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ABSTRACT Reliable detection of the onset of epileptic seizures has seen renewed interest over the past
few years, owing to several factors including, the global push toward digital health-care, the advancements
in signal processing techniques, and the increased computational power of machines. A reliable automatic
system could result in tremendous improvement in the quality of life of epilepsy patients. This paper presents
dynamic mode decomposition (DMD), a data-driven dimensionality reduction technique, originally used in
fluid mechanics, as an instrument for epileptic seizure detection from scalp electroencephalograph (EEG)
data. DMD is employed in this paper to measure power of signals in different frequency bands. These
subband-powers, along with signal curve lengths, are used as features for training random under-sampling
boost decision-tree classifier. Post-processing measures ensure an acceptable balance between false positives
and true positives. The proposed algorithm has been tested over a thousand hours of EEG data from two
different data sets, the CHB-MIT data set and the KU Leuven data set, giving sensitivity values of 0.87 and
0.88, respectively, and specificity values of 0.99 for both the data sets.

INDEX TERMS Biomedical signal processing, EEG, epileptic seizure detection, dynamic mode

decomposition, RUSBoost, decision trees.

I. INTRODUCTION

Epilepsy is one of the most common neurological diseases
in the world affecting more than 50 million individuals [1].
There are multiple methods of measuring brain activity, both
invasive and non-invasive. This article is limited to the scalp
Electroencephalography (EEG), which is a non-invasive, and
thus a universally accessible procedure. EEG is the primary
diagnostic tool for epilepsy and is most frequently used for
epileptic seizure onset detection. This is essentially due to
its good resolution in space-time as compared to other tech-
niques.

EEQG tests measure the electrical activity generated by brain
using metal electrodes placed in a standard configuration
on the scalp [2]. Manifestations of epileptic activity can be
spatially localized, or generalized, thus necessitating the use
of a large number of electrodes for proper monitoring. Since
EEG measurements are high-dimensional, spatially and tem-
porally, an automated algorithm for seizure detection would
potentially be very helpful to the clinicians. This is especially

relevant when certain patients have to under-go long-term
EEQG tests, ranging from 3 to 5 days at a time.

Another problem in seizure onset detection is the
subjectivity of the clinician analyzing the recordings. The
clinicians may often disagree on seizure regions in EEG
recordings. It has been shown that when experts were asked
to review EEG records already marked independently by
another expert, just below 80% were marked similarly by
two or more experts [3]. To provide consistency in mark-
ing the long-term recordings, it is necessary to have auto-
mated or semi-automated algorithms mark the regions of
interest in the recording, and provide a second opinion to
the clinician. With the renaissance of machine learning, and
significant advancements in the computational ability of elec-
trical machines, solutions are now possible that provide con-
sistent results over long durations of high-dimensional data.

In this paper, we introduce a technique that originated from
the domain of fluid mechanics, called dynamic mode decom-
position (DMD), and apply it to EEG signals for detection of
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epileptic seizures. The DMD is a data-driven dimensionality
reduction technique. We demonstrate the versatility of the
algorithm, and its ability to provide reliable and consistent
results by testing it over two well-known EEG datasets. The
results show that DMD combined with curve-length, has
a comparable performance to some of the best performing
existing methods used in seizure detection. The sequence of
the paper is as follows. Sect. II discusses the recent works
carried out using dynamic mode decomposition and various
seizure detection algorithms developed and tested on the
CHB-MIT and KU Leuven datasets. Sect. III gives a brief
description of dynamic mode decomposition followed by
presentation of our methodology in Sect. IV. Results are pre-
sented in Sect. V and the conclusions are drawn in Sect. VI.

