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ABSTRACT Existing methods on object detection have the ability to learn the discriminative features
of local regions for object recognition; however, the coexistence relation between the multi-class objects
could also benefit recognition. In this paper, we propose to learn the coexistence discriminative features
for multi-class object detection. Given an image with multiple class objects, the strong supervision of the
region-based annotations are first used as the image-level label to learn the independent discriminative
features for each class. Then, the coexistence relation is fused as coexistence feature based on the attention
mechanism. By combining the independent discriminative features and coexistence feature, the classification
performance of multi-class object proposals can be consistently improved. Experimental results prove that
the proposed end-to-end network outperforms the state-of-the-art object detection approaches, and the
learned discriminative features can effectively capture the coexistence relations to improve classification
performance of multi-class objects in the object detection task.

INDEX TERMS Object detection, faster R-CNN, coexistence relation, multi-class objects, class attention
map.

I. INTRODUCTION
In the past few years, deep convolutional neural networks
have largely boosted the development of various artificial
intelligence applications. Several novel neural network struc-
tures, such as VGG [1], GoogLenet [2], ResNet [3] and
DenseNet [4], are proposed to improve the learning capability
on large-scale datasets. Based on these classical network
structures, the performance of object detection has also wit-
nessed significant progress.

Object detection generally aims to localize the instances
of object in a given image. In the state-of-the-art object
detection framework, the object recognition is formulated as
a classification task for the generated bounding box propos-
als. Bounding box proposals are used to locate the possible
objects. The appearance features extracted from each pro-
posal are classified based on their associated class scores
independently. For example, R-CNN [5], Fast R-CNN [6],
Faster R-CNN [7], R-FCN [8], SSD [9] and YOLO [10] are
proposed for object localization and recognition using single
region classification. However, these approaches ignore the

coexistence relations of multi-class/multi-region in object
detection. Therefore, their detection performance is compro-
mised especially in low resolution images, small scale images
and heavy occlusion images.

Intuitively, it is believed that the relation of object-to-object
coexistence in an image can provide contextual information
for challenging object recognition tasks. For example as
shown in Fig.1, when one wants to detect a bottle in an image,
Faster R-CNN [7] usually independently classifies a single
proposal region and back-propagates based onROI proposals.
However, the feature of wine glass is not sufficient discrimi-
native. As a result, the confidence score of wine glass is low.
In fact, objects such as bottle, table, chair always simultane-
ously occur in the same scene. In this case, the coexistence
attribute could enhance the discriminative feature of each
class. Therefore, incorporating available coexistence object
classes could improve the performance of object detection.

In this paper, we propose to develop a coexistence fea-
ture map to model multi-class relations for object detection,
which can be trained in an end-to-end manner using the
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FIGURE 1. Illustration of our proposed CRN for object detection, where
the discriminative features are learned based on attention mechanism.
For multi-class objects, Faster R-CNN would weak attention feature for
some classes. To enhance the discriminative feature for classification,
coexistence features are jointly learned by the independently obtained
positive attention features for each class.

state-of-the-art Faster R-CNN framework. In the task of
object detection, the category of each object instance is often
recognized individually, without considering a priori knowl-
edge. In our work, firstly, the discriminative features for each
class are learned by weakly supervision, which can generate
the class activation features for each class. Then, we utilize
the class activation feature of all given object categories to
learn the multi-class coexistence feature as the prior knowl-
edge of object detection. At last, the captured coexistence
features are concatenated into Faster R-CNN, which is used
to assist the classification of each bounding box proposals.
Experimental results prove the efficiency of the designed
network.

In summary, our main contributions are as follows:
1) We adopted a classical image-level classification net-

work to learn the local context with attention mecha-
nism. Moreover, we utilize Coexistence Relation Net
(CRN) to learn the coexistence feature of multi-class
objects from the attention feature.

2) We concatenated an end-to-end network based on
Faster R-CNN for multi-class object detection, which
exploits coexistence relations of multi-class objects to
enhance the classification feature representation.

3) We comprehensively evaluate the proposed method on
the public MS-COCO dataset [11] and PASCAL VOC
2007, 2012 [12]. The experimental results prove that
the proposed model has good learning capability and
works well on object detection task.

II. RELATED WORK
The task of object detection is to recognize and locate
objects of interest in a given image/video. State-of-the-arts
object detectors mostly adopt the strong supervision in learn-
ing appearance models of object categories, by training the
images annotatedwith bounding boxes and the corresponding
category labels. However, these proposal-based classifiers are
trained independently for each class, and lack the ability to
use the other categories as context.

