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ABSTRACT Computer vision applications are rapidly gaining popularity in embedded systems, which
typically involve a difficult tradeoff between vision performance and energy consumption under a constraint
of real-time processing throughput. Recently, hardware (FPGA and ASIC-based) implementations have
emerged, which significantly improves the energy efficiency of vision computation. These implementations,
however, often involve intensive memory traffic that retains a significant portion of energy consumption at
the system level. To address this issue, we are the first researchers to present a lossy compression framework
to exploit the tradeoff between vision performance and memory traffic for input images. To meet various
requirements for memory access patterns in the vision system, a line-to-block format conversion is designed
for the framework. Differential pulse-code modulation-based gradient-oriented quantization is developed
as the lossy compression algorithm. We also present its hardware design that supports up to 12-scale
1080p@60fps real-time processing. For histogram of oriented gradient-based deformable part models on
VOC2007, the proposed framework achieves a 49.6%–60.5% memory traffic reduction at a detection rate
degradation of 0.05%–0.34%. For AlexNet on ImageNet, memory traffic reduction achieves up to 60.8%
with less than 0.61% classification rate degradation. Compared with the power consumption reduction from
memory traffic, the overhead involved for the proposed input image compression is less than 5%.

INDEX TERMS Computer vision, feature extraction, lossy compression, memory traffic reduction.

I. INTRODUCTION
Computer vision algorithms have been evolving rapidly and
gaining popularity in embedded devices, including smart-
phones and driver assistance systems [1]. More applications
are emerging, such as vision on wireless sensor networks.
Whereas many of these applications are battery powered
or even battery-less [2], [3], low energy consumption is
crucial for embedded systems with limited energy resources.
To ensure satisfactory vision performance, however, high-
complexity vision algorithms, such as deep neural networks,
together with high processing throughput in terms of res-
olution and frame rate are often desirable, which critically
challenges low-power and real-time implementations.

Recently, computer vision hardware implementations have
emerged to accelerate processing and reduce power consump-
tion on platforms including FPGA [4], ASIC [5], [6], and
a combination of the two [7]. The widely applied object

detection algorithm, using the histogram of oriented gradi-
ents (HOG) [8] descriptor in combination with a support
vector machine (SVM) for classification, has been imple-
mented in FPGA [4] and ASIC [6]. Hahnle et al. [4] pre-
sented real-time 18-scale pedestrian detection for 1080HD
video at 64fps. An energy-efficient ASIC implementation
was presented by Suleiman and Sze [6] that supported multi-
scale detection at 1080HD 60fps. For more complex deep
learning algorithms, hardware implementations of convolu-
tional neural networks (CNNs) have also been presented.
Chen et al. [10] introduced a CNN implementation in ASIC
that achieved a speedup of 450.65× over a GPU. In addition
to their hardware computation cores, all these implementa-
tions involve intensive memory traffic that composes a sig-
nificant portion of power consumption at the system level.

The energy efficiency of the computation can be
improved by replacing software processing with hardware.
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To further reduce power consumption, some implementations
also reduce computational complexity through a tradeoff
between hardware cost (power and area) and vision perfor-
mance. However, the power consumption for memory traffic
remains a bottleneck, in particular for external DRAM traffic.
Considering the HOG/SVM-based ASIC processor [6] as an
example, even if scale generation architecture was developed
to ensure full reuse in each input frame, reading these frames
on a DDR3-1333 interface corresponds to a power dissipa-
tion of 96.6 mW (see Section V). The power consumption
of memory traffic is clearly dominant compared with the
computation core of the detector that consumes 45.3 mW [6].
Hence, for energy-constrained embedded systems, it is essen-
tial to reduce memory traffic and its power consumption.