Il. RELATED WORKS

Although EEG-based epileptic seizure detection had been
studied earlier [4], [5], the field received a boost by the publi-
cation of publicly accessible dataset by Massachusetts Insti-
tute of Technology collected at Children’s Hospital Boston
(CHB-MIT dataset) in 2009 by Shoeb and Guttag [6] through
Physionet data bank [7]. The dataset, containing 982 hours
of EEG recordings from 24 patients, has since been used by
the research community as a benchmark for epileptic seizure
detection and performance comparison. The work by Shoeb
and Guttag [6] was one of the first to use machine learning
for seizure detection from scalp EEG. The technique involves
derivation of features from signal energy in fixed frequency
bands, and use support vector machine (SVM)-based patient-
specific classifiers to determine the presence of seizures.
Over the years, several innovative and potentially capable
techniques and algorithms have been published. However,
there have been inconsistencies across studies in the use of the
whole, or subset of the dataset, and in the use of performance
metrics for evaluation, making it impossible to compare the
techniques in an objective manner.

Chiang et al. [8] presented an on-line re-training method
combined with simple post-processing. The feature set
includes phase of the signal at different frequency bands
obtained by wavelet decomposition, and the synchronization
between pairs of channels. However, this work was validated
on only seven patients from the dataset with further limita-
tions on usable data. The approach requires an inter-ictal state
of at least 4 hours between two seizures and also the recording
should not be disrupted by over an hour. Another patient
specific algorithm is proposed in [9] that uses temporal and
spectral features to build collective network of binary clas-
sifier ensemble (CNBC-E) by employing multi-dimensional
particle swarm optimization (MD-PSO) [10]. This algorithm
only considers EEG records containing one or more seizures
and excludes two patients from the study. Wavelet decompo-
sition has been used extensively for feature extraction from
EEG signals [11]-[14]. One approach is to use time-domain
statistical quantities like energy, entropy, standard deviation,
etc in conjunction with inter-quartile range and mean absolute
deviation of raw data as features for a classifier to provide
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an accurate and low-latency seizure detection solution. How-
ever, this work does not report the false alarm rate or speci-
ficity of the algorithm [11].

Absence seizures are detected in [12] by reducing the
wavelet basis using principal component analysis (PCA) and
then feeding these components into different classifiers. This
study uses about only 1% of the entire dataset. The approach
proposed in [13] uses wavelet decomposition to split the
signal into various sub-bands. The features used were magni-
tude, spectral energy variation, and morphology of the signal
for all the sub-bands. SVMs and extreme learning machines
(ELMs) were used for classification. The study leaves out one
patient from the dataset without mentioning the patient num-
ber and the reason for rejection. A multi-variate extension of
empirical wavelet transform is proposed in [14] where fea-
tures are calculated for automatically selected channels. The
authors have excluded patient 12 of the CHB-MIT dataset
from their study citing inability to read the EEG for that
particular patient. Furthermore, only those EEG recording are
considered that contain seizures.

An unsupervised feature learning technique is proposed
in [15] that uses multiple layers of single-layer neural net-
works (auto-encoders) with each layer feeding its output to
the next. The stack of auto-encoders (SAE) learns features by
setting the target value equal to the input. The features learned
by SAE are then fed to patient-specific logistic classifiers.
The results of this paper are calculated over only 44 hours
of EEG data from 6 patients. A recent unsupervised tech-
nique uses group invariant scattering for feature extraction
from the EEG data and proposes an anomaly-detection based
algorithm for identifying seizure regions [16].

Fergus et al. [17] compare performance of various clas-
sifiers using power spectral density (PSD), peak frequency,
median frequency, root mean-squared (RMS) value, entropy,
correlation, skewness, and kurtosis as features. This study
also employs a small part of the dataset, i.e., 342 minutes of
data only.

Fuzzy entropy (FuzzyEn) is used for seizure detection
in [18]. FuzzyEn is calculated from the EEG signals for differ-
ent epileptic states. The selected features are then used to train
SVMs. The authors only consider the data from 18 patients,
discarding the others citing lack of data integrity.

A patient-specific seizure detection algorithm is presented
in [19] that represents the data in high dimensional phase
space. The dimensionality of data is reduced by PCA and
Poincaré section is applied to extract features, which are
then used to train a two-layered classifier comprising lin-
ear discriminant analysis (LDA) and Naive-Bayesian classi-
fiers. The study excludes Patient 15 and only considers EEG
records containing seizures.

