single layer output as feature,
several network layers have been selected to build our fea-
ture descriptor. We mainly consider the generalizability of
convolution filters and the receptive field size when selecting
the layers. A convolution layer in a neural network contains
various small filters and each searches for a specific pattern
in the input image. The filters in each convolution layer of
VGG-16 are visualized by applying gradient ascent [53] on
an input image generated using random values. We choose
to use the VGG network trained on Imagenet dataset [54] so
that our feature descriptor searches for common, universal
patterns. Fig.3 shows representative visualized filters. The
pool5 layer is not used for feature because it is affected by
specific classification objects thus not suitable for detecting
general features.

Since we only use convolution layers to extract features,
the input image can be of any size as long as the height and

FIGURE 3. Visualization of Convolution Filters. With the increase of depth
in the convolutional neural network using convolution layers and pooling
layers, the pattern searched by convolution filters becomes larger in scale
and tend to be more sophisticated.

the width are multiples of 32. However, the size of the input
image can have two aspects of influence: (i) The receptive
field of each descriptor would be different and affect the per-
formance. (ii) Larger input images require more computation.
We resize input images to 224×224 before propagating them
through the network in order to have properly sized receptive
fields and reduced computation. The outputs of three layers
are used to build our feature: pool3, pool4 and a max-pooling
layer added after block5conv1, namely pool5_1. These layers
searches for a universal set of patterns and yield feature
response values that well cover different sizes of receptive
fields.

As shown in Fig.2, VGG-16 contains 5 blocks of con-
volution computation, each with 2-3 convolution layers and
a max-pooling layer at the end of each block. We lay a
28 × 28 grid over the input image dividing our patches,
each corresponding to a 256-d vector in the pool3 output,
a descriptor is generated in every 8× 8 square. The center of
each patch is regarded as a feature point. The 256-d vector
is defined as the pool3 feature descriptor. The pool3 layer
output directly forms our pool3 feature map F1, which is of
size 28× 28× 256. The pool4 layer output, which is of size
14×14×512, is handled slightly differently. In every 16×16
area we generate a pool4 descriptor, therefore it is shared by
4 feature points. As shown in Eq.1, pool4 feature map F2 is
acquired using Kronecker product (denoted by

⊗
):

F2 = Opool4

⊗
I2×2×1 (1)
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Opool4 stands for the output of pool4 layer. I denotes a tensor
of subscripted shape and filled with 1s.

The pool5_1 layer output is of size 7 × 7 × 512. Sim-
ilarly, every pool5_1 descriptor is shared by 16 feature
points.

F3 = Opool5_1

⊗
I4×4×1 (2)

The distribution of feature descriptors is shown is Fig.4.

FIGURE 4. Distribution of feature descriptors. This figure shows the
distribution of feature descriptors in a 32 × 32 squared region. Green dots
denote pool3 descriptors, generated in a 8 × 8 squared region. Blue dots
denote pool4 descriptors, each shared by 4 feature points. The cyan dot
denote a pool5_1 descriptor, shared by 16 feature points.

After acquiring F1, F2 and F3, the feature maps are nor-
malized to unit variance using

Fi←
Fi
σ (Fi)

, i = 1, 2, 3 (3)

where σ (·) computes the standard deviation of elements in a
matrix. The pool3, pool4 and pool5_1 descriptors of point x
are denoted by D1(x), D2(x) and D3(x) respectively.

2) FEATURE PREMATCHING
We first define the distance metric of our feature. The feature
distance between two feature points x and y is a weighted sum
of three distance values

d(x, y) =
√
2d1(x, y)+ d2(x, y)+ d3(x, y) (4)

and each component distance value is the Euclidean distance
between the respective feature descriptors

di(x, y) = Euclidean-distance(Di(x),Di(y)) (5)

The distance computed with pool3 descriptors d1(x, y) is
compensated with a weight

√
2 because D1 is 256-d whereas

D2 and D3 are 512-d.
Feature point x is matched to y if the following conditions

are satisfied:

1) d(x, y) is the smallest of all d(·, y)
2) There does not exist a d(z, y) such that d(z, y) < θ ·

d(x, y). θ is a parameter valued greater than 1 and is
called the matching threshold.

This matching method does not guarantee bijection.

C. DYNAMIC INLIER SELECTION
Our feature points are generated at the center of square
shaped image patches. Under circumstances of deformation,
corresponding feature points may have their image patches
overlapping partly or completely. Therefore, to achieve more
accurate registration, feature points with larger overlapping
ratios should have a better degree of alignment, where as
partly overlapping patches should have a small distance
between their centers. The degree of alignment is determined
using our dynamic inlier selection.

