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ABSTRACT Multiple model adaptive estimation (MMAE) methods are frequently used to overcome the
parametric uncertainty of the system’s model. Most MMAE methods approximate the state posteriori
(posterior probability) by a weighted arithmetic average of model posteriories using a Bayesian weighting
scheme. Despite its effectiveness, arguably arithmetic averaging is not the most proper type of averaging for
probability densities. Besides, the exploited Bayesian weighting scheme eventually reduces the MMAE to
the single best candidate model, which is problematic in many scenarios. Motivated by such shortcomings,
this paper proposes a similarity-based approach for MMAE which enhances the estimation accuracy by
generalizing the model averaging scheme and providing realistic weights for each model. The proposed
approach provides a posteriori which on average is closest to all posteriories and assigns weights to each
model based on their similarity to the true model. The choice of similarity measure leads to various
schemes. The simulation results confirm the superiority of the proposed MMAE methods as compared to
the conventional method.

INDEX TERMS Multiple model estimation, generalized averaging, probabilistic similarity measures.

I. INTRODUCTION
The problem of multiple model (MM) estimation is con-
sidered in this paper, where new weighting and fusion
schemes are provided by exploiting a similarity-based
approach. Known by many names such as ‘‘filter bank’’ [1]
and ‘‘Gaussian sum filter’’ [2], [3], multiple model sys-
tems have found vast popularity in numerous appli-
cations including control [4], [5], Fault Detection and
Isolation (FDI) [6], [7], pattern recognition [8], and target
tracking [9], [10]. The MMAE systems, initially introduced
by [11] and later enhanced in a series of works [12]–[14],
exploit a bank of filters each of which follows a candi-
date behaviour mode of the system. The estimation of the
filters are then combined to provide the overall estimate
of the states. The switching between the models was con-
sidered later by introducing the generalized pseudo-Bayes
algorithm (GPBA) [15] which was enhanced in [16] and
promoted further by developing the Interacting Multiple
Model (IMM) estimation scheme [17]. The design of the
model candidates set was also pursued by a group of works
such as [18]. Nonetheless these advancements in MMAE
systems follow the same fusion rule of the initial work
of [11] and [13].

Traditionally, the fusion of filters in a MMAE system
is provided by the Weighted Arithmetic Mean (WAM)
operator the wights of which are calculated through
a Bayesian scheme. Despite its practical significance,
arithmetic mean is not the only optimal way to fuse the
information gained from the filters. In fact, there are more
suitable options for averaging when dealing with probability
densities [19]. Besides, the underlying Bayesian weighting
scheme converges to the best candidate model exponen-
tially fast [20]–[22], reducing the system to the best single
available model which is not favorable as the mode of the
system may change during operation. This paper proposes
a novel similarity-based fusion approach to address these
shortcomings.

Despite their significance, only fewworks have considered
the aformentioned limitations of theMMAE systems. To alle-
viate the problem caused by Bayesian weighting scheme
of [11], lower bounds were introduced which prevented the
weights of other models from reducing to zero [23]. Yet, it is
not clear how such lower bounds should be selected [22].
A non-Bayesian weighting scheme was proposed by [24]
through which the measurement likelihood of each model is
averaged over all time instances to update the model weights.
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Similarly the weights are updated in [25], considering only
the exponent of the likelihoods. The negative affect of
precomputed components in calculation of weights was
identified in [26] and eliminated to enhance the performance
of the system. However, the weighting problem was not
approached in a systematic way. Recently, the Kullback-
Liebler Average (KLA) [27] was used to obtain the optimal
estimation in an IMM estimation scheme [28]. It was shown
by [27] that KLA is equivalent to the weighted geomet-
ric average and coincides with the fusion rule provided by
the Generalized Covariance Intersection (GCI) method [29].
However, such an averaging is ineffective when the system
is left with a single model (as in the traditional Bayesian
weighting scheme).

The motivation of this work is to provide novel fusion
schemes for MMAE systems to enhance the estimation
accuracy. For that matter, probabilistic similarity measures
are exploited to achieve suitable averaging and weighting
schemes. The proposed approach generalizes the traditional
fusion method by providing more optimal options for fusion
which are superior to the traditional method in terms of
performance. Moreover, the provided fusion scheme can be
easily employed for other similar applications such as sensor
fusion [30]. It is noteworthy that the convergence of the
MMAE systems is closely connected to the convergence
of individual models [30], which itself depends on condi-
tions such stabilizability and detectability of the candidate
models [31], [32] and also closeness of the model param-
eters to the true values (e.g., initial conditions of the fil-
ter). As it was discussed earlier, the traditional MMAE
systems converge to the closest model available to true
model [20]–[22]. Therefore, their convergence depends
mainly on the convergence of the closest model to reality.
In case of the proposed averaging methods, the adverse
effect of possibly divergent models is negated by the pro-
posed weighting scheme since the weights of these models
diminish exponentially as they diverge from the true model.
In that sense, the proposed MMAE system will converge to
the average of converging systems, weighted based on their
correctness (i.e., distance from the true model). In order to
provide a fair comparison with the classical MMAE solu-
tion and to demonstrate the versatility and novelty of the
proposed contributions, the simplest possible structure for
the elemental units (state space models and corresponding
estimators) is considered in this work. To that end, it is
assumed that each state space model is linear, time-invariant,
with additive white Gaussian noise and with known initial
conditions. Following the traditional approach [11]–[14] it
is assumed that one model is active for the duration of
the experiments. Extensions of the MMAE approach, such
as generalized Bayesian filters (including the IMM vari-
ant), or MMAE solutions operating on nonlinear and/or non-
Gaussian models employing filers such as Extended Kalman
Filter (EKF), particle or cubature filters are not part of this
work since applying such extensions by mirroring the past
developments in the MMAE literature is straight-forward.