Closed loop systems for seizure detection have been pro-
posed in [20] and [21]. The former uses phase/amplitude
lock values to differentiate between seizure and non-seizure
activities of the brain, but only reports its performance for
10 patients. The latter presents an on-chip, patient-specific,
dual-detector architecture comprising two linear SVMs.
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It uses 600 seconds of pre-ictal, ictal and post-ictal EEG
patterns for training of SVM but requires offline extraction
of patient specific parameters.

Another scalp EEG dataset has been collected and ana-
lyzed at KU Leuven, where Hunyadi ef al. [22] used features
such as signal power at different frequency bands, asymmetry
of contra-lateral channel pairs, presence of spikes, and repet-
itive spikes with evolution in amplitude.

Single channel intra-cranial dataset made available by the
University of Bonn [23] has also been considered in a number
of studies [24]-[35]. Empirical mode decomposition has been
used to compute intrinsic mode functions, whose amplitudes
and instantaneous frequencies are employed as features to
distinguish between seizure free and seizure regions in the
EEG records [24]-[27]. Similarly, a fractional linear predic-
tion model for EEG signal is proposed in [28]. The prediction
error and the signal energy are used as features to train
the SVM that detects the seizures. Automatic detection of
epileptic seizures has been proposed using computation of
local binary pattern of EEG signal at stable key points [29].
The points are detected after a multi-scale analysis of the EEG
signal. Time-frequency representations for non-stationary
signals such as wavelet transform [30]-[34], and eigen-
value decomposition of Hankel matrix, constructed from the
observed signal [35], has been very effectively used to detect
seizures from single-channel intra-cranial EEG signals. In
this paper, we consider the CHB-MIT and KU LEUVEN
datasets, which consist of multiple channels of scalp EEG,
and apply a spatio-temporal analysis technique (presented in
next section) for the detection of epileptic seizures.

IlIl. DYNAMIC MODE DECOMPOSITION

Dynamic mode decomposition (DMD) was developed for
flow analysis of fluids [36]. The assumption behind this
technique is the existence of a low-dimensional structure
underlying otherwise high-dimensional measurements. DMD
has been used to analyze the time-resolved particle image
velocimetry (PIV) measurements of unforced and harmoni-
cally forced gas jets [37]. Different variants of DMD have
been developed since [38]-[41]. Brunton ef al. [42] demon-
strate the robustness of DMD to additive Gaussian noise and
down-sampling of the signals.

The authors apply DMD algorithm on neural recordings for
known motor tasks before combining DMD with clustering
algorithms for sleep spindle detection. To the best of our
knowledge, our paper is the first time that the DMD has been
applied to scalp EEG signals.

Dynamic mode decomposition (DMD) is, in essence,
a data-driven dimensionality reduction technique. It relies
on the experimental snapshots to make sense of the inher-
ent structure of data instead of using complex mathemat-
ical equations or models that govern the behavior of the
system. This approach is best suited to problems involving
high-dimensional data where either no underlying model
exists, or the model is too complex to be validated [43].
For this reason, DMD is a potent candidate as a feature-
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extraction technique for EEG data as it exploits the low-
dimensional structure of the experimental data. The DMD
algorithm was initially proposed by [44] and further devel-
oped by [36] and [40].

Let x; be a column vector containing measurements from
n channels at time instant j. Then X is n x m data matrix con-
structed by horizontal concatenation of these measurement
vectors for m consecutive time instances, i.e.,

X = [xo X1 xmfl] .

Similarly, define X’ as the data matrix containing observation
vectors from time instant ¢t = 1 tot = m, i.e.,

X/ — [Xl X2 Xm] .

Dynamic mode decomposition relies on the assumption
that there is a linear operator A such that

X' = AX. (1

Estimating this transition matrix A enables us to determine
a linear regression based relationship between consecutive
data matrices (X and X’). One possible approach for deter-
mining this operator A is to compute the pseudo-inverse of
X, however, as we are dealing with high-dimensional data,
this may not be computationally convenient [42]. Using our
assumption of some low-dimensional structure behind the
extensive data, we instead compute a low-rank approximation
A of A and its ei gen-decomposition using the following DMD
algorithm.