In fact, contextual information is always believed that it
is vital for human to recognize objects [13]. Naturally, for
extracting available contextual information in object detec-
tion task, the object’s local context and the global context
have to be considered. Many previous studies have started to
exploit contextual information for object detection [14]–[17].
For example, contextual relations can be modeled by learning
the discriminative feature in a local region outside of a sliding
detection’s window [18]. The spatial coexistence of object-
to-object is collected by learning inhibitory intra-class and
inter-class constraints [19], [20]. Reference [21] proposes
to model context relations based on probabilistic models.
There are also several methods on discriminative classifiers to
explore the context similarity among classes [22]. Recently,
the contextual information for object detection are treated
as a sequential prediction problem. Reference [23] proposes
to sequentially choose detection window to detect objects
in an image. Based on Recurrent Neural Networks (RNN)
structure, such as [24] and [25], the sequence region proposals
are utilized as a cell of contextual information to infer the
other possible object categories in a given image. Otherwise,
attention mechanism is also introduced to model the context
to infer object category. Reference [26] proposed to recur-
rently generate the attention feature to incorporate the dis-
criminative global context into region-based object detection.
However, networks which incorporate context by sequencing
the region proposals still not entirely understand the context
relations [27].

III. COEXISTENCE RELATION NET FOR
OBJECT DETECTION
In this section, we describe the details of the proposed
method. The overall framework of our approach is shown
in Fig.2. The main structure of network is the Faster R-CNN
based on VGG-16. We add a network branch to learn the
coexistence feature, where the features from conv 5-3 of
Faster R-CNN are feed into the branch and the ROI labels
are used as the image-level labels to implement the multi-
label classification. Then, the global average pooling (GAP)
operation is established to localize the class activation fea-
ture [28]. In the following, these feature maps are integrated
into a coexistence feature to represent the spatial and coexis-
tence relation in an image by the designed CRN architecture.
At last, the feature vectors from CRN and Faster R-CNN
are aggregated to calculate the final confidence scores of
each proposal. The whole network is trained in an end-to-end
manner.

A. ATTENTION FEATURE LEARNING FOR SINGLE CLASS
In case that an image has multi-class objects, the discrim-
inative features for each class are generally learned inde-
pendently. In our proposed approach, we resize conv 5-3 to
a fixed size as input to generate the class activation
maps (CAM) [28]. It is noted that, Faster R-CNN can inde-
pendently learn the discriminative feature for each class,
the relations amongmulti-class are weakened by constraining
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FIGURE 2. Overall framework of our approach, which follows the structure of VGG-16. The whole
network consists of two sub-networks: one is Faster R-CNN which independently learns the
discriminative feature for each class, another tries to jointly learn the coexistence feature based on the
independent attention feature of each class. Input image is fed into Faster R-CNN to produce conv5-3
feature maps which are fed into two branches, respectively. In the top branch, the feature maps are
firstly pooled into a fixed size. Then, the local attention feature maps are generated based on a
convolutional layer, GAP and a fc layer. Next, CRN is trained to learn the coexistence feature. In final,
the coexistence feature and the ROI pooling feature are connected to be used for object instance
classification.

a local region via ROI proposals. But, the convolutional fea-
tures from conv 5-3 of the pretrained Faster R-CNN network,
still carry global contextual information, to some extent.
In our work, we believe that the discriminative feature for one
class could be semantically related to other classes in a given
image. Therefore, our neural network learns to predict such
relations for each class with image-level supervision, which
follows the setting in CAM [28]. We add a convolutional
layer of size 3 × 3, stride 1, pad 1 with 1024 channels,
followed by a GAP and a fully connection layer. For a given
image, the feature maps from layer conv 5-3 are firstly resized
to 28 × 28, after the added convolutional layer, it can be
represented as f k ∈ R28×28×1024, k denotes the channel
number (k = 1, 2, . . . , 1024). For the spatial location (x, y),
we sum the feature of (x, y) in f k . By utilizing GAP, the class
score can be denoted as

Sc =
∑
k

wkc
∑
x,y

f k (x, y) =
∑
x,y

∑
k

wkc f
k (x, y). (1)

wherewkc is the class activation weights of class c correspond-
ing to k− th channel feature map. For each individual class c,
the attention feature map can be obtained by using element-
wise multiplication operator as

Mc(x, y) =
∑
k

wck f
k (x, y). (2)

Here, attention feature map Mc(x, y) indicates the impor-
tance of the activation at spatial (x, y) leading to the

classification of an image to class c. Fig.3 shows an example
of discriminative feature regions for two classes. It shows
that the attention feature supervised by image-level anno-
tation can effectively and independently capture the related
visual regions for each class. In addition, since the atten-
tion features are learned individually for each category,
the attention values for the class-related regions can inde-
pendently assigned a higher value compared to the other
regions. As shown in the above figure, even the cat nears
to the cup, the attention feature is also constraint to the
local region and the discriminative regions are independent
with each other whose strength is enough to be accurately
classified.

