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ABSTRACT Orthogonal waveform design is of great significance for simultaneous polarimetric high-
resolution range profile (HRRP) reconstruction. In this paper, a novel waveform called a random orthogonal
frequency division multiplexing (R-OFDM) pair is proposed. The proposed signal exploits ideal orthogo-
nality by randomly selecting different subsets of a full-band OFDM signal. The compressive sensing (CS)
technique is applied for HRRP reconstruction due to the sparse property of the proposedwaveform. To further
utilize the information of different polarization channels, the joint CS reconstruction algorithm called a
fully polarization-simultaneous orthogonal matching pursuit (FP-SOMP) is proposed instead of the single
polarization-OMP algorithm by exploiting row-sparsity of different polarization channels. Both numerical
simulations and measured unmanned aerial vehicle data experiments demonstrate that the R-OFDM pair and
the CS-based FP-SOMP algorithm are qualified for simultaneous polarimetric HRRP reconstruction.

INDEX TERMS Simultaneous polarimetric radar, high-resolution range profile (HRRP), orthogonal fre-
quency division multiplexing (OFDM), compressive sensing (CS).

I. INTRODUCTION
Both high resolution and polarimetric information contribute
to target recognition in remote sensing applications. The
high resolution information involves geometrical character-
istic such as length, size and shape of target. The polarization
information describes the roughness of target surface, degree
of symmetry and so on, which is widely applied in target
detection, target recognition and parameter estimation. Thus
the combination of high resolution and polarization attracts
great attention in the past decades [1], [2].

The polarimetric high-resolution range profile (HRRP)
syntheses involve two independent procedures: one is to
obtain the HRRP with wideband signals such as stepped
frequency wave(SFW) and wideband linear frequency mod-
ulation(LFM) signal. The other is to obtain the whole polar-
ization channel data with fully polarimetric measurements.
Currently, alternate polarimetric measurement (APM) is
mainly adopted [3], [4]. The polarizations are alternately
switched between the horizontal and vertical polarizations
on transmission and reception. As a result, the polarimetric

HRRPs are obtained in a sequence of two measurements.
For high dynamic targets, the relative position between target
and radar has changed during two measurements. Thus the
polarimetric HRRPs cannot be accurately measured. Instead
of APM, simultaneous polarimetric measurement(SPM) has
been proposed. By simultaneously transmitting and receiving
orthogonal polarimetric wave, the polarimetric HRRPs are
obtained within one transmitting period. In this case, pulse-
to-pulse based switching of transmitting polarizations can
be avoided. Due to simultaneous transmission and reception,
the signals must be orthogonal in either time domain or fre-
quency domain. Frequency shifted pulses, pairs of up-down
slope LFM signals and phased coded modulation(PCM) sig-
nals are widely applied in SPM [5]–[7].

Orthogonal Frequency Division Multiplexing (OFDM)
technique is widely applied in communication [8], which
also attracts great attention in radar applications for its multi-
carrier spread-spectrum property. Radar systems utilizing
OFDM techniques are reported in [9] and [10]. Recently,
interleaved-OFDM(I-OFDM) pair is proposed to raise the
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cross-channel isolation level in narrow-band SPM applica-
tions by utilizing the orthogonality of sub-carriers of OFDM
signals [11]. By alternately sampling from the same full-
band OFDM signal, the wave pair yields theoretical orthog-
onality in frequency domain. Thus the isolation limitation
of pairs of up-down slope wide-band LFM signal can be
overcome. However, the unambiguous range of I-OFDM pair
is half of full-band OFDM signal due to the interleaved sam-
pling.When it comes to wide-band simultaneous polarimetric
HRRP reconstruction applications, the HRRPs of targets with
relatively large length in the line of sight(LOS) of radar may
be coupled. Besides, the discrete Fourier transform(DFT)-
based processing algorithm proposed in [11] is applied to
each polarization channel individually, which does not utilize
the links among different polarizations.

Recently, applications of sparse signals by randomly
selecting limited parts of the complete waveform based
on compressive sensing (CS) theory are discussed in [12]
and [13]. According to CS theory, the exact recovery of
an unknown sparse signal can be obtained from limited
measurements by solving a sparsity-constrained optimiza-
tion problem [14]–[19]. Inspired by this, random-OFDM
(R-OFDM) pair is proposed by randomly selecting orthog-
onal subsets of the full-band OFDM signal in this paper.
By this way, the same unambiguous range as the full-
band OFDM signal is obtained for each R-OFDM sig-
nal. Then the classic CS-based processing algorithm called
Single Polarization-Orthogonal Matching Pursuit (SP-OMP)
is applied to reconstruct the polarimetric HRRPs. More-
over, to fully utilize the information among different
polarization channels, the Fully Polarization-Simultaneous
OMP(FP-SOMP) algorithm is further proposed. Then the
polarimetric HRRPs are reconstructed more accurately and
robustly.