A. DMD ALGORITHM
The DMD algorithm is defined in [40], and can be presented
as following sequence of steps:

1) Find the singular value decomposition (SVD) of the
first data matrix X = U X V™ and substitute into (1)
to get X' = AUXV*.

2) Define A = U*AU = U*X'VE~!

3) Find the eigen-decomposition of A:

AW = WA,
where W is the matrix of eigenvectors and A is the
diagonal matrix of DMD eigenvalues A;.

4) Compute the DMD modes of the data matrix X as

follows:

o~ XVvelw )

Each column of ® is a DMD mode ¢; corresponding to
the eigenvalue A;.

This allows us to represent the observed data as a composition
of coupled spatio-temporal modes, i.e., X, the approximation
of matrix X can be represented as

X = ®exp(Q1)z, A3)

where Q2 = log(A)/At, At is the time difference between
consecutive snapshots, and z represents the weights calcu-
lated for the first time instant such that xg = ®z [42]. The
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FIGURE 1. Comparison of Eigenvalues and DMD Modes For Seizure and Non-Seizure waveforms (a) Waveform of
a one-second long seizure-free EEG recording, (b) Eigenvalues of the waveform shown in (a), (c) DMD mode
powers of the waveform shown in (a), according to the method presented in section IlI-A, (d) Waveform of a
one-second long seizure EEG recording, (e) Eigenvalues of the waveform shown in (d), (f) DMD mode powers of

the waveform shown in (d).

DMD mode powers are defined as the square of its vector
magnitude, i.e.,

Pi = |pil5. )

As identified in [42], the spatial resolution for neurological
signals is usually less than the temporal resolution, e.g.,
a typical EEG acquisition system may have around 20 scalp
electrodes sampling at 256 Hz. This disparity in resolution
results in less number of dynamical modes than required to
fully capture the dynamics of the neurological activity. Thus,
a modification to the standard DMD algorithm (as presented
above) is adopted to augment the data matrix X by stacking &
number of consecutive observation vectors x; such that the
number of rows in X becomes at least twice the number
of columns. The data augmentation artificially inflate the
spatial resolution of data. The details of the data augmentation
procedure are presented in [42].

To demonstrate the effectiveness of DMD in discriminating
between seizure and non-seizure portions of EEG recording,
we have computed the eigen-values of the transition matrix A
and the power of the resulting spatio-temporal modes & for
an example EEG data representative of both seizure and non-
seizure regions. Fig. 1 illustrates the variation in eigenvalues
and DMD mode powers for these example data regions. This
example uses 18 channel EEG data of 1-sec duration (for
each region) for patient 1 of CHB-MIT dataset, recorded at
a sampling rate of 256Hz. Thus the data matrix X contains
256 columns and 529 rows. The eigenvalues computed at
step 3 of the DMD algorithm are plotted in the complex
plane with their magnitude indicating the strength of the
mode and the angle representing the frequency, e.g., the angle
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from O to 7 radians (first two quadrants) covers the frequency
range from O to half the sampling frequency, i.e., 128 Hz. The
phase of eigenvalues can be converted to frequency (Hz) by
the following equation

fi = limag(w;)/ 27|, &)

where w; := log(A;)/ At are the diagonal elements of matrix
Q and imag(.) is the imaginary part of a complex number. The
eigen-values occur in conjugate pairs for the real-valued data
matrix X.

It can be seen in Fig. 1 that seizure and non-seizure regions
differ from each other in terms of both the number of modes
and their relative strength in various sub-bands of frequency.
For example, the seizure region has greater number of modes
and cumulative power in the 0-15 Hz range as compared to
the non-seizure region. Also seizure region exhibits lesser
number of modes in the 60-128 Hz band.

IV. PROPOSED METHODOLOGY

The overall methodology used for seizure detection in this
study is depicted in Fig. 2, and follows the standard sequence
of preprocessing, feature extraction, classification, and post-
processing. Each of these steps is explained below.