FIGURE 3. Discriminative feature for single class by CAM: (a) attention
feature for a cat; (b) attention feature for a cup.
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B. COEXISTENCE FEATURE LEARNING FOR MULTI-CLASS
Attention feature maps encode rich discriminative informa-
tion for each class. Meanwhile, the spatial information of
attention feature can be localized in each class channel.
However, the attention feature for each class are still indepen-
dent to each other. Therefore, we try to learn the coexistence
relation from the weighted attention maps.

Given the attention feature maps Mc ∈ R28×28×C

(C is the total number of categories), it still carries the global
contextual information in different channels. Here, we adopt
a network which is similar as that in [29] to learn the global
class relation information as coexistence feature (which is
equivalent to global contextual information). It should be
noted that we apply the similar network to extract the features
as that in [29], but the input attention feature maps are differ-
ent which are explained in Section IV. In our work, our goal is
to extract the existence feature for each category and then to
construct the relation among different categories as the coex-
istence feature. Fig.4 illustrates the process to produce the
coexistence feature. It can be observed that C-dimensional
attention feature maps indeed combine features of all loca-
tions, meaning that the spatial relations among multi-class
can be accounted. Hence, we add two convolutional layers
to capture the spatial relations of multi-class with a 1×1×C
layer and a 1 × 1 × 512 layer. Then, another convolutional
layer which has 2048 kernels with size 28× 28× 1 is used to
learn the semantic relations among multi-class. The intuition
is that one class may only semantically relate to a small
number of other classes. Thereby, for the third convolution
layer, we group 2048 kernels, with each group of 4 kernels
corresponding to one feature channel. The 4 kernels in each
group convolve the same feature channel independently, and
the attention spatial regions of related classes are calculated
by different kernels in one group. At last, we can obtain a
2048−dimension feature vector to estimate the label confi-
dences ccrn by a fc layer. The objective loss function of the
proposed branch is a cross-entropy loss, as

Jloss(c, ccrn)=
C∑
l=1

cl log σ (clcrn)+(1− c
l
crn) log(1− σ (c

l
crn))

(3)

FIGURE 4. Detailed network of CRN. The attention feature maps firstly
pass two convolutional layers with a 1 × 1 × C layer and a 1 × 1 × 512
layer, then another convolutional layer which has 2048 kernels with
28 × 28 × 1 is utilized, which is grouped at 4 kernels to 1 channel.

where cl is the ground-truth label. Here, the trained features
denote the coexistence features.

C. OVERALL NETWORK AND TRAINING DETAILS
Based on the two branches, we can obtain two feature vec-
tors: one with 4096 dimensions from ROI pooling and 2 fc
layer in Faster R-CNN (denoted as FR), another with 2048
dimensions from the designed CRN (denoted asFC ).We con-
nect FR and FC as the final feature representation. Denote
g ∈ 0, 1, . . . ,C as the ground-truth class name, the loss
function on each ROI proposal for multiple tasks including
classification and bounding box regression is defined as

J = Jcls([FR,FC ])+ [g ≥ 1]Jreg(FR), (4)

where [FR,FC ] indicates connecting two features along the
channel axis.

We train the network in multiple steps. Firstly, the Faster
R-CNN is fine-tuned based on the pretrained ImageNet
model [31]. Secondly, we fix the convolutional layer to train
CAM with the classical cross-entropy classification loss.
Thirdly, we train CRN by fixing all other layers, and also
with the cross-entropy classification loss. Finally, the whole
network is jointly fine-tuned with (4).

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
In this part, the proposed framework is evaluated on
MS-COCO [11] and PASCAL VOC [12].1 For MS-COCO,
the training set is composed of 82, 783 images, and the con-
tained objects can be categorized into 80 classes, with about
2.9 object labels per image. We use the ‘‘trainval35k’’ set for
training and the ‘‘minival’’ set for testing. In the evaluation,
toolkits provided are used, and the main metrics (AP and AR)
are based on detection average precision/recall. For PASCAL
VOC 2007 and 2012, the datasets contain 9, 963 images and
22, 531 images, respectively, which are divided into train, val
and test subsets. We train our models on the union of VOC
2007 trainval and VOC 2012 trainval. The evaluation metrics
are Average Precision (AP) and mean of Average Precision
(mAP) complying with PASCAL challenge protocols.