The remainder of the paper is as follows. Section II
presents the signal model of R-OFDM pair. Then in
Section III the two CS-based processing algorithms called
SP-OMP and FP-SOMP are detailedly presented. Numerical
simulations and measured unmanned aerial vehicle(UAV)
data experiments are separately conducted to demonstrate the
validity of the proposed method in Section IV and Section V.
Section VI ends with conclusions and some future research
directions.

II. SIGNAL MODEL
As shown in Fig.1(a), a full-band OFDM signal consists of
a sequence of N narrowband subcarrriers with frequencies
stepped from pulse to pulse. The frequencies are denoted as
fn = f0+n1f , where n = 0, 1, 2, · · · ,N −1, f0 is the carrier
frequency, 1f is the frequency interval of adjacent pulses.
The transmitted full-band OFDM signal is

x(t) =
N−1∑
n=0

rect(t/τ )exp(j2π fnt) (1)

where t is the fast time variable with −T/2 ≤ t ≤ T/2,
and T is the pulse repetition interval (PRI), τ is the sub-pulse

FIGURE 1. Signal model. (a)full-band OFDM signal. (b)R-OFDM pair.
(c)I-OFDM pair.

width, and rect(t/τ ) equals to 1 when |t/τ | < 0.5, otherwise
rect(t/τ ) = 0.
To achieve the orthogonality, the frequency interval should

satisfy 1f = m/τ according to the properties of sinc(·)
function, where m is a positive integer [12]. Specially 1f =
1/τ . The DFT-based algorithms can be applied for the echo
processing [11]. The synthesized bandwidth is B = N1f ,
the range resolution is 1R = c/2B, and the unambiguous
range is 1r = [−c/41f , c/41f ], respectively, where c is
the velocity of electromagnetic wave propagation.

In recent years, CS theory has been widely applied in
imaging radar, which can reconstruct HRRPs with limited
measurements that are randomly selected from the complete
signal by utilizing the sparsity of radar targets. Inspired by CS
theory, a novel R-OFDM pair radar signal is proposed by ran-
domly selecting orthogonal sub-pulses from full-bandOFDM
signal for simultaneous polarimetric HRRP reconstruction.

As shown in Fig.1(b), the selected N/2 sub-pulses for
R-OFDM pair are denoted by

fHn = f0 + GH(n)1f (2)

fVn = f0 + GV(n)1f (3)

where GH and GV are orthogonal subsets of [0 : N − 1] with
|GH| = |GV| = N/2 and GH ∪ GV = [0 : N − 1], n runs
from 0 to N/2− 1.

Thus R-OFDM pair can be written as

xH(t) =
N/2−1∑
n=0

rect(t/τ )exp(j2π fHnt) (4)

xV(t) =
N/2−1∑
n=0

rect(t/τ )exp(j2π fVnt) (5)
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When the R-OFDM pair is transmitted, the signal for the
orthogonal polarization channel is

x(t) = [xH(t), xV(t)]T (6)

Assume that the target involves P scatterers, Rp is the dis-
tance between the radar and pth scatterer with the polarization

scattering matrix (PSM) Sp =
[
SpHH SpHV
SpVH SpVV

]
. Then the target

echo can be given by

y(t) = [yH(t), yV(t)]T (7)

where

yH(t) =
P∑
p=1

(SpHHxH(t − τp)+ S
p
VHxV(t − τp)) (8)

yV(t) =
P∑
p=1

(SpHVxH(t − τp)+ S
p
VVxV(t − τp)) (9)

where τp = 2Rp/c denotes the time-delay of the pth scatterer.
Due to the orthogonality of OFDM sub-pulses, the co-polar

and cross-polar R-OFDM echo can get separated by carrying
out Fourier transform and indexing the sub-pulses denoted by
fHn and fVn respectively after receving the fully polarization
echo.

Fig.1(c) presents the I-OFDM pair signal proposed in [11]
as a comparison. The sub-pulses are alternately selected from
full-band OFDM signal, which are given by

f ′Hn = f0 + 2n1f (10)

f ′Vn = f0 + (2n+ 1)1f (11)

Comparing (10)(11) with (2)(3), the difference between the
proposed R-OFDMpair and I-OFDMpair lies in the selection
mechanism of sub-pulses, which uses the random selection
instead of alternate selection for the proposed R-OFDM pair.
As shown in Fig.1(c), it turns out to be a linear signal for
each I-OFDM signal. Thus the DFT-based algorithm for full-
band OFDM signal is still applicable for signal processing.
However, the I-OFDM pair has two shortages. On the one
hand, the frequency interval of each I-OFDM signal turns to
be 1f ′ = 21f , thus the unambiguous range for I-OFDM
pair is 1r = [−c/81f , c/81f ], which is half of full-band
OFDM signal. Thus it may cause range ambiguity for targets
with large length in the LOS of radar for polarimetric HRRP
reconstruction. On the other hand, the DFT-based processing
method processes the echo of each polarization channel indi-
vidually. If the fully polarimetric information can be utilized
more adequately, the accuracy of the polarimetric HRRPswill
be further improved.