A. PREPROCESSING

Preprocessing ensures that all subjects have the same record-
ing conditions. Thus, for CHB-MIT dataset a total of 18 chan-
nels that were present in all patients were selected for pro-
cessing. These channels include: C3-P3, C4-P4, CZ-PZ,
F3-C3, F4-C4, F7-T7, F8-T8, FP1-F3, FP1-F7, FP2-F4,
FP2-F8, FZ-CZ, P3-01, P4-02, P7-0O1, P8-02, T7-P7 and
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FIGURE 2. Block Diagram of the Proposed Methodology.
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FIGURE 3. (a) Normalized DMD Mode Power for non-seizure epoch shown in Fig 1a, (b) Normalized DMD Mode

Power for seizure epoch shown in Fig 1d.

T8-P8. To keep the analysis consistent across subjects,
recordings from Patient 12 were removed from analysis
because of a different channel configuration. Some record-
ings of the patient have channels that are entirely different
from the 18 channels that were common in all other patients.

All subjects from KU Leuven had the same 22 channels
(including ECG) in their recordings, thus no channel selection
was required.

The recordings were divided into non-overlapping epochs
of one second each. Each epoch is then processed indepen-
dently until the post-processing stage.

B. FEATURE EXTRACTION

The features used in the proposed approach are the powers
of the DMD modes and the curve-lengths of the time-domain
EEG signal. The detailed methodology of feature extraction
is explained below.

The DMD mode powers were calculated employing the
data augmentation approach of [42]. A hard threshold on
the singular values was applied in accordance with [45] to
retain only the principal spatio-temporal modes. This helps in
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reducing the number of features and consequently, the train-
ing requirements and the computational complexity of the
approach. The DMD powers were combined in frequency
bins of width 4 Hz, spanning from 0 Hz to half the sampling
frequency, i.e., 128Hz. The bins are then normalized so that
the sum of powers of all the modes is equal to unity. Fig. 3
shows a representation of DMD mode powers and how it
differs between seizure and seizure-free regions for two EEG
recordings from Patient 1 of the CHB-MIT dataset. It can be
seen how the values of normalized DMD powers, accumu-
lated on discretized bins of width 4 Hz, differ significantly in
the two scenarios, with seizure regions having much higher
concentration of power in the lower end of the spectrum,
i.e., in the frequency interval from 0 Hz to 16 Hz.

Curve-length (/;) serves as an indirect measure of the
amplitude and variation of the time domain EEG signal. For
the n-th channel of the EEG signal, the curve length /() can
be computed as

m—2
) = 3 Kirs = Xk + A2, ©)
k=0
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FIGURE 4. (a) Channel-wise and average curve-lengths for non-seizure epoch shown in Fig 1a, (b) Channel-wise
and average curve-lengths for seizure epoch shown in Fig 1d.

where m is the sampling frequency and At is the sampling
interval. Curve-length is calculated for each 1-second epoch
of each channel of the data (18 channels for CHB-MIT dataset
and 22 channels for KU Leuven dataset). Fig. 4 shows the
comparison of curve-lengths for EEG signal epochs selected
from recordings of Patient 1 in CHB-MIT dataset. Each of the
epochs are representative of seizure and non-seizure regions.
The curves lengths are generally larger for the channels in
the seizure region as compared to the corresponding curve
lengths in the non-seizure region. This fact is also emphasized
by the curve-lengths averaged across all the EEG channels,
which is depicted in the rightmost bar in both subplots of
Fig. 4. This demonstrates the effectiveness of curve-length
as a feature that can distinguish between seizure and non-
seizure epochs. So, the individual curve-lengths of the chan-
nels along with the mode powers in each bins are employed as
features for the proposed approach. As a result of this choice,
the dimension of the feature vector for the proposed method is
50 (and 54) for the CHB-MIT data-set (and KU Leuven data),
respectively. It should be mentioned that the curve length
averaged across channels is not used in the proposed approach
for classification, as it is dependent upon the individual curve
lengths of the channels.

While this work primarily depends upon the use of spatio-
temporal DMD modes for seizure detection, the curve-length
feature plays a complementary role by providing additional
temporal information about the EEG signal. It was observed
that the addition of curve-length as a feature has little effect
on the sensitivity, but it improves the specificity by around
2% without incurring any significant computational cost.