While using EM algorithm to iteratively solve Z (the trans-
formed locations of Y in every iteration), we update the selec-
tion of inliers in every k iterations. Points selected as inliers
guide the movement of point locations whereas outliers are
moved coherently. At the feature prematching stage, a large
number of feature points are selected using a low threshold
θ0 to filter out irrelevant points. Then we designate a large
starting threshold θ̂ that only confident inliers (feature points
with overlapping patches) satisfy. In the rest of registration
process, threshold θ is subtracted by a step-length δ in every
k iterations, allowing a few more feature points to affect
the transformation. Such practice enables strongly matched
feature points to determine the overall transformation while
other feature points optimize registration accuracy.

Inlier selection produces a M × N prior probability
matrix PR which is then taken by our Gaussian mixture model
(GMM) based transformation solver. The entry PR[m, n] of
this matrix, is the putative probability of xn and ym to be corre-
sponding. Supposing that xn is corresponding to ym, we obtain
a large putative probability PR[m, n]. And a large probability
would further lead to a conspicuous transformation over ym
by which the corresponding pair can be aligned.

The putative probabilities are determined using both the
convolutional feature and geometric structural information.
Prior probability matrix PR is obtained through the following
procedure:

1) Prepare the M × N convolutional feature cost matrix
Cconv
θ by

Cconv
θ [m, n] =


d(ym, xn)
dmax
θ

, condition 1

1, otherwise.
(6)

Condition 1 is when ym and xn are a valid match under
threshold θ . d(·, ·) is the previously defined distance
metric of our convolutional feature. dmax

θ is the maxi-
mum distance of all matched feature point pairs under
threshold θ .

2) Compute a geometric structure cost matrix Cgeo

using shape context [55], which is a histogram based
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descriptor that profiles neighborhood structure of a
point. The descriptor places the profiled point at the
center of a polar coordinate system and records the
number of points fell in arc-shaped bins. Cgeo is
acquired by performing a χ2 test

Cgeo[m, n] =
1
2

B∑
b=1

[hym(b)− hxn(b)]
2

hym(b)+ hxn(b)
, (7)

where hym(b) and hxn(b) denotes the number of points fell
in the bth bin surrounding ym and xn, respectively.

3) Both Cconv
θ and Cgeo are valued in [0, 1]. We com-

pute a integrated cost matrix C using a element-wise
Hadamard product (denoted by �):

C = Cconv
θ � Cgeo (8)

4) We apply Jonker-Volgenant algorithm [56] to solve the
linear assignment on cost matrix C . Assigned point
pairs are regarded as putatively corresponding. Finally,
we compute the prior probability matrix using

PR[m, n] =

1, if ym and xn are corresponding
1− ε
N

, otherwise.

(9)

ε is a hyper-parameter valued in [0, 1] which should
be designated according to our confidence of the
inlier selection to be accurate. Prior probability matrix
requires normalization:

PR[m, n] :=
PR[m, n]∑N
k=1 PR[m, k]

(10)

The step length of threshold is determined by δ = θ̂−θ0
10 .

D. MAIN PROCESS
We consider point set Y as Gaussian mixture model (GMM)
centroids. The GMM probability density function is defined
as:

p(x) = ω
1
N
+ (1− ω)

M∑
m=1

gm(x) (11)

gm(x) is a normal distribution density function:

gm(x) =
1

2πσ 2 exp(−
1

2σ 2 ‖x − ym‖
2) (12)

The model uses isotropic variances σ 2 for every single Gaus-
sian centroid in the mixture. An additional uniform distribu-
tion term 1

N is added to account for outliers with a weighting
parameter ω, 0 < ω < 1.

We then use expectation maximization (EM) algorithm to
find the optimal transformation parameters (W , σ 2, ω). The
objective of such approach is to maximize a likelihood func-
tion, or equivalently minimize the negative log-likelihood
function:

L(W , σ 2, ω) = −
N∑
n=1

log
M+1∑
m=1

PR[m, n]gm(xn), (13)

from which we cannot directly compute gradients due to
the existence of unobservable variable m. Alternatively,
EM algorithm minimizes the expectation of the negative log-
likelihood function:

Q = −
N∑
n=1

M+1∑
m=1

Pold(m|xn) log(PR[m, n]gm(xn)), (14)

Pold(m|xn) denotes a posterior probability term computed
using parameters from the last iteration. After expanding this
equation and omitting derivative-redundant terms, the equa-
tion can be rewritten as:

Q(W , σ 2, ω) =
1

2σ 2

N∑
n=1

M∑
m=1

Pold(m|xn) ‖xn − τ (ym,W )‖2

−
1
2
NP log(

σ 2ω

1− ω
)− N log(ω), (15)

where NP =
∑N

n=1
∑M

m=1 P
old(m|xn) and τ (ym,W ) denotes

the transformed location of ym.
The non-rigid transformation is defined as:

Z = Y + GW (16)

in which G is the matrix generated by Gaussian radial basis
function (GRBF) and W contains the transformation param-
eters to be learned.