With the proposed R-OFDM pair, the minus frequency
interval is still 1f as shown in Fig.1(b), hence the
unambiguous range of each R-OFDM signal is the same
as the full-band OFDM signal. Thus it is more applica-
ble for polarimetric HRRP reconstruction. Besides, the anti-
jamming performance may also greatly benefit due to the
random property of the transmitting signal.

However, due to the randomness of the proposed wave-
form, DFT-based signal processing algorithm suitable for
I-OFDM pair will generate high-level sidelobes and grating
lobes. Hence, the CS-based algorithm is proposed for polari-
metric HRRP reconstruction. Detailed analyses are presented
in Section III.

III. POLARIMETRIC HRRP RECONSTRUCTION BASED
ON CS THEORY
According to scattering theory, scattering properties of radar
target can be regarded as the linear superposition of limited
strong scatterers in high-frequency area. Thus the HRRP is
formed by some discrete peak values for radar target. Hence
the sparsity is satisfied for application of CS theory. Inspired
by this, the CS-based algorithms are proposed for polarimet-
ric HRRP reconstruction of the R-OFDM pair.

A. CS MODEL OF R-OFDM PAIR
For full-band OFDM signal, by carrying out Fourier trans-
form to the received echo, coarse range profiles of each sub-
pulse can be obtained as ed (i), i = 0, 1, · · · ,N − 1. The
HRRP obtained by the original N sub-pulses is denoted as
h(k), k = 0, 1, · · · ,N − 1. Then

ed = 9h (12)

where ed = [ed (0), ed (1), · · · , ed (N −1)]T is a N ×1 vector
of coarse range profiles, h = [h(0), h(1), · · · , h(N −1)]T is a
N×1 vector of HRRP sequence.9 is aN×N IFFT dictionary
matrix, which is given by

9=


1 1 1 · · · 1
1 W−1N W−2N · · · W−(N−1)N
1 W−2N W−4N · · · W−2(N−1)N
· · · · · · · · · · · · · · ·

1 W−(N−1)N W−2(N−1)N · · · W−(N−1)(N−1)N


(13)

where WN = exp(j2π/N ).
When the fully polarization is considered, we have

edm = 9hm (14)

where m = 1, 2, 3, 4 denotes HH, HV, VH and VV chan-
nel respectively. edm and hm denote the fully polarimetric
coarse range profiles and HRRPs of full-band OFDM signal
respectively.

As analyzed above, via Fourier transform to the received
simultaneous fully polarimetric R-OFDMpair echo yH(t) and
yV(t) given by (8)(9), the coarse range profiles of H and V
polarization channel can be obtained, respectively. Then the
co-polar and cross-polar parts can get separated by indexing
frequencies given by (2)(3). The coarse range profiles of
each individual polarization can be regarded to be randomly
selected half of that from the full-band OFDM signal. Thus

em = 2medm (15)
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where em is a N/2 × 1 vector, which denotes the mea-
sured coarse range profiles of HH, HV, VH and VV channel
obtained by the R-OFDM pair. 2m is a N/2 × N sensing
matrix. Assuming I is a N × N identity matrix, 21 = 22 =

2H are constructed by selecting N/2 rows from I according
to GH in (2), and 23 = 24 = 2V are the rest N/2 rows
according to GV in (3).

Substitute (14) into (15), then

em = 2m9hm = 8mhm (16)

where 8m = 2m9 is the mapping matrix.
From (16), em is the sparse coarse range profile obtained

from the R-OFDM pair echo, hm is the polarimetric HRRPs
need to be reconstructed. Assume the target has P scatterers,
thus hm is P-sparse according to CS theory. Because 2m
is randomly selected from the identity matrix, the restricted
isometry property (RIP) condition of the mapping matrix 8m
is satisfied with high probability [20], [21]. Thus the polari-
metric HRRPs hm can be obtained by solving the following
sparse optimization problem

ĥm = min||hm||0 s.t. ||em −8mhm||2 ≤ ε (17)

where || · ||0 is l0 norm, || · ||2 is l2 norm,ε is the noise
tolerance. For the discontinuity of l0 norm, l1 norm usually
replaces l0 norm. Then the optimization model is rewritten
as ĥm = min||hm||1. The whole CS-based procedure of
polarimetric HRRP reconstruction for each R-OFDM echo
can be concluded by Fig.2.

FIGURE 2. CS-based processing procedure of R-OFDM echo.

