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ABSTRACT Fusing panchromatic (PAN) and multispectral (MS) images, i.e., pansharpening, can obtain
a high-resolution MS (HRMS) image. In this paper, we propose a spectral mapping framework for pan-
sharpening problem based on PAN block structure analysis (PBSA). The PBSA employs boundary, inner
uniqueness, and neighborhood comparisons as block structure characteristics to classify the PAN image
blocks into pureness composition and mixture composition. For the PAN blocks with pureness composition,
they can directly copy the spectral information of corresponding MS pixels. For the mixture PAN blocks,
assuming that they can linearly represented by some pure PAN blocks, their spectral signals can get via a
weighted average from the relative pure PAN blocks. The experiments on real PAN and MS pairs show that
the proposed pansharpening method not only conforms to the structure of the PAN image but also preserves
the spectral information of the MS image. The final fused HRMS image shows good performance in visual
effect and objective assessment.

INDEX TERMS Remote sensing, image fusion, pansharpening.

I. INTRODUCTION
The current optical satellites can simultaneously capture
panchromatic image (PAN) andmultispectral image (MS) [1].
Because of the platform limitation, they have comple-
mentary characteristics in spatial and spectral domains,
i.e., high-resolution PAN image and low-resolution MS
image (LRMS). To generate an enhanced high-resolution
multispectral image (HRMS), many remote sensing appli-
cations combine the PAN and LRMS images together via a
pansharpening technique [2]–[4].

As an important research branch of image fusion, pan-
sharpening technique aims at injecting the spatial detail of
PAN image into MS to produce HRMS images. There-
fore, most classical pansharpening algorithms share a unique
framework comprising of two sequential phases: 1) extract-
ing the spatial details from PAN image and 2) injecting
the extracted details into the MS image [5]–[7]. They can
be mainly divided into two categories: component substitu-
tion (CS) and multiresolution analysis (MRA). To convert the
upsampled MS image into spatial and spectral details, the
CS-based methods are based on a decorrelation transform,

while the MRA-based approaches draw support from a mul-
tiresolution decomposition.

For CS-based methods, earlier researchers convert the
upsampled MS image into independent components of
intensity–hue–saturation (IHS) color system and then directly
use PAN image to replace I component [8], [9]. How-
ever, the simple IHS transform only fits color image with
red, green and blue three channels. To obtain I component
for MS images with more than three channels, a general-
ized IHS (GIHS) method has been proposed via averag-
ing MS channels with the additional near-infrared (NIR)
channel or multispectral [10]. Simply, it captures the spa-
tial detail by calculating the difference value between I
component and PAN image [10]. In fact, if the difference
value is large, the IHS technique often brings spectral dis-
tortions. To overcome this problem for IHS fusion, Choi
considers the minimization problem of spectral distortion,
and uses a parameter to control the tradeoff between the
spatial and spectral resolution of fused image [11]. Tu et al.
integrate a simple spectral response modification into a fast
IHS method to develop a spectral-adjusted scheme [12],
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and also present a tunable IHS-Brovey method preserving
spectral characteristics [13]. To improve the spectral qual-
ity, a nonlinear IHS method (NIHS) [14], an adaptive IHS
method [15], and a spatially adaptive IHS method [16] are
proposed. To improve the adaptive IHS fusion, Leung et al.
design a more adaptive weighting matrix in the spatial detail
injection step [17]. Similar to the IHS transform, principal
component analysis (PCA) transform has been popularly
used for pansharpening. González-Audícana et al. replace the
first principal component by PAN image [18]. Shah et al.
merge the adaptive PCA and contourlet transform to reduce
the spectral distortion [19]. As a generalization of PCA,
Gram–Schmidt (GS) transformation is used to define a pow-
erful pansharpening method [20]. Based on image segmenta-
tion, the region-dependent injection coefficients are applied
to GS orthogonalization procedure [21].

On the other hand, the MRA-based pansharpening model
obtains spatial details through a multiresolution decomposi-
tionmethod, such as the discrete wavelet transform [22]–[24],
the wavelet frames [25], the Laplacian pyramid [26], and
the curvelet transform [27]. In addition, the generalized
Laplacian pyramid (GLP) method [28] has been widely
used in pansharpening community, in which the correspond-
ing differential representation is estimated by calculating
the differences between the Gaussian pyramid levels. The
GLP with the modulation transfer function (MTF)-tailored
filter (MTF-GLP) can extract the invisible details in MS
but existing in PAN image when the frequency response
of filter matches the corresponding sensor MTF [29]. Tak-
ing the local varieties of injection coefficient into account,
theMTF-GLPwith context based decision (MTF-GLP-CBD)
is proposed [30]. In practice, the implementation of MRA
relies on filtering operation, which could produce ring arti-
facts and then reduce the visual quality of fusion image.