Memory traffic for computer vision applications mainly
contains three components: input images, feature maps, and
weights. For a system on chip (SoC) that targets a wider
range of application scenarios, input images are more likely
to be shared by multiple components, such as the vision pro-
cessor, video encoder, and image processors for denoising/
enhancement. The processing speed of these components can
also be different, which leads to various amounts of delay
between the sensor and components. As a result, a DRAM-
based buffer, which is sufficiently large to store several
frames of high-resolution video and is sharable through an
on-chip bus, can be a more practical choice for such a multi-
purpose SoC. In this case, the input images of the vision
processor can be obtained directly from sensors or read from
DRAM. For the former, a large on-chip SRAM is required
to buffer multiple lines of images, in particular for multi-
scale processing and high-resolution images. Thus, read-
ing from DRAM is a reasonable choice. Feature maps and
weights depend on different algorithms and implementations.
For hand-crafted feature-based vision and small-scale CNNs,
both models and intermediate results (e.g., feature maps and
weights) can be directly stored in the on-chip memory, which
does not involve memory traffic from external DRAM. As an
example, the common structure of ASIC implementations [6]
for HOG/SVM and [11] for scale-invariant feature transform
(SIFT)-based object detectors are shown in Fig. 1. Both
extracted HOG/SIFT feature maps and weights for detection

FIGURE 1. Memory traffic for the ASIC implementation of vision
applications.

are stored in on-chip SRAM. Thus, the input images become
dominant for external memory traffic.

We study the feasibility of reducing the memory traffic
of input images using compression (IIC). IIC performs an
on-line compression of images before storing them in the
DRAM, and the corresponding decompression after they are
fetched. We choose IIC from the memory traffic optimization
techniques based on the following reasons: 1) the design of
IIC is independent of computer vision algorithms; hence,
one IIC can be generally used in almost all algorithms; and
2) IIC can be flexibly combined with other optimizations for
memory traffic reduction, such as data caching, reusing [12],
and scale generation architecture [6].

IIC can be either lossless or lossy; however, we focus on
the latter to explore the maximummemory traffic reduction at
an acceptable detection/classification performance, although
a lossless IIC is also given as a baseline for comparison.
Vision-oriented lossy IIC has clear potential to benefit from
quantization optimized for a vision-related criterion (e.g.,
minimizing the error in gradients) rather than simply follow-
ing a conventional visual experience-oriented cost function,
such as the peak signal-to-noise ratio (PSNR).

For a complete IIC framework, its transparency to data
users should also be addressed. Unlike in video codec
systems [13] where re-compression for reference frames
(i.e. IIC) is exclusively used by the encoder or decoder core,
IIC in a vision application is most likely to be shared by
multiple components that access the image data in various
manners, including the vision core, image sensor, and/or
preprocessor. Therefore, it is preferable that the IIC algorithm
supports the extraction of compressed data in different scan-
ning orders.

The contributions of this work are summarized as follows:
1) a new tradeoff between vision accuracy drop and

power consumption reduction: whereas many previous
works studied the tradeoff between vision accuracy
and energy consumption of the vision core, this work
provides a new angle of view by replacing the latter
with memory traffic, which achieves better efficiency;

2) an efficient processing format conversion to support
flexible input/output scanning orders: compared with
the conventional line buffer solution, the proposed
approach reduces the buffer size by 72.9–91.3%;

3) a gradient-oriented lossy IIC algorithm: by optimizing
quantization toward the minimization of error of gradi-
ents rather than the conventional PSNR, the proposed
lossy IIC achieves 10%–15% better memory traffic
reduction at a comparative detection accuracy;

4) hardware implementation for the proposed lossy IIC: it
achieves a throughput of 1.6 Gpixels/s that can support
real-time detection at 1080HD 60fps with 12 image
scales for detecting various sizes of objects (e.g. [6]).
Relative to the saved memory power, the power over-
head introduced by IIC is less than 5%.

The remainder of this paper is organized as follows:
An overview of the proposed IIC framework is introduced
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FIGURE 2. Block diagram and data pattern of the proposed input image compression framework.

in Section II. In Section III, a new lossy compression for
computer vision and a low-cost processing format conversion
are presented. The compression algorithm is based on the
widely applied differential pulse-code modulation (DPCM)
prediction [14] and proposed gradient-oriented quantiza-
tion (GOQ). In Section IV, the hardware architecture for the
proposed IIC core is presented. Compression performance
and vision accuracy are evaluated and given in Section V
together with the hardware implementation results. Finally,
conclusions are drawn in Section VI.

II. OVERVIEW OF THE FRAMEWORK
A. DESIGN CHALLENGES
The design of a lossy IIC framework for computer vision
applications should address the following aspects:

1) For lossy IIC, it is important to determine a balance
amongmemory traffic, vision performance (e.g., detec-
tion or classification accuracy), and hardware cost.