The key contributions of this work are summarized as
follows,

• First, a novel averaging method for fusing the posterior-
ies of the MMAE system is proposed through exploiting
a weighted average distance. The fusion is performed
by seeking a posteriori which minimizes the proposed
average distance. It is shown that the first two moments
of such a posteriori are retrievable for some popular sim-
ilarity measures. It should be noted that even though the
exploited similarity measures are not new, the proposed
averaging methods based on them are.

• It was shown that the traditional WAM fusion scheme is
a special case of the proposed fusion method and is re-
derived using the proposed approach. In addition, other
optimal fusion rules such as Weighted Geometric Mean
(WGM) and Weighted Square Mean Root (WSMR) are
also derived using other similarity measures. Simulation
results suggest superior performance of these new fusion
schemes as compared to WAM.

• The derived averaging methods are generalized as the
weighted generalized mean, which can provide various
fusion schemes.

• The weighting scheme is revised to weight each filter
by the closeness of its predicted measurements to the
observed measurements exploiting the similarity mea-
sure of choice. Throughmultiple simulations, it is shown
that this approach enhances the estimation accuracy by
preventing the models from being neglected.

The rest of the paper is structured as follows. The model of
the system and the problems of the traditional MM methods
are discussed in Sec. II. Section III comprises the details
of the proposed similarity-based averaging method where
various options for fusion of all models towards an opti-
mal estimation is considered. Similarity-based weighting of
the models is the focus of Sec. IV, where a novel non-
Bayesian weighting scheme is presented and various options
for weighting of the models are introduced. The simulations
of the proposed methods are included in Sec. V, where the
performance of the proposed methods is compared to that of
the traditional MM. The paper is concluded in Sec. VI.

II. PROBLEM FORMULATION AND BACKGROUND
Throughout this work, the following notation is followed:
the scalar variables are denoted by non-bold letters (e.g., a),
the vectors are shown by small bold letter (e.g., a ), and the
matrices and sets of vectors are denoted by capital bold letters
(e.g., A). This work is focused on MM estimation of the
states in linear dynamical systems. The states in such systems
evolve through a linear model,

xk+1 = F∗xk + wk (1)

where F∗ is the transition matrix and assumed to be time-
invariant, xk ∈ Rn and wk ∈ Rn are the vectors of states and
process noise at time step k , respectively. The process noise
is modeled with an additive zero-mean white Gaussian noise
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(wk ∼ N (0,Q∗k )). The initial state of the system is assumed to
follow a normal distribution, i.e. x0 ∼ N (µ∗0,6

∗

0). The states
of the system are measured indirectly at each time step,

zk = H∗xk + vk (2)

where zk ∈ Rm, vk ∈ Rm and H∗ are the mea-
surement vector, the measurement noise vector, and the
observation matrix at time step k , respectively. The mea-
surement noise is assumed to be an additive zero-mean
white Gaussian noise (vk ∼ N (0,R∗k )). The process noise,
measurement noise, and initial states are also assumed to be
independent.

In a traditional MMAE scheme, the state posteriori is
calculated through marginalizing over all models [11]. If the
models probability is discrete,

p(xk |Zk ) =
M∑
i=1

wikN (µik ,6
i
k ) (3)

where p(xk |Zk ,Mi) = N (µik ,6
i
k ) is the posteriori ofmodel i

the mean (µik ) and covariance (6i
k ) of which are calculated

thought Kalman filtering, wik = p(Mi
|Zk ) is the associated

weight of model i andM is the number of models. The poste-
riori is approximated by a Gaussian (p(xk |Zk ) ≈ N (µk ,6k ))
which preserves the first two moments of (3) as follows [14]
(derivation details are available in the appendix),

µk =

M∑
i=1

wikµ
i
k (4)

6k =

M∑
i=1

wik
[
6i
k + (µk − µ

i
k )(µk − µ

i
k )
T
]

(5)

Conventionally, the weight of a model is calculated recur-
sively using the Bayesian theorem [11],

wik =
p(zk |Mi,Zk−1)p(Mi

|Zk−1)
M∑
i=1

p(zk |Mi,Zk−1)p(Mi|Zk−1)

= c1
k∏
j=1

p(zj|Mi,Zj−1)

= c2e
−1
2

[
k∑
j=1

ln|�ij|+tr{
k∑
j=1

z̃ij z̃
i
j
T�ij
−1
}

]
(6)

where c1 and c2 are normalizing factors, p(zk |Mi,Zk−1) =
N (ẑik|k−1,�

i
k ) is the measurement likelihood, p(Mi

|Zk−1) =
wik−1 is the likelihood of the model calculated at previous
time step, z̃ij = zk − ẑik|k−1 is the innovation term and �i

k
is its covariance.

The assumption of discrete probability for models is criti-
cal in formation of (3), which may be violated when none of
the approximate models are the correct model of the system.
As it was discussed in [19], arithmetic averaging is not well-
suited for averaging exponential probability densities such
as normal distributions. Moreover, the Bayesian weighting

FIGURE 1. The structure of a general MMAE system.

scheme (6) causes the weight of the closest model to reality
to converge to one, while all other model weights will be
reduced to zero as k increases [20]. In other words, the MM
estimator will be eventually reduced to the single best model
estimator and model averaging is abandoned, which is not
favorable if the remaining best model is not close enough
to the true model of the system or the mode of the system
changes later.