Based on the improvement of some optimization tech-
niques, many pansharpening methods for MS and PAN
images are proposed. For instance, the band-dependent
spatial-detail (BDSD) method estimates spatial details by
the minimum mean-square-error (MMSE) [31]. For a better
spectral content preservation, a generalized version of BDSD
is proposed [32]. With a pair of low and high resolution
dictionaries, the fused image is obtained from sparse recon-
struction [33], [34]. Considering that MS channels have a
common low-rank component, a joint sparse and low-rank
decomposition is employed for pansharpening of multispec-
tral images [35]. Masi et al. [36] andWei and Yang [37] apply
deep learning in pansharpening processing. All thesemethods
obtain a very good performance against a number of tradi-
tional pansharpening methods, but the computation burden
on optimization strongly limits its practical application [38].

In sum, the most existing pansharpening methods aim to
preserve the spatial information of PAN image and mini-
mize spectral distortions, in which upsampling operation is
necessary to extract the spatial detail. However, upsampling
process ignores the spatial structure existing in PAN image,
so it could lead to spatial structure inaccuracy and followed

spectral aliasing distortions inescapably. For some pixels
located at the edges of objects, their spectral information in
LRMS image is mixed by different materials which can be
easily observed in correspond high resolution PAN blocks.
Therefore, making use of the PAN structure is a good selec-
tion to improve the spatial and spectral accuracy.

In this paper, we propose a spectral mapping framework for
pansharpening problem based on panchromatic block struc-
ture analysis (PBSA). According to the structure analysis in
terms of boundary, inner uniqueness and neighborhood char-
acteristics, the PAN image blocks and their corresponding
LRMS pixels are categorized into pureness composition and
mixture composition classes. For pure LRMS pixels, their
spectral information is directly mapping to their high reso-
lution PAN blocks. To capture correct spectral information
for mixed pixels, we adopt pixel-based weighted mapping
manner in corresponding mixed PAN blocks. Furthermore,
to reduce the spatial information influence of spectral map-
ping, a simple intensity modification is applied to HRMS
with reference to PAN. Under the precise guidance of PAN
structure, not only the spatial characteristics of the PAN
image is preserved, but also the pure spectral information is
completely remained and the mixed one is efficiently con-
structed. Thus, our proposed PBSA-based spectral mapping
can acquire a better perceptive performance for the pansharp-
ened image.

The remainder of this paper is structured as follows.
In Section II, details of our proposed algorithm are introduced
in two parts of class categorization and spectral mapping.
The effectiveness of the proposed method is demonstrated
in Section III by experimental results on real MS and PAN
image pairs. Finally, Section IV gives the conclusion of this
paper and suggests some future researches.

II. OUR PROPOSED METHOD
In this section, we propose a PBSA-based spectral mapping
algorithm for LRMS and PAN image fusion. To simplify
the explanation, we assume that the original LRMS and
PAN images have been registered. As depicted in Fig. 1, the
algorithm begins with class categorization of pure or mixed
compositions for PAN blocks and LRMS pixels, because
the spectral information in high spatial resolution is strongly
related to the material composition of the scene objects.
Referring to the composition partition, the spectral signal of
HRMS pixels can be mapped by two distinguished strate-
gies. Finally, the fused HRMS image is modified by using
the intensity difference with PAN image. In the following
sections, the operations are explained in detail.

A. PANCHROMATIC BLOCK STRUCTURE PROPERTY
As previously mentioned, many pansharpening methods
firstly get HRMS from LRMS via independent upsampling
step, and then inject spatial detail of PAN image into HRMS.
However, the upsampling without PAN structure knowledge
can cause spectral distortion, especially for those mixed
pixels which contain more than one material. To obtain an

VOLUME 6, 2018 40355



X. Luo et al.: Spectral Mapping Based on PBSA

FIGURE 1. Flowchart of PBSA-BASED pansharpening method.

HRMSwith consistent spectral information and spatial struc-
ture, we first focus on structure analysis of PAN block to aid
spectral mapping from LRMS pixel to PAN block.