B. SINGLE POLARIZATION-OMP ALGORITHM
To solve (17), a number of CS reconstruction algorithms are
available including basis pursuit(BP), orthogonal matching
pursuit (OMP), sparse Bayesian learning(SBL), and so on.
In this paper, OMP is selected due to its high efficiency and
low time cost [22]. To reconstruct the polarimetric HRRPs,
One intuitive method is to directly apply the OMP algorithm
to each polarization channel individually, which can be called
Single Polarization-OMP (SP-OMP). The detailed algorithm
procedure is given as follows.

However, the SP-OMP algorithm may lead to failure in
guaranteeing the consistency of the position of the same
scatterer in different channels due to the individual processing
of different polarization channels. Furthermore, such incon-
sistency implies that extra scattering center selection and

Algorithm 1 SP-OMP algorithm
Input: measured coarse range profiles em, mapping
matrixes 8m and sparsity L.
Output: polarimetric HRRPs ĥm.
Procedure:
Step 1: Initialize residual vector r0 = em and index set
30 = ∅, set cycle index l = 0;
Step 2: Let l = l + 1;
Step 3: Find j = arg max| < (8j

m)H , rl−1 > |, where
< ·, · > represents correlation coefficients calculation,8j

m
is the j th column of 8m, (·)H is conjugate transpose. Then
update the index set 3l = 3l−1 ∪ {j};
Step 4: Update sparse solution ĥm, where positions of
non-zero elements are determined by 3l with the coef-
ficient 0m = [(8m3l )

H8m3l ]
−18m3l em,where 8m3l is

the matrix constructed by columns of 8m indexed by 3l .
Update the residual vector rl , where rl = em −8m3l0m;
Step 5: If l > L, stop the iteration, and output
the sparse solution ĥm; Otherwise back to Step 2.

association procedures are needed for further polarimetric
analysis.

C. FULLY POLARIZATION-SIMULTANEOUS OMP
ALGORITHM
As analyzed in the previous sub-section, the SP-OMP algo-
rithm may lead to the inconsistency of scatterers among
different polarization channels due to the individual pro-
cessing. In fact, scatterers in different polarization channels
have the same positions but with different amplitude and
phase responses, as revealed in Fig.3. It indicates the fully
polarimetric HRRPs are row-sparse [23], [24].

FIGURE 3. Row-sparse model.

The matrix constructed by the fully polarimetric HRRPs
is denoted as H = [h1,h2,h3,h4]. Similarly, the matrix
constructed by the measured coarse range profiles is denoted
as E = [e1, e2, e3, e4]. The row-sparse optimization model is
written as

Ĥ = min||H||row−0 s.t.
4∑

m=1

||em −8mhm||2 ≤ ε (18)

where || · ||row−0
def
= |rowsupp(·)| is row − l0 norm of the

matrix, which represents the number of non-zero rows. Here
||H||row−0 = |||h1| + |h2| + |h3| + |h4|| |0.
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For row-sparse optimization, [24] proposed a classic
greedy algorithm called Simultaneous OMP (SOMP). How-
ever, it is applicable only if multiple measurements share
the same mapping matrix. However, the mapping matrixes
of different polarization channels 8m in (18) are differ-
ent according to (16). For the inconsistency of the map-
ping matrixes, we proposed the reconstruction algorithm
called Fully Polarization-SOMP (FP-SOMP) by improving
the SOMP algorithm, which is listed as follows.

Algorithm 2 FP-SOMP algorithm
Input: matrix of the measured coarse range profiles E,
mapping matrixes 8m and row-sparsity L.
Output: polarimetric HRRPs Ĥ.
Procedure:
Step 1: Initialize residual matrix R0 = E and index set
30 = ∅, set cycle index l = 0;
Step 2: Let l = l + 1;
Step 3: Find j = arg max

∑4
m=1 | < (8j

m)H ,Rm
l−1

> |, where Rm
l−1 is the m th column of Rl−1. Then update

index set 3l = 3l−1 ∪ {j};
Step 4: Update the sparse solution Ĥ, where the posi-
tions of nonzero elements are determined by 3l . For mth
polarization channel, the coefficient of non-zero elements
is 0m = [(8m3l )

H8m3l ]
−18m3lEm,where Em is mth

column of E. Update the residual matrix Rl , where Rm
l =

Em −8m3l0m;
Step 5: If l > L, stop the iteration, and output the sparse
solution Ĥ; Otherwise back to Step 2.

Compared with SP-OMP, the proposed FP-SOMP algo-
rithm processes all the polarization channels and outputs the
reconstructed polarimetric HRRPs simultaneously. Hence the
consistency of the scatterers among different polarization
channels is guaranteed. Besides, the accuracy of the recon-
structed polarimetric HRRPs can be improved due to the joint
information utilization.

The procedure of the R-OFDM pair and FP-SOMP recon-
struction algorithm is concluded in Fig.4.

Each of the received R-OFDM pair echo, yH(t) and
yV(t) from two orthogonal polarizations includes both
co-polar and cross-polar information. The signals from
the two receiving channels are each processed in two
branches.