III. SIMILARITY-BASED AVERAGING
In general, MMAE systems use a bank of filters to estimate
the posteriori of the states. The structure of a general MMAE
system is depicted in Fig. 1. The role of the averaging function
shown in this figure is critical as it determines how the esti-
mations of multiple models should lead to a better estimation.
In the previous section, the traditional averaging scheme
proposed by [11] and [14] was discussed. Here we propose a
novel general method to find the optimal posteriori based on
multiple posterior distributions of system states. In particular,
a normal distribution is sought which on average is closest to
all estimated posteriories. For that matter, an average distance
between the desired posteriori and posterior distributions of
system gained through various models is formulated and then
minimized. Such an average distance is defined as follows,

L =
M∑
i=1

wikD(pk , p
i
k ) (7)

where pk = p(xk |Zk ) = N (µk ,6k ) is the sought normal
posterior distribution, pik = p(xk |Zk ,Mi) = N (µik ,6

i
k ) is

the state posteriori obtained through model i and D(p, pi) is
a similarity measure of choice between the two probability
densities of pk and pik . The goal of the optimization is to deter-
mine a normal distribution such that this average distance is
minimized, i.e.,

p(xk |Zk ) = N (µk ,6k ) = argmin
pk

L (8)
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Since the sought posteriori is normal, it is sufficient to deter-
mine its mean and covariance through (8). It is notewor-
thy that various similarity measures may be exploited in
the formulation of (7), each of which leads to distinctive
outcomes. Different minimization approaches may be fol-
lowed to find the desired normal density which minimizes
the average distance shown in (7). One way to find the
desired normal density is to find the closed-form of the
average distance, then differentiate it with respect to the first
two moments of the sought normal density and set them
to zero. Luckily, the closed-form of the distance between
two normal densities are available for many of the simi-
larity measures (such as KLD) and therefore the proposed
average distance may be derived in a closed-form. This
approach is practiced for the KL-based average distance
which yields two averagingmethods (due to the asymmetry of
KLD), namely the traditional arithmetic average and the less
practiced geometric average. However, this approach is not
applicable to the Bhattacharyya distance. Instead, an upper
bound is derived for the Bhattacharyya-based average dis-
tance and the normal density minimizing this upper bound is
identified which results in another novel averaging method.
Needless to say, even though the exploited similarity mea-
sures are not new, the proposed averaging methods based on
them are.

A. KULLBACK-LIEBLER DIVERGENCE
Kullback-Liebler Divergence is one of the most popular sim-
ilarity measures which was originally introduced in informa-
tion theory as the relative entropy [33]. Using this similarity
measure, the average distance is formulated as follows,

L1 =
M∑
i=1

wikDKL(N (µik ,6
i
k ) ‖ pk (xk )) (9)

It can be shown that,

L1 =
M∑
i=1

wik

+∞∫
−∞

N (µik ,6
i
k )ln

N (µik ,6
i
k )

pk (xk )
dxk

=

+∞∫
−∞

M∑
i=1

wikN (µik ,6
i
k )ln

M∑
i=1

wikN (µik ,6
i
k )

pk (xk )
dxk

−

+∞∫
−∞

M∑
i=1

wikN (µik ,6
i
k )ln

M∑
i=1

wikN (µik ,6
i
k )

N (µik ,6
i
k )

dxk

= DKL

(
M∑
i=1

wikN (µik ,6
i
k ) ‖ pk (xk )

)
+ c3 (10)

where c3 is a constant which does not depend on the choice
of pk . It is apparent that minimizing this average distance
is only possible by selecting the desired posteriori to be the
WAM of the posterior distributions of all models, similar

to the traditional choice of averaging first by [11]. In other
words, the traditional formulation for computing the posteri-
ori inMMsystems is a special case of the proposed similarity-
based averaging method.

It is desirable to have a single normal distribution for
the posteriori. Exploiting the KLD formulation between two
normal distributions, the average distance shown in (7) may
be written as follows,

L1 =
M∑
i=1

wik

[
tr{6k

−16i
k} − n+ ln

|6k |

|6i
k |

]

+

M∑
i=1

wi
[
(µk − µ

i
k )
T6k

−1(µk − µ
i
k )
]

(11)

The mean and covariance of the desired normal distri-
bution may be found by solving the minimization prob-
lem shown in (8). For that matter, the average distance
is differentiated with respect to the mean and set equal
to zero,

∂L1
∂µk
=

M∑
i=1

wik6k
−1(µk − µ

i
k ) = 0 (12)

Assuming the covariance matrix to be of full rank, it can be
concluded that,

µk =

M∑
i=1

wikµ
i
k (13)

Now differentiation with respect to the covariance and setting
it to zero results in,

∂L1
∂6k
= −

M∑
i=1

wik6k
−T (µk − µ

i
k )(µk − µ

i
k )
T6k

−T

−

M∑
i=1

wik6k
−T6i

k
T
6k
−T
+6−Tk = 0 (14)

which can be rewritten as follows,

M∑
i=1

wi
[
6i
k
T
+ (µk − µ

i
k )(µk − µ

i
k )
T
]
6k
−T
= I (15)

where I is the identitymatrix. The covariance of the posteriori
is easily obtainable from (15) as follows,

6k =

M∑
i=1

wi
[
6i
k + (µk − µ

i
k )(µk − µ

i
k )
T
]

(16)

It is not surprising to see that the mean and covariance of
the posteriori derived in (13) and (16) are the same as those
obtained by [11] and [14] in (4) and (5) since as it was shown
in (10), the distribution which minimizes such an average is
a weighted arithmetic mean of posteriories.