G[i, j] = exp
(
−

∥∥xj − yi∥∥2
2β2

)
(17)

Added a regularization term based on Motion Coherence
Theory (MCT) [57], we obtain

Qr = Q+
λ

2
tr(W TGW ), (18)

where tr(·) represents trace operation.
EM algorithm iteratively computes the expectation and the

minimizing gradients until convergence.
E-step: computing the posterior probability matrixPO with

parameters from the last iteration.

PO[m, n] = Pold(m|xn) =
PR[m, n]gm(xn)

p(xn)
(19)

M-step: solving the derivatives and updating parameters.

W := (G+ λσ 2P−1d )−1 · (P−1d PX − Y ) (20)

σ 2
:=

1
2NP

(tr(XTPdX )− 2tr(XTPTZ )+ tr(ZTPdZ ))(21)

ω := 1−
NP
N

(22)

Pd = diag(P1). 1 is a column vector of filled with 1s.
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E. IMPLEMENTATION DETAILS
• Parameter Setting
In the feature prematching stage, threshold θ0 is auto-
matically determined by selecting the most reliable
128 pairs of feature points. Similarly, θ̂ is determined
by selecting the most reliable 64 pairs of feature
points. In the inlier selection stage, the step-length δ
is found by δ = (θ̂ − θ0)/10; confidence param-
eter ε is set 0.5; shape context uses 5 bins on the
radial direction and 12 bins on the tangential direction.
In the point set registration stage, the annealing con-
stant α is set 0.95; Gaussian radial basis variance β is
set 2.

• Initialization
Input images are resized to 224 × 224 before feature
extraction. Outlier balancing weight ω is initialized
as 0.5. λ is initialized as 2. Transformation coefficient
W is initialized to a matrix of all zeros. GMM variance
σ 2 is initialized using:

σ 2
←

1
2MN

M ,N∑
m=1,n=1

‖xn − ym‖2 (23)

• Computational Cost
Feature computation on single 224 × 224 image takes
13.45B FLOPs. On a 2.9GHz dual core Intel i5 CPU this
costs 1.2s. On solving matrix PO, we obtain the worst-
cost timeO(N 3). TheweightmatrixW hasN×N entries,
each of which requires N iterations to compute, hence,
the complexity is O(N 3). Overall, point set registration
has O(N 3) complexity.

F. PSEUDOCODE
We summarize ourmethod for multi-temporal remote sensing
image registration in Algorithm 1.

IV. EXPERIMENT
The performance of our work is tested on a multi-temporal
satellite image dataset and a multi-temporal UAV image
dataset. We compare our feature descriptor with SIFT.
Our image registration method is tested against four SIFT-
based state-of-the-art methods: CPD [33], GLMDTPS [25],
GL-CATE [17] and PRGLS [13].

A. EXPERIMENT SETTING
Two types of experiments are conducted.

1) FEATURE PREMATCHING PRECISION TEST
Feature prematching is an important intermediate stage of
image registration, we compare our convolutional feature
with SIFT. In each pair of test images, we extract and pre-
match feature points using both methods. We then use the
most reliable 95-105 pairs of matches and measure precision
by Precision = TP

TP+FP . Pairs of feature matches are selected
by controlling the threshold.

Algorithm 1 Image Registration Using Deep Con-
volutional Features and Dynamic Inlier Selection
(DeepIRDI)
input : IX and IY

1 Initialize parameters θ0, θ̂ , δ, k , β, ε, ω, σ 2,W and λ;
2 Prematch and select the convolutional feature point
sets X and Y from IX and IY using threshold θ0;

3 Construct the Gaussian kernel G using Equation 17;
4 Initialize θ = θ̂ ;
5 do
6 For every k iterations:
7 Compute convolutional feature cost matrix

Cconv
θ according to Equation 6.