We use TensorFlow to implement our model, which is built
on top of the open-source Faster RCNN implementation.2

During training of our model, each SGD mini-batch consists
of 256 randomly sampled object proposals from each ran-
domly chosen image. In each mini-batch, 25% of the object
proposals are selected as foreground that have Intersection
over Union (IoU) overlap with a ground-truth bounding box
of larger than 0.5 and the remaining object proposals that have
a maximum IoU with ground-truth in the interval [0.1, 0.5)
acting as negative training instances. For data augmentation,
images are horizontally flipped with a probability of 0.5.

1In fact, PASCAL dataset is not suitable to test context-based object recog-
nition as most of its images contain only a single object class [32], but for the
comparison between our framework and the other works, the performance is
also evaluated in our work.

2https://github.com/endernewton/tf-faster-rcnn
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TABLE 1. Performance evaluation on MS-COCO.

TABLE 2. Comparison of detection results on COCO between TF faster R-CNN V.S. proposed in different setups.

No other data augmentation is used. The learning rate starts
with 0.001 and decreases to 0.0001 after 350K iterations with
a total iteration number being 490K . The models are trained
based on a NVIDIA GeForce Titan X GPU (pascal) and Intel
Core i7-4930K CPU @ 3.40 GHz. For training, the average
training time for each iteration is about 0.29 second. For
testing, on average, the proposed approach processes one
image within 0.14 second (excluding object proposal time).

B. PERFORMANCE COMPARISONS ON MS-COCO
In order to verify the effectiveness of the proposed approach,
we compare our proposed approach (VGG-16 model and
ResNet-101 model) with Faster R-CNN [7], TF Faster
R-CNN [30] (VGG-16 model and ResNet-101 model) and
SRN [29] (VGG-16 model).3 As shown in Table.1, we evalu-
ate the object detection performance on MS-COCO based on
AP and AR metrics, with similar experimental setup. In this
experiment, Faster R-CNN [7] is totally trained for 240K
iterations with an initial learning rate of 0.003 and then after
80K iterations with 0.0003. For TF Faster R-CNN and our
proposed approach, the experiment setups are set similar as
Faster R-CNN. Particularly, we fix 1 image in a batch, and
TF Faster-RCNN use crop-and-resize instead of ROI pooling,
however, we use ROI pooling in our approach. As shown
the results in Table.1, our proposed approach achieves
the best performance both on AP and AR metrics. Faster
R-CNN [30] achieves 26.5% and 35.4% on AP performance
with VGG-16 and ResNet-101, respectively. As compari-
son, our proposed approach further improves the AP perfor-
mance to 26.9% and 36.7%. Compared to SRN [29], the AP
results of both approaches in object detection task are similar,
which are 26.8% and 26.9% in case of VGG-16, respectively.
However, it should be noted that on AP-S and AR-S per-
formance, the proposed approach achieves better results.
As shown in Fig. 5, our attention maps focus on all class-
related regions and each attention values are individually
assigned, hence, it is easy to find the existence feature for

3We adopt the SRN net based on TF Faster-RCNN as the description
in [29]. For simplify the training, the backbone is VGG-16.

FIGURE 5. Comparison of attention maps with two classes which are
obtained by SRN and our proposed approach. (a) SRN; (b) proposed.

small objects; For the attention maps of SRN, the spatial
regularization operator could weaken the class-related feature
of small objects.

In addition, to further verify the performance of the pro-
posed approach, different training and testing setups are
employed. Table.2 lists the comparison results between our
implemented models and TF-Faster R-CNN models [30]
in different experimental setups, which includes different
testing modes and iteration numbers, refer to [30]. In par-
ticular, the AP performance of our proposed approach is
27.6% compared to 26.5% of TF Faster R-CNN with iter-
ation number 490K , where the learning rate changes after
350K iteration times; for our proposed approachwith stepsize
500K and itersize 600K , AP performance is 27.7% which
is similar as the AP performance of TF Faster R-CNN with
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TABLE 3. Comparison of detection results on PASCAL VOC 2007 between faster R-CNN, ION V.S. proposed.

TABLE 4. Comparison of detection results on PASCAL VOC 2012 between faster R-CNN V.S. proposed.

stepsize 600K and itersize 790K . But for the AR perfor-
mance, our proposed approach even performs better than TF
Faster R-CNN. Compared to 37.5% AR-10 performance of
TF Faster R-CNN, that of our proposed approach is 39.2%
in case of our iteration time is only 600K . It means that the
proposed approach achieves to enhance the discriminative
region for classification. The results in Table.2 can also prove
that better AP is able to converge with more iterations.