Since KLD is not symmetric with respect to the probability
densities, it is also possible to use it differently to form the
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average distance as follows,

L2 =
M∑
i=1

wikDKL(N (µk ,6k ) ‖ N (µik ,6
i
k ))

=

M∑
i=1

wik

[
tr{6i

k
−1
6k} − n+ ln

|6i
k |

|6k |

]

+

M∑
i=1

wik (µk − µ
i
k )
T6i

k
−1

(µk − µ
i
k ) (17)

To minimize this average distance as shown in (8), the dis-
tance is differentiated with respect to the mean of the desired
posteriori and set equal to zero as follows,

∂L2
∂µk
=

M∑
i=1

wi6i
k
−1

(µk − µ
i
k ) = 0 (18)

which yields,

M∑
i=1

wi6i
k
−1
µk =

M∑
i=1

wi6i
k
−1
µik (19)

Similarly, setting the differentiation of L2 with respect to the
covariance to zero as follows,

∂L2
∂6k
=

M∑
i=1

wi
[
6i
k
−T
−6−Tk

]
= 0 (20)

results in,

6−1k =

M∑
i=1

wi6i
k
−1

(21)

Using (21) in (19) yields,

µk = 6k

M∑
i=1

wi6i
k
−1
µik (22)

The results gained in (21) and (22) are identical to those
gained through using the weighted geometric mean (WGM)
since the average distance shown in (17) is the same as KLA,
which was shown to be equivalent to WGM [27].

A closer look at the average distances obtained by KLD
in (11) and (17) reveals that both of these schemes lead
to estimations with minimum MSE. However, the mean is
weighted by the model covariances in (17), while the weights
of all samples are equal in (11). In addition, the second form
of KLD-based average distance causes the inverse of the
posteriori covariance (i.e., the posteriori information) to be
equal to weighted arithmetic average of inverse of posteriori
covariance of all models. In that sense, it can be inferred that
using this averaging method, the gained information is equal
to weighted sum of information from all models. As a result,
in calculation of the overall mean, the mean of each model is
weighted not only by the likelihood of the model but also by
the information it contains, similar to distributed data fusion
applications such as [34].

B. BHATTACHARYYA DISTANCE
One of the widely applied similarity measures in statistics is
the Bhattacharyya distance (BD) [35] which is easily calcula-
ble for normal distributions. Unfortunately, the minimization
of the BD-based average distance would not lead to closed-
form solutions for the mean and covariance of the posteriori.
However, it is possible to approximate these values by min-
imizing an upper bound of this average distance. Using the
Jensen’s inequality, the upper bound of the BD-based average
distance is found as follows,

L3 =
M∑
i=1

wikDBC (pk (xk ),N (µik ,6
i
k ))

= −

M∑
i=1

wik ln

+∞∫
−∞

√
pk (xk )N (µik ,6

i
k )dxk

≤ −ln

+∞∫
−∞

√
pk (xk )

M∑
i=1

wik

√
N (µik ,6

i
k )dxk

= DBC

pk (xk ),( M∑
i=1

wik

√
N (µik ,6

i
k )

)2 (23)

It is apparent that this upper bound is minimized when

pk (xk ) =
(
M∑
i=1

wi
√
N (µik ,6

i
k )
)2

. In other words, mini-

mizing the BD-based average distance requires the desired
posteriori to be the weighted square mean root (WSMR) of
all model posterior distributions. The desired posteriori may
be expanded further as follows,

p(xk |Zk ) =

(
M∑
i=1

wi
√
N (µik ,6

i
k )

)2

=

M∑
i=1

M∑
j=1

wiwj
√
N (µik ,6

i
k )N (µjk ,6

j
k )

=

M∑
i=1

M∑
j=1

wijN (µijk ,6
ij
k ) (24)

where,

6
ij
k = 2

(
6i
k
−1
+6

j
k
−1
)−1

, (25)

µ
ij
k = 0.56ij

k (6
i
k
−1
µik +6

j
k
−1
µ
j
k ), (26)

wij =

wiwj

√√√√√
|6i

k ||6
j
k |

|
6ik+6

j
k

2 |

e
1
4 (µ

i
k−µ

j
k )
T (6i

k+6
j
k )
−1(µik−µ

j
k )

(27)

The MoG shown in (24) may be approximated by a single
normal distribution as follows,

p(xk |Zk ) = N (µk ,6k ) (28)
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µk =

M∑
i=1

M∑
j=1

wijµijk (29)

6k =

M∑
i=1

M∑
j=1

wij(µijk − µk )(µ
ij
k − µk )

T

+

M∑
i=1

M∑
j=1

wij6ij
k (30)

The posterior distribution calculated in (24) is aMoG, the ele-
ments of which are the geometric mean of a pair of model
posteriories. The weights of the mixture are related to the
Bhattacharyya coefficient of the related model posteriori pair.
If the posterioies in a pair are far from each other, their weight
will be relatively reduced and therefore will contribute less
to the overall estimation. Therefore, this type of averaging is
more robust to model outliers.