C. CLASSIFICATION

The CHB-MIT dataset contains two kinds of recordings,
seizure-free (only non-ictal activity) and those containing
one or more seizures, i.e., both ictal and non-ictal regions.
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TABLE 1. CHB-MIT dataset split between training and testing sets.

Pati Training Data Duration (s) | Test Data Duration (s)
atient . T . T
Non-seizure Seizure Non-seizure | Seizure
Patientl 74442 221 71104 221
Patient2 64710 90 62077 82
Patient3 68196 204 68208 198
Patient4 280295 160 281161 218
Patient5 68089 321 68163 237
Patient6 99604 84 140489 69
Patient7 113935 182 127128 143
Patient8 31946 454 39158 465
Patient9 123087 150 120975 126
Patient10 | 93435 228 86202 219
Patientl1 | 64744 54 59707 752
Patient13 | 60936 264 57329 271
Patientl4 | 46715 85 46716 84
Patientl5 | 78222 989 63822 1003
Patient16 | 28755 45 39561 39
Patientl17 | 39446 178 35885 115
Patient18 | 64642 169 63326 148
Patient19 | 53857 155 53653 81
Patient20 | 50288 136 48784 158
Patient21 | 56884 106 61106 93
Patient22 | 57481 130 53926 74
Patient23 | 45542 244 49644 180
Patient24 | 39353 247 36803 264
Total 1704604 4896 1734927 5240

Roughly half of the seizure-free recordings were used for
training/validation, while the other half were used for testing.
Recordings containing the seizure activity were split such that
duration of seizures in both data portions, i.e., those employed
for testing and training, was nearly equal. It was ensured that
no recording was split such that its different portions were in
both training and testing data. This was done to ensure the
classifier had no bias to any recording. Table 1 shows the
distribution of data into training and testing segments.

In case of KU Leuven dataset, n-fold cross validation was
employed, where n = 27 is the total number of recordings.
For each test, the other n — 1 recordings were used to train the
classifier. Although the data from same patient was used to
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train the classifier, there was no overlap of testing and training
data at any stage.

Since the data distribution in cases such as seizure detec-
tion is highly imbalanced, i.e., the number of samples of
one class are much less than the other class(es), most of
the traditionally used classifiers do not generate promis-
ing results. Such imbalances can be improved using two
techniques: data sampling and boosting [46]. The former
improves the class balance by either adding samples of the
smaller class (oversampling) or removing samples of the
larger class (under-sampling) while the latter is an iterative
approach that improves performance by converting weak
learners to strong ones. The most popular boosting algorithm,
namely AdaBoost, boosts the strength of learners by initially
building an iterative ensemble of models. At each iteration,
AdaBoost aims to correctly classify those samples, in the
next iteration by adjusting weights, which were incorrectly
classified in the current iteration [47]. RUSBoost [48] is a
hybrid approach inspired by AdaBoost that uses a combi-
nation of sampling and boosting. We use RUSBoost in this
study to address the data imbalance issue inherent in epileptic
EEG data. RUSBoost performs random under-sampling of
the majority class before building an ensemble of classifiers
that provides comparable performance with more compli-
cated hybrid algorithms, e.g., SMOTEBoost [49]. The high-
dimensional nature and imbalanced distribution of EEG data
make RUSBoost algorithm an ideal candidate for seizure
detection.

D. POST-PROCESSING

The transition of neural activity from non-seizure state to
seizure state is not entirely sudden, and may take several
epochs. Therefore, certain post-processing is required to
aggregate the outcomes of several epoch to decide on the
presence or absence of a seizure. A study conducted on over
150 patients shows that the median length of various types of
seizures ranges from 18 seconds to 130 seconds [50].

This allows us to use the following post-processing mea-

sures in our work:

1) A run-length smoothing filter that predicts a seizure
only if the classifier predicts one for ten consecutive
epochs [51]. The run-length smoothing filter ensures
no isolated false detection are carried forward, hence
reducing the number of false alarms. The smoothing
may adversely affect the sensitivity of the algorithm if
the actual length of the seizure is less than that of the
filter.

2) Detections are grouped together for 60 epochs [52].
The grouping is used to avoid over-representation of
positive detections. Theoretically, it may misrepresent
the number of seizures detected if multiple seizures
occur in a single 60-second window.