To understand whether the PAN block is pure composi-
tion or mixed composition, we first investigate what a pure
composition structure is in PAN blocks. In computer vision,
objects in an image are defined via characterizing by a well-
defined boundary in space, sometimes uniqueness within
the image, and a different appearance from their surround-
ing [39]. Inspired by this, boundary, inner uniqueness and
comparison with neighbors are considered to define a pure
composition structure for a PAN block. Intuitively, edge is
viewed as a boundary of many objects, so a PAN block
without any edge point could be regarded as potential pure
blocks of one material. To filter out the mixed blocks from
the candidate pure blocks, we utilize the standard deviation
of the one PAN block to denote its inner unique homogeneity,
and the distance comparison with 4 neighbor blocks is used
to define the different appearance of block object from the
surrounding.

B. PANCHROMATIC BLOCK CLASS CATEGORIZATION
For one L-band LRMS and PAN image pair with spatial
resolutions Nms = Rms × Rms and Npan = Rpan × Rpan
respectively, their spatial resolution ratio is r = Rpan/Rms.
To keep LRMS pixel as operated unit, we divide the PAN
image into blocks with size of r × r . After that, all LRMS
pixels P = {Pi, i = 1, . . . ,Nms} can be corresponded to
PAN blocks in B = {Bi, i = 1, . . . ,Nms}. For the same
region, the MS pixel denotes the spectral integration, and the
PAN block shows the spatial structure information. Since the
spatial structure decides the spectral integration, the classi-
fication of PAN block structure can improve their spectral
mapping results.

For a PAN block, if there exist less edge points, it is
potential to be pure composition. Given ne indicating the
number of points existing edge, ne < τe means this block
is potential pure block.

Using Bi = {Pbi, bi = 1, . . . ,Nb} to indicate the
Nb = r × r PAN pixels in this block, its inner uniqueness
can be measured by their change dispersion, which can be
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formulated in standard deviation as follows.

sp =

√√√√ 1
Nb

Nb∑
bi=1

(Pbi − ā)2, ā =
1
Nb

Nb∑
bi=1

Pbi (1)

The smaller sp means that the block pixels change more
slightly. Given a small threshold parameter τs, if sp < τs,
the PAN block Bi should be pure block candidate.
Usually, the different appearance property of one block

can be obtained via comparing its spectral information with
its MS pixel neighbors. Assuming that the corresponding
MS pixel of block Bi is Pi and its MS spectral vector
is MS(Pi), the related LRMS neighbor pixels are NPi =

{Pnj, nj = 1, 2, 3, 4}. The different appearance property
of PAN block can be defined as the corresponding spectral
distance summary in LRMS.

dms =
4∑
j=1

‖MS (Pi)−MS (Pnj)‖2 (2)

where ‖·‖2 denotes the 2-norm operator. If the different
appearance index is small enough, i.e. dms < τd , the corre-
sponding PAN block is regarded as holding monochromatic
characteristic.

According to the structure analysis, we can get PAN block
structure parameters, i.e. edge number ne, uniqueness prop-
erty sp, and appearance property dms. Comparing with three
thresholds {τe, τs, τd }, we can distinguish them as pure com-
position block subset Bp = {Bp1, . . . ,Bpi, . . . ,Bpv} and
mixed block subset Bm = {Bm1, . . . ,Bmi, . . . ,Bmu}. Cor-
respondingly, the LRMS pixels can be partitioned into pure
pixel subset Pp = {Pp1, . . . ,Ppi, . . . ,Ppv} and mixed pixel
subset Pm = {Pm1, . . . ,Pmi, . . . ,Pmu}.

C. SPECTRAL MAPPING SCHEMES
Considering that one pure composition structure PAN block
includes stable pixels inside the covering region, they have
similar or even same spectral information to the correspond-
ing pixel in LRMS. Therefore, the pixel spectral signal in
LRMS can directly remain to the corresponding locations in
PAN blocks as HRMS regions. For the mixed composition
PAN blocks, we assume that they are integrated some pure
blocks in the same image, and then their spectral information
can be captured via weighting in according with the similarity
comparison to related pure PAN blocks. Therefore, we intro-
duce two discriminatory spectral mapping schemes here.

For a pure PAN block Bpi, its pixels can be regarded as the
same material, and then no matter its corresponding LRMS
pixel or HRMS block pixels could represent similar spectral
information. Therefore, the spectral vector in HRMS pixels
limited in PAN block Bpi can directly duplicate from the
spectral vector MS(Ppi) of LRMS pixel Ppi. If the loca-
tion set of PAN block Bpi is denoted as 3Bpi = {(x, y) :
x = 1, . . . , r;y = 1, . . . , r}, the HRMS spectral can be
obtained from the following formula.