Firstly, Fourier transform (FT) is executed for time-
frequency transform and the outputs are denoted as eH(i) and
eV(i) respectively.

Next, the discrete sequence in frequency domain is selected
at the frequency point fHn and fVn, respectively. Then the
co-polar and cross-polar parts get separated. The coarse
range profiles of the all four polarization channels eHH(i),
eHV(i),eVH(i) and eVV(i) are obtained.
Finally, The polarimetric HRRPs ĥHH(k),ĥHV(k),ĥVH(k)

and ĥVV(k) are obtained by the proposed FP-SOMP
reconstruction.

FIGURE 4. The signal processing procedure.

TABLE 1. Parameters of the full-band OFDM signal.

TABLE 2. PSM of the scatterers.

IV. NUMERICAL SIMULATION
A. SIMULATION DESCRIPTIONS
In this section, the numerical simulation is conducted to
demonstrate the validity of the proposed simultaneous polari-
metric HRRP renconstruction method. Assume an X-band
radar operating at 10GHz, the parameters of the full-
band OFDM signal are listed in Table 1. According to
the signal parameters, the unambiguous range is 1r =
[−c/41f , c/41f ] = [−25m, 25m]. The target is formed
of four scatterers, then the sparsity is L = 4. The distance
between the scatterers and reference point is R = [−5m, 8m,
10m, 14m], and the PSMs of scatterers are listed in Table 2.

Firstly, if the I-OFDM pair proposed in [11] is applied
by alternately selecting the sub-pulses from the full-band
OFDM signal, Fig.5 presents the polarimetric HRRPs with
the DFT-based processing algorithm, where the blue dashed
lines represent the obtained polarimetric HRRPs, and the red
lines marked by ’×’ represent the correct positions of the
scatterers. As shown in Fig.5, the unambiguous range for
I-OFDM pair is [−12.5m, 12.5m], thus a fake peak appears
at −11m for Scatterer 4. Hence the HRRPs are coupled in
the range direction, which indicates the failure of polarimetric
HRRP reconstruction.

B. PERFORMANCE ANALYSES OF THE R-OFDM PAIR
Randomly select half of the sub-pulses (i.e.100 sub-pulses)
from the full-band OFDM signal as the H channel signal,
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FIGURE 5. Performance of I-OFDM pair.

and the rest half as the V channel signal, then the proposed
R-OFDM pair is obtained. The performance of the proposed
R-OFDM pair with two CS-based algorithms in Section III
is presented from the following three aspects: reconstrction
probability of polarimetric HRRPs, mean square error (MSE)
of PSM estimation and influence of sparsity settings.

1) RECONSTRUCTION PROBABILITY IN THE PRESENCE
OF NOISE
Firstly, the reconstruction probability of CS-based algorithms
in the presence of noise is presented. From the algorithm
procedure, the sparsity is the core input parameter, which
should be equal to the number of scatterers according to
CS theory. Here assume the sparsity is known as a prior
information. Then we have L = 4.

Fig.6 presents the reconstructed polarimetric HRRPs with
the signal-to-noise ratio (SNR) set as 20dB and 10dB respec-
tively, where the blue lines marked by ’�’ represent the
HRRPs reconstructed by SP-OMP, the black lines marked by
’1’ represent the HRRPs reconstructed by FP-SOMP.

Firstly, when comparing the obtained polarimetric HRRPs
in Fig.6 with that of I-OFDM pair in Fig.5, it is shown that
all scatterers including Scatterer 4 (as marked by the arrows
in Fig.6) can be successfully reconstructedwhen the proposed
R-OFDM pair is adopted. It is because the unambiguous
range is [−25m, 25m] for R-OFDMpair, which is the same as
the full-bandOFDM signal. Then awider unambiguous range
is obtained, and the polarimetric HRRPs are not coupled,
which is in accordance with theoretical analyses. Hence the
superiority of the proposed R-OFDM pair is demonstrated.

Next, when comparing the two CS-based algorithms for
R-OFDM pair, both algorithms reconstruct the polarimet-
ric HRRPs successfully when SNR = 20dB as shown
in Fig.6(a). However, when SNR decreases to 10dB, the
SP-OMP algorithm fails to reconstruct the weak scatterers
of HV and VH channel, whereas the proposed FP-SOMP is

FIGURE 6. Reconstructed polarimetric HRRPs in the presence of noise.
(a). SNR = 20dB. (b) SNR = 10dB.

still effective for polarimetric HRRP reconstruction,as shown
in Fig.6(b).

Further, assume SNR varies from −20dB to 20dB stepped
by 1dB, and 1000 Monte-Carlo simulations are conducted
for each SNR. The reconstruction probability of each polar-
ization channel and the overall reconstruction probability are
presented in Fig.7. It is necessary to point out that a successful
reconstruction means that the positions of all scatterers are
correctly reconstructed here.