V. RESULTS AND DISCUSSION

To evaluate the performance of the proposed algorithm,
the universally accepted metrics of specificity and sensitivity
are used. The terms are defined as follows:
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A positive detection occurs when the algorithm flags the
presence of a seizure.

A true positive (TP) is counted when the positive detection
by the algorithm coincides with the interval marked as seizure
by the human expert. To cater for the ambiguity in seizure
onset/offset times, TP is reported if positive detection occurs
anytime between 1 minute before onset and 1 minute after the
end of the seizure.

A false positive (FP) is reported when a positive detection
occurs outside the seizure window, which consists of the
seizure, 3 minutes of pre-seizure activity, and 3 minutes of
post-seizure activity. This 3 minute time frame is excluded so
that epileptic activities, frequently serving as precursors to a
seizure, are not counted as FPs [52].

A true negative (TN) is a seizure free region reported
correctly by the proposed algorithm.

A false negative (FN) is a seizure that the algorithm fails
to detect. Using these definitions, we calculate the following
performance evaluation metrics:

o True Positive Rate or Sensitivity provide the probability
of correct detection of seizure. It is calculated as

. # of TPs
Sensitivity = TPR = ——— @)
# of seizures
o True Negative Rate or Specificity provides the probabil-
ity of correct identification of seizure-free region. It is
calculated as:

o # of TNs
Specificity = TNR = 8)
# of TNs + # of FPs
o False Positive Rate per hour is the average number of
false alarms reported in an hour.
o Onset Latency is the delay in the detection of seizure by
the algorithm as compared to the ground truth marked
by clinician.

A. CHB-MIT DATASET

CHB-MIT dataset contains 661 recordings from 23 patients
containing a total of 158 seizures in around 958 hours of
EEG data (excluding patient 12). The classifiers are patient-
specific, i.e., they are trained on their respective training data.
Although the type of classifier is the same for all patients,
i.e., RUSBoost decision trees, the parameters, (i.e., the num-
ber of learners, learning rate, and the number of splits) have
been chosen to get best results on per-patient basis.

The results for performance metrics are reported in Table 2
with weighted averages of all mentioned at the bottom.

The weights are according to total number of seizures and
epochs for each patient. It can be seen that sensitivity is close
to 1, if not exactly 1, for most patients. The worst sensitivity
is obtained for Patient 16. The reason for poor performance
is due to the post-processing step of the proposed algorithm.
For Patient 16, 4 out of 5 test seizures have duration < 10s,
which cannot be flagged as a true positive by our algorithm
due to the 10-second run length smoothing applied during
post-processing. If this particular patient is not included
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FIGURE 5. Box plots for Sensitivity, Specificity, and False Alarms per hour on CHB-MIT and KU Leuven Datasets.

TABLE 2. Results - CHB MIT dataset.
Patient No. of TPR | TNR | FPR/h
Test Seizures

Patient1 3 1 1 0
Patient2 1 1 0.9923 | 0.4642
Patient3 3 1 0.9303 | 4.1799
Patient4 2 1 0.9998 | 0.0128
Patient5 2 1 1 0
Patient6 5 0.8 0.9991 | 0.0514
Patient7 1 1 1 0
Patient8 3 1 0.9908 | 0.5547
Patient9 2 1 1 0
Patient10 3 1 1 0
Patientl 1 1 1 1 0
Patient13 4 0.75 0.8929 | 6.4263
Patient14 4 0.75 0.9508 | 2.9495
Patient15 11 0.9091 | 0.9858 | 0.8539
Patient16 5 0.4 0.9603 | 2.3817
Patient17 1 1 0.9766 | 1.4023
Patient18 3 0.6667 | 0.9971 0.1711
Patient19 1 1 0.9989 | 0.0673
Patient20 4 0.75 0.9975 | 0.1485
Patient21 2 1 0.9970 | 0.1772
Patient22 1 1 1 0
Patient23 3 1 0.9951 | 0.2920
Patient24 6 1 0.9927 | 0.4390
W. Avg 0.8732 | 0.9893 | 0.6412

in the performance analysis, the sensitivity increases from
0.87 to 0.91.