C. GENERALIZED AVERAGING
The averaging methods obtained from the KLD and BD
measured are special cases of the generalized mean, also
known as the power mean. If the generalized mean is used
for averaging of the posteriories, the overall state posteriori
is calculated as follows,

p(xk |Zk ) =

(
M∑
i=1

wiN (µik ,6
i
k )
l

) 1
l

(31)

where l is the power parameter. If l = 1, the posteriori will be
the WAM, while the resultant posteriori will be the same as
WGM and WSMR if l → 0 and l = 1/2, respectively. It can
be shown that for a set of posteriories, WAM always results
in the largest outcome, while WGM provides the smallest
average. Since it is not straight-forward to calculate the mean
and covariance of such an average without explicitly knowing
the value of l, this form of averaging is not explored further.
Yet, other important averaging schemes may be resulted by
exploring other values for l in this general form.

IV. SIMILARITY-BASED WEIGHTING SCHEME
The Bayesian weighting scheme employed in the traditional
MM reduces the weights to zero for all models but the closest
one to reality. To remedy this problem, in this section we
propose a novel similarity-based method to determine the
weights of the models based on their closeness to the true
model. Since the true model is not available, we provide a
way to find a fair approximation of true measurement likeli-
hood under some assumptions. This approach is discussed in
details in the sequel.

The recursive calculation of the Bayesian weights (shown
in (6)) resembles a geometric averaging of the measurement
likelihood, except the root of the multiplication is not consid-
ered. Now assuming the system has reached its steady state
and the weights to be the geometric mean of measurement

likelihood, they may be calculated as follows,

wik = c′1
k

√√√√√ k∏
j=1

p(zj|Mi,Zj−1)

= c′2e
−1
2

[
ln|�i|+tr{�i,∗k �

i
j
−1
}

]
(32)

where c′1 and c
′

2 are normalizing factors, �i is the covariance

of innovation at the steady state and �i,∗
k =

1
k

k∑
j=1

z̃ijz̃
i
j
T . Such

weights are similar to those introduced by [24]. Considering
the normal distribution of the measurement likelihood, it is
easy to see that the ratio of weights with respect the weight
of the true model is related to the KLD between the measure-
ment likelihood of model i and that of the true model, i.e.,

wik
w∗k
= e−DKL (33)

where,

DKL = DKL(p(zk |Zk−1,M∗) ‖ p(zk |Zk−1,Mj))

= DKL(N (ẑ∗k|k−1,�
∗) ‖ N (ẑik|k−1,�

i))

=
1
2

[
tr{E∗{z̃ik z̃

i
k
T
}�i−1

} + ln|�i
|

]
−

1
2

[
ln|�∗| + m

]
(34)

and E∗{·} is the expectation function with respect to
p(zk |Zk−1,M∗). While [24] assumed E∗{z̃ik z̃

i
k
T
} = �

i,∗
k

and �∗ to be common between all models, we calculate
these values differently, which helps us foster other similarity
measures for the same purpose. It can be shown that,

E∗{z̃ik z̃
i
k
T
} = �∗ + (ẑ∗k − ẑ

i
k )(ẑ
∗

k − ẑ
i
k )
T (35)

Assuming the innovation sequences are zero-mean for all
models, then (35) is reduced to �∗, i.e.,

E∗{z̃ik z̃
i
k
T
} ≈ �∗ (36)

Assuming the innovation sequence for model i to be ergodic,
then the covariance in (36) may be approximated based on
previous samples of innovation, i.e.,

�∗ ≈ �
∗,i
N ,k =

1
N

k∑
j=k−N+1

z̃ijz̃
i
j
T (37)

where N is the size of averaging window, which is selected
relatively large in the adaptive estimation scenarios and very
small for the FDI applications. Therefore, the weights after
normalization will be calculated as follows,

wik = c4e
−1
2

[
tr{�∗,iN ,k�

i−1
}+ln|�i|−ln|�∗,iN ,k |

]
(38)

where c4 is the normalizing factor. Comparing (38) with the
weights introduced by [24] in (32), it can be seen that they
are almost identical except for the last term in the exponent
of (38), since this termwas considered common in all weights
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in calculation of (32) and therefore omitted in the normal-
ization process. It is noteworthy that due to the presence of
this last term, the weights in (38) contain another comparison
between the observed (�∗,iN ,k ) and precomputed (�i) covari-
ance matrices, therefore unlike (32) the precomputed values
in (38) will not adversely affect the weights as was discussed
in [26].

Since the measurement likelihood of the true model is
approximated, it is also possible to exploit other similarity
measures to calculate the weights of the models. For instance,
if the Bhattacharyya distance is used instead of KLD, the fol-
lowing weighting scheme will be gained,

wik
w∗k
= e−DBC (39)

where,

DBC = DBC (p(zk |Zk−1,M∗) ‖ p(zk |Zk−1,Mj)

= DBC (N (ẑ∗k|k−1,�
∗) ‖ N (ẑik|k−1,�

i)

=
1
2

[
ln|
�∗ +�i

2
| −

1
2
ln|�i
| −

1
2
ln|�∗|

]
(40)

Under the same assumptions, (37) may be used to cal-
culate the weights, which are formulated as follows after
normalization,

wik = c5

√√√√√
√
|�i
||�
∗,i
N ,k |

|�
∗,i
N ,k +�

i
|

(41)

where c5 is the normalizing factor. Another interesting sim-
ilarity measure which can be exploited is the Wasserstein
(norm 2) similarity measure which is also known as the
Frechet distance [36]. If this measure is used for calculation
of weights, the following result is achieved,

wik
w∗k
= e−DW2 (42)