As shown in Fig.7(a), for both SP-OMP and FP-SOMP,
the polarimetric HRRPs cannot be reconstructed when SNR
is lower than−11dB whereas can be precisely obtained when
SNR is higher than 17dB. When SNR is among −11dB to
17dB, the reconstruction probabilities of the co-polar channel
are higher than the cross-polar channel for SP-OMP. It is
reasonable considering the stronger scattering intensity in
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FIGURE 7. Reconstruction probability in the presence of noise. (a). Reconstruction probability of each individual
channel. (b). Overall reconstruction probability.

FIGURE 8. MSE of PSM estimation. (a). MSE of each polarization channel. (b). Average MSE.

co-polar channel. While the reconstruction probability of
different polarization channels is the same due to the joint
processing for FP-SOMP. As shown in Fig.7(b), the overall
reconstruction probability of FP-SOMP is much higher than
SP-OMP,which is in accordancewith the theoretical analysis.
Hence FP-SOMP is more efficient than SP-OMP, especially
in low SNRs. Specially, to gain the reconstruction probability
no less than 0.8, the required SNR is 1dB for FP-SOMP and
15dB for SP-OMP respectively. To gain the reconstruction
probability no less than 0.9, the required SNR is 5dB for
FP-SOMP and 17dB for SP-OMP respectively.

2) MSE OF PSM ESTIMATION
In this sub-section, the MSE of PSM estimation is fur-
ther analyzed to evaluate the accuracy of reconstructed
scatterering amplitude, which is given in Fig.8. As shown
in Fig.8(a), when SNR increases, MSE of PSM estimation
rapidly reduces for all polarization channels.MSE of co-polar
channels is higher than that of the cross-polar channels for
both methods. Besides, the MSE for FP-SOMP is smaller

than that for SP-OMP, as revealed in Fig.8(b). Specially,
to gain the satisfying PSM estimations, a SNR no less than
1dB(MSE < 0.1) and 7dB(MSE < 0.05)is required for
FP-SOMP. However, the threshold increases to 4dB(MSE <
0.1) and 9dB(MSE < 0.05) for SP-OMP. It can be concluded
that more accurate polarimetric HRRPs can be obtained by
the FP-SOMP algorithm.

3) INFLUENCE OF SPARSITY SETTINGS
As analyzed above, the sparsity is an important input param-
eter for both CS-based algorithms. In previous simulations,
the sparsity is simply assumed as a prior information. How-
ever,the sparsity is usually unknown in actual applications,
especially for the targets with complex structures. In this sub-
section, the influence of sparsity settings is analyzed. Fig.9(a)
and (b) present the reconstructed polarimetric HRRPs with
the sparsity set as L = 5 and L = 10 respectively, where
SNR = 20dB.
As shown in Fig.9, when SP-OMP is applied, more and

more fake scatterers appear with the increase of sparsity
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FIGURE 9. Reconstructed polarimetric HRRPs with different sparsity
settings. (a) L = 5. (b). L = 10.

mismatch. The appearance of fake scatterers increases the
difficulty of scattering center selection and association. How-
ever, when FP-SOMP is applied, the polarietric HRRPs can
still be successfully reconstructed even if the sparsity is set as
L = 10. It means the accurate number of scatterers is not
the essential prior information for the proposed FP-SOMP
algorithm. A larger sparsity can be set by experience, which
reduces the dependence on the prior information in actual
applications. Hence it can be concluded that a more robust
HRRP reconstruction performance can be obtained by the
proposed FP-SOMP algorithm.

FIGURE 10. The ‘‘FRONTIER’’ UAV model. (a).General shape. (b). Front
view. (c). Model in the microwave anechoic chamber scene.

From the numerical simulation, the following conclusions
can be made.

1) Compared with I-OFDM pair, a wider unambiguous
range can be obtained by the proposed R-OFDM pair
signal, hence the polarimetric HRRPs of the large-size
target will not be coupled.

2) The CS-based algorithms are qualified to reconstruct
the polarimetric HRRPs for the R-OFDM pair, hence
the validity of the proposed method is demonstrated.
Besides, by exploiting the joint sparsity of differ-
ent polarization channels, a better polarimetric HRRP
reconstruction performance can be obtained with the
proposed FP-SOMP algorithm compared with the
SP-OMP algorithm.

V. VERIFICATIONS WITH MEASURED UAV DATA
In this section, measured data simulations are further con-
ducted to verify the validity of the proposed method. The
unmanned aerial vehicle(UAV) data obtained by electromag-
netic calculations and microwave anechoic chamber mea-
surements are separately used for the verifications.

A. POLARIMETRIC UAV DATA WITH THE FULL-BAND
OFDM SIGNAL
The ‘‘FRONTIER’’ UAV model used for the simulation is
shown in Fig.10. The length is 2.3m, the wingspan is 2.9m
and the height is 0.66m. As shown in Fig.10(b), the nose is
placed along the X axis, which is defined as the 0◦ of azimuth
direction.