HRMS (x, y) = LRMS (Ppi), (x, y) ∈ 3Bpi (3)

In the contrast, a mixed PAN block Bmi composes of
different materials, so its corresponding HRMS pixels could
represent respective spectral information. On the other hand,
the LRMS pixel Pmi integrates multiple classes of spectral
information. Therefore, it is questionable to estimate the
spectral information of HRMS block pixels from its mixed
LRMS pixel Pmi. Considering that the objects have structural
repeatability in remote sensing, it is a good alternative to seek
the original pure spectral information for the mixed pixels.
Owing to the detailed information of PAN blocks, we find
the similar pure blocks of mixed block around its limited
neighbor regions. Centered at mixed PAN block Bmi, its
neighborhood is windowed in the W × W , and W > 3r is
constrained to make the neighbor regions effective.

The following steps explain the spectral mapping process
for mixed block Bmi(i = 1, . . . , u).
Step 1: Initialize the HRMS spectral information of Bmi

via average of estimated spectral information in most similar
pure PAN blocks. From the pure PAN blocks. Nr PAN blocks
are found with smallest absolute distance of mean difference
to the mixed block. The initial estimated HRMS spectral
signal for this block can be captured from the following
formula.

HRMS (x, y) =
1
Nr

Nr∑
j=1

LRMS
(
Ppj
)
, (x, y) ∈ 3Bmi (4)

where Ppj (j = 1, . . . ,Nr) are the corresponding LRMS pure
pixels to the Nr most similar PAN blocks.
Step 2: Calculate some features to represent each pure

PAN block Bpi, including the PAN intensity mean value (ā),
corresponding LRMS spectral vector (LRMS (Ppi)), and the
minimal local binary pattern (min(lbp(3Bpi))) in PAN block.
Step 3: Calculate same features for each pixel in mixed

PANblockBmi, including the PAN intensity (p(x, y)), HRMS
spectral vector (HRMS (x, y)), and local binary pattern
(lbp(x, y)) in PAN block.
Step 4: Compare each mixed PAN pixel feature

fP = [p(x, y),HRMS (x, y) , lbp(x, y)] with the feature
fB = [ā,LRMS (Ppi) ,min(lbp(3Bpi))] of all pure PAN
blocks in Euclidean distance.

For one mixed pixel Pj = (x, y) ∈ 3Bmi, its Euclidean
distance of the feature vector to Bpi is defined as

dfi = ‖fPj− fBi‖2 , i = 1, . . . , v (5)

Step 5: Find Nr pure blocks with smallest Euclidean
distance of the feature vector to update the HRMS spectral
information of Bmi, according to the similarity weighted.
According to the distance factor adjusting, the HRMS spec-
tral signal for this mixed pixel can be updated by weighted
average from pure LRMS spectral vector of the correspond-
ing to the Nr most similar pure PAN blocks.

HRMS (x, y) =
1∑Nr
i=1 dfi

∑Nr

j=1
[dfi · LRMS

(
Ppj
)
] (6)

Step 6: Repeat from Step 3.
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D. SPATIAL MODIFICATION
Referring to the PAN structure analysis, the HRMS is
estimated via direct spectral mapping or indirect spectral
synthetizing. Unavoidably, the PAN structure could be influ-
enced more or less. To furthermore maintain the spatial
details of PAN image, we modify the estimated HRMS image
via the simplest approximation of PAN with spectral com-
position ratio (scr) to obtain the final fusion pansharpened
image.

For one pixel at location (x, y) and spectral channel b in
spatial image Rp× Rp, the final HRMS spectral information
Fpan at location (x, y, b) can be modified by formula (7).scr (x, y, b) = HRMS (x, y, b) /

∑L
b=1HRMS (x, y, b)

L
Fpan (x, y, b) = scr(x, y, b) · PAN (x, y)

(7)

where L represents the number of multiple spectral bands,
scr(x, y, b) denotes each spectral composition ration to aver-
aged value.