This distance is calculated as follows,

DW2 = DW2 (p(zk |Zk−1,M
∗) ‖ p(zk |Zk−1,Mj)

= DW2 (N (ẑ∗k|k−1,�
∗) ‖ N (ẑik|k−1,�

i)

=

[
tr{�∗ +�i

− 2
√
�i�∗}

]
(43)

where �∗ is approximated with �∗,iN ,k under the discussed
assumptions. A comparison between (43) and (40) reveals
that these two measures offer similar structures, except the
function ‘‘ln| · |’’ in (40) has been replaced by ‘‘tr{·}’’ in (43).
The latter function offers the sum of eigenvalues for the
enclosed matrix, while the former gives the log sum of the
eigenvalues. In that sense, the Wasserstein distance discrim-
inates more heavily between the weights of the models as
compared to the Bhattacharyya distance.

TABLE 1. System parameters of the model used in scenario A.

V. SIMULATION RESULTS
The effectiveness of the proposed similarity-based techniques
as compared to traditional MM scheme is verified in this
section through multiple Monte-Carlo simulations. Various
scenarios are considered including the adaptive estimation
and FDI applications. The details of these simulations are
discussed in the rest of this section.

A. SCENARIO A
The goal of the first simulation is to compare the performance
of the proposed averaging schemes with that of the traditional
method in terms of accuracy. For that purpose, the first sim-
ulation model from [37] is exploited. The model parameters
are as follows,

F =
[
e−0.2 0
0 e−β

]
H =

[
1 1

]
Q =

[
2(1− e−0.4) 0

0 gn(1− e−2β )

]
R = r

µ0 =

[
1
1

]
60 =

[
10 0
0 10

]
where β, gn, and r are not known exactly. Five models
with possible values for these parameters are considered,
the values of which are shown in Table 1 (i = 2 to 6) along
with the true parameters, which are presented in the first
column (i = 1). The estimations of the MM systems with
the proposed averaging methods are compared to that of
the true model using the KLD-based weighting scheme to
ensure none of the models is eleminated from the averaging.
The performance of each MM method at each time step k
is depicted by calculating their Root Mean Square Relative
Error (RMSRE) [38] over 1000 rounds of Monte Carlo Sim-
ulations as follows,

RMSREk =

√
Nmc∑
j=1
‖µk (j)− xk (j)‖2√
Nmc∑
j=1
‖xk (j)‖2

(44)

and their overall performance is measured by their absolute
RSMRE calculated as follows,

ARMSRE =
1
NS

NS∑
j=1

RMSREj (45)

where NS is the number of the time samples, Nmc is the
number of Monte Carlo simulations, ‖a‖2 = aT a, and a(j) is
the vector a from Monte Carlo simulation j. It is noteworthy
that both RMSRE andARMSRE are unitless as they represent
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the relative errors of the estimations. The RMSRE of the
proposed averaging schemes are depicted in Fig. 2. Even
though the performance of these methods are close, the esti-
mations provided by WGM is slightly more accurate, while
traditional WAM offers less accuracy. This can also be seen
from the ARMSRE of the methods briefed in Table 2. The
enhancement of the estimation accuracy comes as a result of
considering the error covariance of models in the estimations.

FIGURE 2. The RMSRE of the proposed averaging methods and the true
model in scenario A.

TABLE 2. ARMSRE of the proposed averaging methods and the true
model in scenario A.

B. SCENARIO B
A simple model from [37] is considered in the second simula-
tion to highlight the difference between the proposed weight-
ing schemes. The parameters of this model are as follows,

F = θ H = 1 Q = 1

R = 1 µ0 = 100 60 = 10

where θ of the true model is 0.4. Four models with parameter
values of θ1 = 0.1, θ2 = 0.2, θ6 = 0.6, and θ7 = 0.7
are selected in MM estimation systems, using the proposed
weighting schemes. The traditional WAM is used in all of
these MM systems. The evolution of weights are shown
in Fig.3. As expected, the Bayesian weight of the closest
model to reality (model with θ6) quickly converges to 1,
while other Bayesian weights are reduced to zero. This means
that the MM estimator with the Bayesian weights is actually
reduced to a system with F = 0.6. On the other hand,
other similarity-based weighting schemes assign weights to
the models based on their closeness to the true mode. Among
these methods, Wasserstein-based weighting scheme (shown
by W2-Based) discriminate the most between weights, while
Bhattacharyya-based (denoted by BC-based) distributes the
weights between models almost evenly. It is also noticeable
that the discrimination between the models become less sig-
nificant as the time goes by. This behaviour justifies why the

FIGURE 3. Model weights using the proposed weighting schemes as
compared to the Bayesian weighting method in scenario B.

TABLE 3. ARMSRE of the proposed weighting methods and that of the
true model in scenario B.

FIGURE 4. The estimation RMSRE of the proposed weighting schemes as
compared to that of the Bayesian weighting method in scenario B.

sampling window in (37) should be small in FDI applications
and large for adaptive estimation ones. Moreover, it can be
predicted that the BC-based weights may not be suitable for
FDI applications.

The performance of theMMAE systemswith these weight-
ing schemes are compared by means of their RMSRE, which
is depicted in Fig. 4 for a short period of time to enhance the
figure visibility. As it was expected, the accuracy provided
by the proposed weighting methods is higher than that of
the traditional Bayesian weighting scheme. For this example,
the BC-based weighting scheme is slightly more accurate
than the other two similarity-based schemes. This fact may
also be inferred from the ARMSRE of these methods, briefed
in Table 3.
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TABLE 4. Parameters of the system used in scenario C.