2) IIC is expected to support multiple input/output scan-
ning orders as shown in Fig. 3. The input images pro-
vided by image sensors or preprocessors are typically
line-based, whereas block-based outputs are required
for feature extraction, such as HOG, in the vision core.
A line buffer is a straightforward solution, but the buffer
size is proportional to the image resolution, which leads
to a huge hardware cost.

3) Existing lossy image compression algorithms (e.g., for
video codec) are typically optimized for the human
visual experience rather than computer vision, which
focuses on minimizing the errors of the pixel map. For
vision algorithms, however, errors in the gradient map
are more important.

FIGURE 3. Typical scanning orders of input/output images.

In this work, a vision-oriented lossy IIC framework is
presented. In Section III.A, a lossy compression algorithm
to minimize the error in gradients rather than the PSNR is
introduced. To support flexible input/output scanning orders,
a low-cost processing format conversion is proposed in
Section III.B. Finally, experimental results, and a trade-off
between memory traffic and vision performance are given in
Section V.C.

B. LOSSY INPUT IMAGE COMPRESSION FRAMEWORK
As shown in Fig. 2, the proposed lossy IIC framework is com-
posed of a lossy IIC core and processing format conversion.
Corresponding to the compressor and decompressor in an IIC
core, the line-to-block conversion contains a line decomposi-
tion process and block recomposition process (including line
and column recomposition). The compression stage follows
the line-based scanning order, whereas the decompression
stage follows the block-based raster order.

Two types of blocks are related to this IIC work. One is
used in the design of the IIC algorithm and is defined as a
compression block. With a size of n×m, it breaks the data
dependency between blocks so that part of an image can be
obtained without reading all the previous lines. The compres-
sion block is further divided into n×1 sub-blocks for the line-
based compression process. The other is the block of k×k
in the vision processor, which is viewed as a vision block.
The two types of blocks serve different purposes and do not
have to be equal in size. For each process of compression and
conversion, the data patterns are also described in Fig. 2.

In the compression stage, line-based images from image
sensors or preprocessors are first divided into n×1 sub-
blocks. These sub-blocks are compressed and stored
line-by-line in the external memory. After the line-based
compressed data are retrieved from DRAM, they are con-
verted to n×k blocks by the line recomposition portion.
Then the block-based data are decompressed in the IIC core.
Finally, the restored 8-bit n×k image blocks are further con-
verted to k×k vision blocks and exported to feature extraction
in the vision core.

The block diagram of the IIC decompression process
between feature extraction and the DRAM interface is shown
in Fig. 4. The block request from feature extraction is first
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FIGURE 4. Basic structure of the IIC decompression process.

checked by buffers in the block recomposition. Unless all
coded sub-blocks in the requested block are stored in buffers,
the request for missing sub-blocks is sent to the DRAM
interface. During the compression process, sub-blocks are
compressed to a variable length, and then they are merged
and decomposed into words for storage. Thus, to read a sub-
block from external memory in the decompression process,
the address translation unit needs to translate the sub-block
requests into word requests for the DRAM interface. After
all sub-blocks are retrieved, they are merged into a block and
decompressed. Finally, the restored image blocks are returned
to feature extraction. To reduce DRAM access latency, FIFO
queues are inserted between the functional blocks to pipeline
the entire process.

Additionally, the proposed IIC framework is suitable for
both lossless and lossy compression. Lossless IICs are impor-
tant for systems with error propagation, such as video cod-
ing. Better compression performance can be achieved by
lossy IICs with a slight image quality loss. Without error
propagation and frame feedback, this small error does not
accumulate and become a severe problem. Because there is
no image feedback in computer vision applications, lossy
compression is preferred for a larger reduction in memory
traffic. In our work, DPCM prediction and GOQ lossy coding
are combined, as presented in the following section.