The polarimetric UAV datasets with the full-band OFDM
signal are firstly obtained. The parameters of OFDM sig-
nal are listed in Table 3. As shown in Table 3, the full-
band OFDM signal is formed of 200 sub-pulses with the
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FIGURE 11. 2D UAV image by electromagnetic calculations. (a). HH channel. (b). HV channel. (c). VH channel. (d). VV channel.

FIGURE 12. 2D UAV image by microwave anechoic chamber measurements. (a). HH channel. (b). HV channel. (c). VH channel. (d). VV channel.

TABLE 3. Signal parameters of the full-band OFDM signal.

frequency ranging from 8GHz to 12GHz, and the bandwidth
is 4GHz. The elevation angle is 0◦, and the fully polarimet-
ric data of azimuth angle from −180◦ to 180◦ with 0.2◦

interval are recorded. On the one hand, electromagnetic cal-
culations with the all-metal model are executed by FEKO.
On the other hand, the measurements with the real UAV
model are conducted in the microwave anechoic chamber.
The scene is shown in Fig.10(c). Different from the all-
metal model in the electromagnetic calculations, the UAV
model in the microwave anechoic chamber measurements
is made up of various materials including glass fiber rein-
forced plastics(GFRP), carbon fiber, wood and metal. The
swept-frequency signal generated by the vector network ana-
lyzer(VNA) is used in the measurements. Since the swept-
frequency signal is also formed by sub-pulses with stepped
frequencies, it is equivalent with the full-band OFDM signal
in the experiment.

Fig.11 and Fig.12 present the two dimensional (2D)
polarimetric images with the UAV data obtained by elec-
tromagnetic calculations and microwave anechoic cham-
ber measurements respectively, where the azimuth angle
varies from −5◦ to 5◦. As shown in Fig.11 and Fig.12,

the polarimetric images are in accordance with the UAV
model including the shape and size. Hence both of the
acquired data are demonstrated to be valid for simula-
tion conduction. Besides, it is obvious that the images
of the two datasets are somewhat different, which is rea-
sonable considering the material difference between two
models. Due to the difference, both of them are uti-
lized to demonstrate the validity of the proposed method
more adequately. For convenience, denote the data of
electromagnetic calculations as DATASET 1, and the
data of microwave anechoic chamber measurements as
DATASET 2.

B. PERFORMANCE OF THE R-OFDM PAIR
Firstly, to obtain the proposed R-OFDM pair signal, ran-
domly select half of the sub-pulses from the full-band OFDM
signal as the H channel signal, and the rest as the V
channel signal. By indexing the relevant segments of UAV
datasets with full-band OFDM signal according to frequency,
the polarimetric R-OFDM data for each channel can be sim-
ulated. In the simulation, the data at azimuth direction 0◦ of
both datasets are selected for polarimetric HRRP reconstruc-
tion. It is necessary to point out that the ideal polarimetric
HRRPs are unknown due to the complex scattering prop-
erty of the UAV model. Via FFT transform, the polarimetric
HRRPs with full-band OFDM signal are obtained, and it is
treated as the actual HRRPs of theUAVmodel approximately.
Then the HRRPs obtained by the proposed R-OFDM pair can
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FIGURE 13. Reconstructed polarimetric HRRPs with L = 20 (DATASET 1). (a). HH channel. (b). HV channel. (c). VH channel. (d). VV channel.

FIGURE 14. Reconstructed polarimetric HRRPs with L = 40 (DATASET 1). (a). HH channel. (b). HV channel. (c). VH channel. (d). VV channel.

get quantitatively evaluated by comparison with that obtained
by the full-band OFDM signal.

1) COMPARISON OF THE RECONSTRUCTED
POLARIMETRIC HRRPS
For the proposed R-OFDM pair, the polarimetric HRRPs
can be reconstructed by applying the CS-based SP-OMP
and FP-SOMP algorithms respectively. Due to the complex
scattering property of the UAV model, the sparsity remains
unknown for the reconstruction algorithm. Fig.13 to Fig.16
present the reconstructed polarimetric HRRPs with different
sparsities, where it is set as L = 20 and L = 40 for

DATASET 1 and L = 40 and L = 60 for DATASET 2,
respectively. The sparsity of DATASET 2 is set a bit larger
than that of DATASET 1 due to the more complex scattering
property of various material structures of the UAV model in
anechoic chamber measurements.

As shown in Fig.13 and Fig.15, when the sparsity is set as
L = 20 for DATASET 1 and L = 40 for DATASET 2, both
of the algorithms can reconstruct the polarimetric HRRPs
correctly. Hence it is demonstrated that the R-OFDMpair and
the CS-based algorithm are qualified for polarimetric HRRP
reconstruction. Besides, the weak scatterers in the HRRPs
can be reconstructed more accurately by the FP-SOMP
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FIGURE 15. Reconstructed polarimetric HRRPs with L = 40 (DATASET 2). (a). HH channel. (b). HV channel. (c). VH channel. (d). VV channel.