8 Compute the geometric structure cost matrix
Cgeo using Equation 7;

9 Compute the cost matrix C = Cconv
θ � Cgeo;

10 Employ Jonker-Volgenant [56] algorithm to
solve the linear assignment on cost matrix C .

11 Compute the posterior probability matrix PR
using Equation 9;

12 Update the threshold θ ← θ − δ;
13 end
14 E-Step:
15 Compute posterior probability matrix PO by

PO[m, n] =
PR[m,n]gm(xn)

p(xn)
16 end
17 M-Step:
18 Update W using Equation 20;
19 Compute Z using Equation 16;
20 Update σ 2 and ω using Equation 21 and

Equation 22;
21 end
22 while Equation 15 is not convergent;
23 Compute the transformed image IZ using thin plate

spline interpolation.
output : IZ

2) IMAGE REGISTRATION ACCURACY TEST
This type of experiment is conducted using registered images
generated by different methods. In each pair of sensed and
registered images, 15 pairs of designated landmark points are
identified by the tester. The tester records the locations of the
landmark points on the image and measure error according
to the distance between each pair of landmark points. The
error metrics are root mean squared distance (RMSD), mean
absolute distance (MAD), median of distance (MED) and the
standard deviation of distance (STD).

3) DATASETS
Both types of aforementioned experiments are performed
on two datasets: (i) a multi-temporal satellite image dataset
acquired fromGoogle Earth; (ii) amulti-temporal UAV image
dataset captured using a small UAV (DJI Phantom 4 Pro) with
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FIGURE 5. Feature prematching precision test results. Correct matches (true positives) are denoted by yellow lines; wrong matches (false positives) are
denoted by blue lines. (a) Feature prematching precision test results on the multi-temporal satellite image dataset. (b) Feature prematching precision
test results on the multi-temporal UAV image dataset.
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FIGURE 6. Image registration accuracy test results. The first row shows the locations of manually selected landmarks. Red frames mark the registration
errors. (a) Image registration accuracy test results on multi-temporal satellite image dataset. (b)Image registration accuracy test results on multi-temporal
satellite image dataset.
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a CMOS camera; Each dataset include 15 pairs of images.
The size of the images range from 600× 400 to 1566× 874.
Image pairs in our datasets contain significant appearance
variation andminor dislocation, rotation or viewpoint change.

B. RESULTS OF FEATURE PREMATCHING PRECISION TEST
Numerical results on both datasets are demonstrated
in Table.1. Four examples of feature prematching in either
dataset are shown in Fig.5, demonstrating detected feature
point locations, correct and incorrect matches. The results
show that our method generates more correct correspon-
dences than SIFT. Moreover, the feature points detected by
our method distributes more evenly over the images, because
our method guarantee that only one feature point is exists in
every 8× 8 region.

TABLE 1. Feature prematching precision test result. Unit: %.

C. RESULTS OF IMAGE REGISTRATION ACCURACY TEST
Numerical results on the satellite image dataset are demon-
strated in Table.2, the results on the UAV image dataset are
demonstrated in Table.3. We demonstrate four examples of
registered images generated by different methods in both
datasets in Fig.6. The results show that our method produces
the best performance in most scenarios, especially when the
appearance difference in the image pair is challenging. The
reason is that our convolutional feature is more robust to
appearance variation than SIFT, which all of the compared
methods rely on. Moreover, GLMDTPS performs unsatisfy-
ing because this method emphasizes one-to-one correspon-
dence which is vulnerable under the presence of outliers.
CPD alleviates this problem bymodeling outliers using a uni-
form distribution. PRGLS performs well, only it suffers from
dubious correspondences resulted from similar geometrical
neighborhood structures. GL-CATE outruns the other three
methods and performs best on the satellite image dataset.
Its drawback originates from the extracted feature points

TABLE 2. Image registration accuracy test result on multi-temporal
satellite image dataset. Unit: pixels.

TABLE 3. Image registration accuracy test result on multi-temporal UAV
image dataset. Unit: pixels.

that are not sensitive enough to multi-temporal images. The
decent accuracy of our method proves that our dynamic inlier
selection strategy properly utilizes our patch based feature.

V. CONCLUSION
We propose a feature based image registration method with
two key contributions: (i) We build a convolutional neural
network based feature extraction method using pretrained
VGG network. Aiming at the effective utilization of convo-
lutional neural networks in image registration, our feature
descriptor utilizes high level convolutional information while
preserving some localization capabilities. (ii) We propose
a feature point registration procedure that uses a gradually
expanding selection of inliers, so that the rough transforma-
tion is rapidly determined by the most reliable feature points
at the early stage of registration. Afterwards, the registra-
tion details are optimized by increasing the number of fea-
ture points while restricting the mismatches simultaneously.
Performed upon two multi-temporal datasets, the feature
prematching test shows considerable accuracy improvement
compared to SIFT, the image registration test shows that our
method outperform four state-of-the-art methods under most
circumstances.
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