TABLE 5. ARMSRE of the proposed averaging methods and that of the
true model in scenario C.

C. SCENARIO C
In the third scenario, the adaptive estimation example used
in [24] and [39] is considered. The system is composed
of seven models that are different in their transition matrix
(i.e., F). The parameters of the system models are as follows,

F =
[

0 1
f1(i) f2(i)

]
Q =

[
0.2 0
0 0.3

]
H =

[
1 2

]
R = 0.2

µ0 =

[
1
0.5

]
60 =

[
1 0
0 0.5

]
where f1(i) and f2(i) are found from Table 4. The first column
of the table (i = 1) is assumed to be the true parameters
of the system model. Two simulations are conducted in this
scenario. In each simulation, two sets of models are used
to estimate the state of the system. The first set (Set 1)
includes models 2, 3, and 4, which are relatively close to
the true model. The second set (Set 2) is chosen to comprise
models 5, 6, and 7, which are comparatively far from the true
model. Using each model, Kalman filtering is employed to
find the mean and covariance of the posteriori for eachmodel.
The temporal performance of the schemes are reflected by

their sample-based innovation covariance (�k =
1
k

k∑
j=1

z̃jz̃Tj ),

similar to [24].
In the first simulation of this scenario, the proposed aver-

aging methods are used and compared with the arithmetic
averaging of the traditional MM. For a fair competition,
the weights of the model are kept equal and constant. For
that matter, Set 1 and Set 2 are tested for state estimation.
The simulation length is 200 samples (NS = 200). The
resultant innovation covariance of these schemes are shown
in Fig. 5, and 6 for sample time 100 to 200 for more clarity.
TheARMSREof themethods are also presented in Table 5 for
Nmc = 1000. The performance of all schemes are close,
however the performance of WGM is better than that of the
other two. Moreover, WSMR provides higher accuracy as
compared to the traditional arithmetic mean. The superiority
of the proposed averaging methods become more significant
when the models are far from the true model (i.e. using
Set 2). These performance enhancements come as a conse-
quence of considering the error covariance of each model
estimations.

FIGURE 5. The innovation covariance of the proposed averaging methods
in comparison with that of the true model using Set 1 models
in scenario C.

FIGURE 6. The innovation covariance of the proposed averaging methods
in comparison with that of the true model using Set 2 models
in scenario C.

The goal of the second simulation in Scenario C is to
demonstrate the effect of the proposed weighting schemes
on the performance of the estimations. For that matter, all
weighting schemes employed the traditional arithmetic aver-
aging for a fair comparison. Other conditions of the simula-
tion are the same as the previous simulation. The performance
of these weighting schemes are depicted in Fig. 7, and 8,
while the average performance of the methods are briefed
in Table 6. When the models are close to the true model
(Set 1), the performance of all weighting schemes are close
since the best modelmatch is still a good approximation of the
true model. However, when the models are further from the
true model (Set 2), the proposed weighting schemes provide
higher levels of accuracy. In general, the proposed weighting
methods perform equal or better than the Bayesian weighting
scheme used in the traditional MM.

D. SCENARIO D
To test the proposed methods in another MM application,
a FDI application is considered in this scenario using the
proposed averaging andweighting schemes. For that purpose,
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FIGURE 7. The innovation covariance of the proposed weighting methods
in comparison with that of the true model using Set 1 models
in scenario C.

FIGURE 8. The innovation covariance of the proposed weighting methods
in comparison with that of the true model using Set 2 models
in scenario C.

TABLE 6. ARMSRE of the proposed weighting methods and that of the
true model in scenario C.

the linear system introduced in [40] is exploited and slightly
modified to reach a stable system. There are two measure-
ments each of which is assumed to be obtained from a sensor.
Five models are available for the measurement matrix (H)
which model the failure of only one of the two sensors (single
failure). The parameters of the system are as follows,

F = 0.99 Q = 0.01

H =
[
h1(i)
h2(i)

]
R =

[
1 0
0 1

]
µ0 = 100 60 = 10

where h1(i) and h2(i) are found from table 7. The correct
model of the system is shown in the first column of the
table (i = 1), while other models shown in the rest of the
columns use half of the correct value or 0 to represent a

TABLE 7. Parameters of models in scenario D.

FIGURE 9. The RMSRE of the proposed averaging methods in comparison
with that of the true model using Set 1 models of Scenario D.

partial or a total failure, respectively. An intermittent total
failure in the second sensor is considered in the simulations,
where the measurement matrix of the system is changed from
the first column to the last column (i = 5) between time
steps 80 and 120. The system is back to normal after time
step 120. Similar to the previous scenario, two sets of models
each containing three models are considered. In the first set
(Set 1), the first three models are considered, which can only
reflect no failure or partial failures. The second set (Set 2) is
composed of models 1, 3, and 5, which cover all modes of
operation for the second sensor. The temporal efficiency of
the methods are measured by RMSRE shown in (44), while
the overall performance of each method is evaluated using the
ARMSRE over a thousand rounds of Monte Carlo simula-
tions (Nmc = 1000). Each simulation takes 200 samples to
complete (NS = 200).
In the first simulation of this scenario, the averaging

methods are tested for FDI. For that matter, the weights
of all methods are selected by the traditional Bayesian
scheme. However, to avoid having zero weights, a lower
bound is selected for all weights as prescribed by [23] the
value of which is set to 0.01. Figures 9 and 10 show the
results of this comparison for Set 1 and Set 2, respectively,
while the overall performance of these methods is summa-
rized in Table 8. As expected, when the fault model is not
available (Set 1), the estimation error increases. The WGM
and WSMR perform better than the traditional WAM as they
consider the uncertainty of each model. In particular, when
the fault model is available (Set 2), WSMR outperforms the
other two averaging methods.