FIGURE 16. Reconstructed polarimetric HRRPs with L = 60 (DATASET 2). (a). HH channel. (b). HV channel. (c). VH channel. (d). VV channel.

algorithm compared with the SP-OMP algorithm due to the
joint processing, e.g. the parts marked by arrows in Fig.13(a)
and Fig.13(d).

As revealed in Fig.14 and Fig.16, when the spar-
sity increases to L = 40 for DATASET 1 and
L = 60 for DATASET 2, the SP-OMP algorithm
totally fails to reconstruct the polarimetric HRRPs,
whereas the proposed FP-SOMP algorithm can still recon-
struct the HRRPs correctly. Hence it can be concluded
that the FP-SOMP algorithm is more robust than SP-OMP
algorithm.

2) EVALUATION OF THE POLARIMETRIC HRRP
RECONSTRUCTION PERFORMANCE
Due to the complex scattering properties of the UAV model,
the PSM of the scatterers cannot be calculated. To quan-
tificationally evaluate the polarimetric HRRP reconstruction
performance of the proposed CS-based algorithm, a novel
indicator called degree of distortion γ can be defined as

γ =

N∑
j=1

∣∣|hr (j)| − |hf (j)|∣∣/ N∑
j=1

|hf (j)| (19)
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FIGURE 17. Degree of distortion with the sparsity varying from 10 to 80.
(a) DATASET 1. (b). DATASET 2.

where hr is the reconstructed HRRP sequence, hf is the ideal
HRRP sequence, N is the length of the HRRP sequence. It is
obvious that the smaller the degree of distortion γ , the bet-
ter the HRRP reconstruction performance. When γ = 0,
the ideal reconstruction performance is obtained. However,
the ideal polarimetric HRRPs of the UAV are unknown as
analyzed above. Hence the polarimetric HRRPs of the full-
band OFDM signal are used as the actual HRRPs approxima-
tively. It is necessary to point out that the calculated degree of
distortion may be a little larger than 0 even if the polarimetric
HRRPs are ideally reconstructed due to this equivalence.
Fig.17 presents the degree of distortion when the sparsity
varies from 10 to 80 with 10 stepping for DATASET 1 and
DATASET 2.

As revealed in Fig.17, when the SP-OMP algorithm is
applied, the degree of distortion firstly drops then rapidly
grows with the increase of the sparsity. It is because the spar-
sity L should be equal to the number of scatterers according to
CS theory. When L is smaller the number of scatterers, some
real scatterers are not reconstructed. Whereas L is larger than
the number of scatterers, some fake scatterers will appear.

Specially, when L = 20 for DATASET 1 and L = 40
for DATASET 2, the minimum degree of distortion (also the
best reconstructed HRRPs) can be obtained. However, it is
not practical to always obtain the accurate sparsity in actual
applications.

When the proposed FP-SOMP algorithm is applied,
the degree of distortion greatly reduces compared with the
SP-OMP algorithm due to the joint processing, which indi-
cates that the polarimetric HRRPs are reconstructed more
accurately. Besides, the degree of distortion keeps relatively
stable with the increase of sparsity when the threshold is sat-
isfied (i.e. L = 20 for DATASET 1 and L = 40 for DATASET
2). It indicates that a more robust HRRP reconstruction per-
formance can be obtained by releasing the dependence on the
accurate sparsity settings in actual applications. The results
are in accordance with the polarimetric HRRPs given by
Fig.13 to Fig.16 and the conclusions given by numerical
simulations in Section IV.

In conclusion, the UAV data experiments indicate that the
R-OFDM pair and the CS-based algorithm are qualified for
polarimetric HRRP reconstruction. Besides, a more robust
reconstruction performance can be obtained by the proposed
FP-SOMP algorithm compared with the SP-OMP algorithm.

VI. CONCLUSION
In this paper, a novel R-OFDM pair is proposed for simulta-
neous polarimetric HRRP reconstruction. By joint processing
of different polarization channels, the CS-based algorithm
called FP-SOMP is proposed instead of SP-OMP algorithm.
Then the polarimetric HRRPs are reconstructed more accu-
rately and robustly. Both numerical simulations andUAVdata
experiments indicate that the combination of R-OFDM pair
and the CS-based FP-SOMP algorithm is an efficient trail for
simultaneous polarimetric HRRP reconstruction. In future,
further analyses focusing on its application in 2D radar imag-
ing such as polarimetric synthetic aperture radar(polSAR)
and inverse SAR (polISAR) will be conducted. Besides,
the random selection theory also has the potential in the
application of some other types of signals such as SFW and
LFM. Further work on this topic will be beneficial to enrich
the related knowledge.
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