C. PERFORMANCE COMPARISONS ON PASCAL VOC
As shown in Table.3, we also evaluate our proposed frame-
work compared with Faster R-CNN [7] and ION [16] method
which exploits information both inside and outside the region
of interest as global context information. The contextual
information outside the region of interest is integrated using
spatial RNN networks. Applying our approach described
above, we obtain a mAP of 75.0%, and the implement details
are similar as our previous setting. As comparisons, Faster
R-CNN is used as the ablation study which just includes one
sub-branch in our framework. The proposed network consists
of two sub-network, i.e. the state-of-the-art Faster R-CNN
network which is used to capture the local discriminative
feature, and the CRN network which is utilized to learn
the multi-class coexistence contextual feature. the Table.3
shows that 1.8% improvement of mAP can be obtained by
incorporating multi-class coexistence feature for detection
compared to the Faster R-CNN baseline. We can see that
0.4% improvement in mAP can be observed compared with
the general setting of ION work. This validates that the
proposed CRN network can provide useful contextual cues
for better object detection. The AP performance of some
classes obtained by the proposed approach, such as boat,
bus and cow etc., are lower than that by Faster R-CNN.
However, some classes such as bike, bottle, car and chair
etc, achieves a large incasement on AP performance. More-
over, an extra comparison experiment is constructed to verify
the performance on PASCAL VOC 2012. Table.4 further
shows the evaluation results on PASCAL VOC 20124

by using our proposed framework and Faster R-CNN,
respectively.

D. VISUALIZATION AND ANALYSIS
The effectiveness of our approach has been quantitatively
evaluated in Table.1 and Table.2, we visualize and ana-
lyze the learned coexistence feature from our CRN to

4http://host.robots.ox.ac.uk:8080/anonymous/LXOLXE.html

FIGURE 6. Comparison of detection results guided by conv 5-3 feature
and coexistence feature. (a) skateboard detection results of Faster R-CNN
(top) V.S. proposed (bottom); (b) boat detection results of Faster R-CNN
(top) V.S. proposed (bottom).

illustrate the capability. We observe that the learned attention
features pass two convolutional layers, the spatial rela-
tion and the coexistence relation would randomly distribute
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FIGURE 7. Comparison of detection results and the CAM features by Faster R-CNN and our proposed approach. (a) Detection
results: 32.7% on a person by Faster R-CNN (top) V.S. 86.6% by proposed (bottom), the corresponding features are shown in the
right; (b) Detection results: 70.0% on a cow and 89.7% on a dog by Faster R-CNN (top) V.S. 78.8% and 97.7% by proposed
(bottom), the corresponding features are shown in the right; (c) Detection results: 49.0% on a car and 86.4% on a person by Faster
R-CNN (top) V.S. 99.0% and 96.4% by proposed (bottom), the corresponding features are shown in the right.

different channels. In fact, each channel is corresponding to
one specific class. In Fig.6, we provide two such examples.
The left sub-figures in Fig.6(a) show the ‘‘skateboard’’ detec-
tion results from Faster R-CNN (top) and our proposed
(bottom), respectively. Since the local discriminative fea-
ture of ‘‘boat’’ is weak in conv 5-3, the detection confi-
dence is only 58.0%; however, with the assist of the CRN,
the coexistence feature can preserve the attention feature
of each class (as shown the right of Fig.6(a)) so that the
detection confidence increase to 98.9%. Similar results are
also shown in Fig.6(b), the left sub-figures show the ‘‘boat’’
detection results from Faster R-CNN (top) and out pro-
posed (bottom), respectively. The class activation maps are
also visualized, and the results prove that the enhanced
features are helpful to improve the performance of object
detection. The final detection scores are largely improved
in the given 3 examples, the detailed results are shown
in Fig.7.

V. CONCLUSION
In this paper, we propose to produce a coexistence feature to
model contextual relations of multi-class for object detection.
Firstly, the discriminative feature for each class in an image
are learned based on the attention mechanism. Secondly,
a CRN network is utilized to integrate the attention feature
of each class into coexistence feature vectors for multi-class
object detection. At last, the captured contextual information
is connected with the feature vectors from Faster R-CNN,
and be exploited to assist the classification of each bounding
box proposals. Experimental results prove the efficiency of
the designed network, and visualization of learned models
also shows the proposed approach could effectively capture
the coexistence relations of multi-class objects. In the future
work, we can implement our proposed CRN branch net-
work based on the other state-of-the-arts networks, such as
R-FCN [8], SSD [9] and YOLO [10], and ResNet, DenseNet
are also able to be utilized as backbone to further verify the
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performance of our proposed approach in the deeper network
and with longer training time.
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