E. THE ALGORITHM
To explain our method more understandably, the pseudocode
for the main parts is described as follows.

III. EXPERIMENTS
Our PBSA-based method improves spectral interpolated per-
formance of LRMS with the aid of PAN structure analysis
and remains the spatial detail of PAN image. Based on these
two aspects, we evaluate the performance of our method
on the well registered LRMS-PAN image pairs captured
from practical scene. We select CS-based IHS, PCA, Brovey,
PRACS, optimization-based BDSD,MRA-based ATWT, and
AWLP, MTF-GLP, MTF-GLP-CBD to compare, which can
be can found at an available Pansharpening Tool in [6]. Also,
two recent NIHS [14] and MF [40] methods are included
in the experiments. For all these state-of-the-art algorithms,
the LRMS image is required to be interpolated to the spatial
size of PAN image. Here, we use a unified cubic interpolation
to obtain the upsampled HRMS image, and then perform the
parsharpening fusion operations.

The comparisons are tested on two recent high-resolution
satellite images of GeoEye-1. They have four 2.0m resolution
spectral bands (blue, green, red and near IR) and 0.5m reso-
lution of PAN image. All experiments are implemented on a
PCwith Intel Core 2 Duo 2.30 GHz CPU and 3GBRAM, and
the simulation software is Matlab.

A. VISUAL COMPARISON
To evaluate the visual performance with other pansharpening
methods in remote sensing, we select some regions covering
different objects as test datasets [41]. Especially, Fig. 2 has
one white roof of large building and town background in city,
and Fig. 3 holds a main road including several cars in the
center. Fig. 2 and Fig. 3 show the pansharpened results in
RGB bands for the PAN-LMRS fusion algorithms.

Algorithm 1 The Proposed Pansharpening Algorithm.
Input: Registered PAN and LRMS image pair.
Output: The fusion image with both high spatial and
spectral resolution Fpan.
Initialize: Empirically, the thresholds for the properties of
pure PAN block are set as τe = 0, τs = 20, τd = 40, and
the parameters for mixed pixel spectral mapping are given
as W = 15, Nr=4.
1 Rms = size (LRMS) ,Rp = size (PAN ) , r = Rp/Rms
2 Emap = Edge(PAN)
3 Fmap = LBP(PAN)
4 B = {Bi, i = 1, . . . ,Rp/r} = Block(PAN , r)
5 for each block Bi (i = 1, 2, . . . ,Rp/r) do
6 ne← Emap(Bi)
7 if ne ≤ τe then sp← fomula (1)
8 if sp < τs then dms← formula(2)
9 if dms < τd then Bp← Bi
10 else Bm← Bi
11 else Bm← Bi
12 else Bm← Bi
13 end for
14 for each pure block Bpi do
15 HRMS(Bpi)← formula(3)
16 end for
17 for each mixed block Bmi do
18 HRMS (Bmi)← step 1− 6 with iterations
19 end for
20 for each HRMS pixel
21 Fpan (x, y, b)← formula(7)
22 end for
23 Output ← Fpan

As shown in Fig. 2, because of the beginning with simple
interpolated HRMS image, the complex structure regions of
grass and tree generate blurring in final pansharpened images.
Especially, we can observe from the partial enlargement view,
our performance better for the black and white grid at roof
edge, the texture of uneven lawn, the complex branch and
shadow of trees than other compared methods.

Similarly, owing to the sequel influence of first indepen-
dent upsampling, the regions covering edge structures are
blurred in Fig. 3 (b), Fig. 3(e), and Fig. 3(f) ∼ Fig. 3(n).
Taking an example at the region marked by a red rectangular
box in Fig. 3, the car can capture white color in all pansharp-
ening methods. However, all the compared methods generate
blurred edge around the car. In particular, the color diffusion
in Fig. 3(b) causes the color aliasing at the joint regions
between white car and grey road in Fig. 3(f) ∼ Fig. 3(n).

Benefitting from the structure-driven, our PBSA-based
method can remain the PAN structure characteristics on spec-
tral mapping. That is to say, the PAN structure information,
which can aid the spectral composition analysis of LRMS
to guide the spectral. Therefore, our method generates good
results than any other methods in structure and multiple spec-
tral fusion.
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FIGURE 2. The pansharpened images shown with R-G-B band of different fusion methods for GeoEye-1 data, and the detail view of selected regions by
red rectangular box at location (x=230, y=205) with 40 pixel length and width. (a) Original PAN. (b) Upsampled MS. (c) Edges of PAN. (d) IHS. (e) PCA.
(f) Brovey. (g) PRACS. (h) BDSD. (i) ATWT. (j) AWLP. (k) MTF-GLP. (l) MTF-GLP-BCD. (m) NIHS. (n) MF. (o) Our PBSA-based.