Our algorithm provides performance comparable to that
of Shoeb and Guttag [6]. For instance, we have a sensitiv-
ity of 87% as opposed to 96% and a median false alarm
rate of 4/24hr compared to 2/24hr given in [6]. However,
the proposed algorithm provides this performance using only
spectral (DMD mode powers) and temporal (curve-length)
features while Shoeb et al. also used spatial and non-EEG
features in their algorithm, such as electro-cardiogram (ECG)
signal.

B. KU LEUVEN EEG DATA
KU Leuven dataset contains 27 recordings from 22 patients
containing a total of 32 seizures in around 110 hours of EEG
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TABLE 3. Results - KU Leuven dataset.
Patient No. of TPR | TNR | FPR/h
Test Seizures

Patient1 1 1 0.9900 | 0.6012
Patient2 1 1 1 0
Patient3 1 1 0.9919 | 0.4878
Patient4 | 1 0.9938 | 0.3738
Patient5 | 1 0.9901 | 0.5941
Patient6 1 0 1 0
Patient7 1 1 0.9890 | 0.6593
Patient8 1 0 1 0
Patient9 1 1 1 0
Patient10 1 1 1 0
Patient1 1 1 0 0.9828 | 1.0345
Patient12 1 1 0.9674 | 1.9565
Patient13 1 1 0.8485 | 9.0909
Patient14 2 1 1 0
Patient15 1 1 0.9661 2.0339
Patient16 1 1 0.9489 | 3.0682
Patient17 5 1 0.9914 | 0.5161
Patient18 3 1 1 0
Patient19 1 1 0.9986 | 0.0820
Patient20 2 1 0.9960 | 0.2381
Patient21 3 0.6667 | 0.8939 | 6.3673
Patient22 1 1 0.9953 | 0.2810
W. Avg 0.875 0.9884 | 0.6941

recordings. Table 3 represents the results for KU Leuven
dataset. The methodology is same as the one used for CHB-
MIT dataset, except that we use 15 second run-length smooth-
ing instead of the 10 second smoothing applied in the previous
case. This is done to combat the relatively large number of
false alarms at the expense of sensitivity which falls from
0.93 to 0.88. It can be seen from the table that the worst
performance of the algorithm, in terms of false alarm rate,
is for Patient 21. If we exclude it from the analysis, the false
alarm rate drops to 0.54/hr which is of the same order as
provided in [22]. In case of KU Leuven dataset, our algorithm
shows higher sensitivity (88% as compared to 84%) at the
cost of a slightly higher false alarm rate compared to the work
of Hunyadi et al. [22].

Fig. 5 shows the box-plots of sensitivity, specificity and
false alarms per hour values of CHB-MIT and KU Leuven
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datasets. It can be seen that the values of sensitivity and
specificity are generally close to 1 while the occurrence of
false alarms per hour is generally low.

C. LIMITATIONS AND FUTURE DIRECTIONS

We have observed that the proposed approach achieves good
sensitivity by using the features primarily derived from
the spatio-temporal modes of DMD. Considering the noisy
nature of scalp EEG, the proposed algorithm is robust and
indicates its utility for miscellaneous applications, such as
brain-computer interfaces, P-300 oddball paradigm among
others. Further improvement in false alarm rate could be
achieved if auxiliary features such as mean, variance, skew-
ness, etc., are included. Another future direction could be
the use of recently developed multi-resolution dynamic mode
decomposition [41] to further reduce the false alarm rate.

VI. CONCLUSIONS

This paper presented dynamic mode decomposition (DMD),
an algorithm that captures the spatio-temporal characteristics
of multi-channel signals, and demonstrated its applicability to
the epileptic seizure detection from the scalp EEG recordings.
The proposed approach employed power of the DMD modes
and the curve-length of the EEG signal to train and test
classifiers on two large scalp EEG datasets. The performance
assessment of the proposed algorithm indicated that DMD
effectively captures the dynamics of EEG signals and is
capable of distinguishing between seizure and non-seizure
portions of scalp EEG recordings.
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