Next, the effectiveness of the proposed weighting schemes
is evaluated for this scenario. All methods are chosen to use
the WAM, while their weighting schemes are selected as
discussed in Sec. IV. The RMSRE of these methods using
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TABLE 8. ARMSRE of the proposed averaging methods and that of the
true model in scenario D.

FIGURE 10. The RMSRE of the proposed averaging methods in com-
parison with that of the true model using Set 2 models of Scenario D.

FIGURE 11. The RMSRE of the proposed weighting schemes in com-
parison with that of the true model using Set 1 models of Scenario D.

Set 1 and Set 2 models are depicted in Fig. 11 and 12, while
the average performance of the methods are summarized
in Table 9. The performance of the KLD-based and Wasser-
stein (W2)-based weights are quite similar in this simulation.
These weights can select the correct model without the inter-
ference from other models and therefore their performance is
very close to the true model when the fault model is available.
On the other hand, the BC-based weighting method cannot
exclude the other models and assigns considerable weights to
the wrong models, which cause the system to perform poorly.
As it was discussed earlier, BC distance discriminates the
weights less harshly as compared to the Wasserstein distance
and therefore cannot eliminate the wrong models from the
averaging. The Bayesian weights perform close to the best
model available, yet their performance is suboptimal due to
the use of the lower bounds.

FIGURE 12. The RMSRE of the proposed weighting schemes in com-
parison with that of the true model using Set 2 models of Scenario D.

TABLE 9. The ARMSRE of the proposed weighting methods and the true
model in Scenario D.

VI. CONCLUSION
Motivated by the potential problems of the traditional MM
estimation, a similarity-based approach was proposed which
generalized the traditional averaging scheme and overcome
the problem of converging into a single model. In particular,
both traditional and novel averaging methods were derived
and discussed in terms of their results. Moreover, multiple
novel weighting schemes were suggested to solve the prob-
lem of the Bayesianweighting scheme. The simulation results
confirms the applicability of the proposed MM approach for
adaptive estimation and FDI applications. Careful analysis
of the simulation results reveals that when the models are
quite close to the true model (and one another), the proposed
averaging scheme perform only slightly better than the tra-
ditional WAM. However, when the models are diverse and
far from the true model, the significance of the proposed
methods becomemore apparent (e.g., scenario C using model
set 2). This fact can also be seen in the FDI application, where
the model sets are quite diverse and far from the true sys-
tem. In FDI applications, the most discriminative distances
(Wasserstein distance and KLD divergence) has the best per-
formance, while the performance of the Bhattacharrya-based
weighting method is much better in the adaptive estimation
applications (e.g., Scenario B).

It is noteworthy that the proposed averaging methods con-
sider the error covariance of each method in calculation of
the mean, while the traditional averaging method does not
offer such an advantage. In that sense, the proposed WGM
and WSMR perform better than the traditional WAM. This
superiority becomes more significant when the models are
more diverse (not close to each other). On the other hand,
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the advantage of the proposed weighting scheme lies within
allocating weights based on the distance of models from
the true model. Therefore, the effectiveness of the proposed
weighting schemes become more efficient as compared to
that of the traditional weighting scheme when the models are
diverse and are not very close to the true model.

The proposed approach opens new doors for enhanced
estimations in MM systems. Various probabilistic similarity
measures may be exploited to achieve new averaging and
weighting schemes which best suit the application of inter-
est. In addition, the proposed methodology may be fostered
for more complex systems including nonlinear/time-varying
system with non-Gaussian noise.

APPENDIX
The mean of the MoG shown in (5) is calculated as follows,

µk = E {xk |Zk} =

+∞∫
−∞

M∑
i=1

wiN (µik ,6
i
k )xkdxk

=

M∑
i=1

wi
+∞∫
−∞

N (µik ,6
i
k )xkdxk =

M∑
i=1

wiµik (46)

The covariance of this MoG is derived as follows,

6k = Ep(xk |Zk )
{
(xk − µk )(xk − µk )

T
}

=

+∞∫
−∞

p(xk |Zk )(xk − µk )(xk − µk )
T dxk

=

+∞∫
−∞

M∑
i=1

wiN (µik ,6
i
k )(xkx

T
k − xkµ

T
k

−µkx
T
k + µkµ

T
k )dxk

=

M∑
i=1

wi

 +∞∫
−∞

N (µik ,6
i
k )xkx

T
k dxk

−µikµ
T
k − µkµ

i
k
T
+ µkµ

T
k

 (47)

It can be shown that,
+∞∫
−∞

N (µik ,6
i
k )xkx

T
k dxk = 6

i
k + µ

i
kµ

i
k
T

(48)

Using (54) in (53) results in the following formulation for the
covariance of the mixture,

6k =

M∑
i=1

wi
[
6i
k + µ

i
kµ

i
k
T

−µikµ
T
k − µkµ

i
k
T
+ µkµ

T
k

]
=

M∑
i=1

wi
[
6i
k + (µk − µ

i
k )(µk − µ

i
k )
T
]

(49)
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