VOLUME 6, 2018 40359



X. Luo et al.: Spectral Mapping Based on PBSA

FIGURE 3. The pansharpened results showing with R-G-B band of different fusion methods for GeoEye-1 data, and the detail view of selected regions
by red rectangular box at location (x=114, y=198) for 20 pixel length and width. (a) Original PAN. (b) Upsampled MS. (c) Edges of PAN. (d) IHS. (e) PCA.
(f) Brovey. (g) PRACS. (h) BDSD. (i) ATWT. (j) AWLP. (k) MTF-GLP. (l) MTF-GLP-BCD. (m) NIHS. (n) MF. (o) Our PBSA-based.
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TABLE 1. The quality evaluation for the Pansharpened results on Fig. 2 images.

TABLE 2. The quality evaluation for the Pansharpened results on Fig. 3 images.

B. OBJECTIVE COMPARISON
For the result comparison of different panshapening algo-
rithms, there exist limited accurate quality assessment
criteria. It has been proven that the evaluation using con-
sistency properties is reliable for full resolution data exper-
iments [42]. Considering that the recent the radiometric and
geometric (RG) scheme [43] segments fused image in edge
component with high-frequency and geometric signals and
background component with radiometric and spectral infor-
mation, which well fits our pure and mixed partition idea,
we use RG-based common existing criteria to evaluate the
performance objectively.

The computation of RG index is performed in two parts
of geometric component and radiometric component by a

mask of PAN edge map. The edge information from both the
PAN and the fused image is used to evaluate the geometric
component of the fused image. By subtracting geometric
component from fused image, radiometric component is com-
pared between fused image and MS image. To make the RG
index in a unique value (QRG), these two components are
weighted according to the ratio factor of pixel number in edge
section and background section. In this manner, the common
indices are calculated in QRG -based scheme.

To validate our method, the results are quantified in
terms of spectral angle mapper (SAM), structural similar-
ity (SSIM), correlation coefficient (CC), universal quality
index (UQI), root mean square error (RMSE). Obviously,
the highest performance of fusion method can obtain small to
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TABLE 3. The quality evaluation for the 4-band Pansharpened results on GeoEye-1 dataset in Fig. 2.

TABLE 4. The quality evaluation for the 4-band Pansharpened results on GeoEye −1 dataset in Fig. 3.

zero for SAM and RMSE, while the other items, i.e., SSIM,
CC, and UQI tend to one.

Table 1 and 2 illustrate the performance of RGB image
in Fig. 2 and Fig.3, and Table 3 and Table 4 record the quality
assessment of 4-band pansharpening results, in which the
values representing better performance are in bold for easy
observation. From the results in Table 1∼4, we can conclude
that our method is better and more reasonable than the other
methods in three facts:

1) Higher structure remaining from PAN image in
SSIM index, i.e., it employs structure-driven analy-
sis to aid the fused structure synthesis at edge mixed
pixels.

2) Better performance in the overall RG index, i.e.,
our method keeps higher final quality assessment. In CC,
the PCAmethod shows a litter superior performance than our

PBSA-based method, since it gets radiometric signal holding
from upsampled MS image.

3) Robust for multiple bands. No matter the number of
spectral bands changes is 3 or 4, our PBSA-based method
keeps higher performance in the overall RG index.

From the visual and objective compared analysis, we can
notice that the structure-based pansharpening is attractive
in remaining structure of PAN image, constructing spectral
signal for interpolated pixels, and fitting different number of
multiple spectral bands.

IV. CONCLUSION
In this paper, we have presented a structure-driven spectral
mapping from LRMS image to PAN image. This method is
based on the partition of PAN blocks and LRMS pixels into
pure and mixed classes. We are sure that this is an advocated
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earlier to estimate the spectral information considering not
only simple MS interpolation but also the guidance of PAN
structure. The novel structure analysis aids the distinguished
spectral mapping strategy design for different pixel cate-
gories. To reduce the spatial information influence of spectral
mapping, a simple intensity modification is finally applied
to HRMS with reference to PAN. The experimental results
on practical remote sensing PAN and LRMS image pairs
demonstrate the effectiveness of our PBSA-based method.
Compared with the existing pansharpening methods, our
structure-driven PBSA-based method has superiority in geo-
metric remaining and radiometric construction for different
multiple bands. Therefore, our method retains more accurate
spectral information and avoids artificial effects. Because of
the pixel classifying, our PBSA-based method takes more
time than simple CS-based methods. In the future, we can
make some improvements in the program implement to speed
up our PBSA-based method.
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