III. PROPOSED INPUT IMAGE COMPRESSION
A. LOSSY INPUT IMAGE COMPRESSION ALGORITHM
1) OVERALL PROCESSING FLOW OF THE IIC CORE
Some previous IIC studies have been conducted for video
codecs [14]–[19], [21] and display systems [20]. The com-
pression is typically composed of prediction and entropy
coding. Techniques for the prediction phase can be approx-
imately divided into two types: spatial [14]–[19] and
frequency [20], [21] domain prediction. Because of low
computational complexity, prediction in the spatial domain
is applied more frequently, including DPCM scanning [14],
and hierarchical average and copy [16]. For the entropy

coding phase, variable length coding is widely used, such
as Exp-Golomb Rice coding [18], significant bit trunca-
tion (SBT) [16], and semi-fixed length coding [14].

FIGURE 5. Overall processing flow of the proposed DPCM-based lossy
GOQ coding algorithm.

Following the basic structure of previous IICs [14]–[19],
we proposed a lossy IIC [22] which contains three portions,
as shown in Fig. 5: DPCMprediction, lossy GOQ coding, and
decoding. To improve compression performance, multi-mode
prediction [15] and prediction between several rows [16]
are applied. However, if prediction in the vertical direction
increases, then the hardware cost of processing format con-
version is higher. Therefore, it is a tradeoff between hardware
cost and compression performance.

FIGURE 6. DPCM prediction in one block.

To reduce the prediction between rows, DPCM scanning
is used, as shown in Fig. 6. Because all the sub-blocks are
processed in order and there is no random access, vertical
DPCM prediction within one block is performed to further
reduce the presenting bits. The top-left pixel in a block retains
its original 8-bit value (F). In Fig. 5, p0, p1, p2, and p3 are the
original 8-bit values of the input image inside a sub-block.
After prediction, the obtained residuals are r0, r1, r2, and r3.
d0, d1, d2, and d3 are the decoded values of corresponding
pixels. d ′ is the decoded value of p0’s upper pixel.
In the lossy coding stage, a GOQ coding method is intro-

duced for vision applications. Residuals from the DPCM
prediction are first quantized as q0, q1, q2, and q3. Based
on the variable length coding of SBT [16], these quantized
residuals are further coded to be the same length, and an
overhead of coding mode (CM) is added to indicate the coded
bit length (see Section III.A.2).

In the lossy decoding portion, the decoded pixels’ values
(d0, d1, d2, and d3) are calculated for DPCM prediction. This
can reduce the propagation error caused by prediction with
the original pixels and lossy coding. Fig. 7 shows an example
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FIGURE 7. Comparison between the prediction, and original pixel and decoded pixel values: (a)(b) restored pixel values with the original and decoded
pixels, respectively; (c) gradient magnitude comparison in the horizontal direction.

of prediction with the original and restored pixels. Gradient
information plays a more important role than the pixel values
in vision algorithms; hence, the gradient magnitude in the
horizontal direction is displayed in Fig. 7c. Compared with
prediction with the original pixels, the decoded pixels achieve
much smaller errors in both pixel and gradient maps.

Finally, the 8-bit top-left pixel, CM, and coded residuals
are merged as a compressed bit stream for the output (viewed
as S in Section III.B). This is stored in the external DRAM
instead of the original 8-bit image.

2) GRADIENT-ORIENTED QUANTIZATION CODING
GOQ lossy coding involves a GOQ and variable length cod-
ing. The residuals obtained from DPCM prediction are first
quantized based on the variable gradient-oriented quantiza-
tion coefficients (QC). Then a simple variable length coding
of SBT [16] is performed.

Linear quantization is widely used in conventional lossy
coding. It is efficient for applications evaluated by the visual
experience, such as video coding. Video coding is used for
the storage or transmission of video sequences; hence, minute
differences between neighboring pixels cannot be noticed by
human eyes and can be ignored for compression. However,
vision algorithms focus more on the gradient-based infor-
mation, that is the difference between values of neighboring
pixels. Hence, even small differences should be retained to
guarantee the accuracy of the vision algorithm, and GOQ
should be used instead of linear quantization.

Fig. 8 shows an example of different influences of linear
residual quantization on video coding and vision algorithm.
For video coding, the restored block is obtained by adding
residuals to the pixel value used for prediction. This small
difference cannot be detected by human eyes, so linear quan-
tization is efficient for applications evaluated by a visual
experience. However, for vision algorithms, both gradient
magnitudes and directions change. Some of them are even
zero after linear quantization, which decreases the detection
performance of vision algorithms. Hence, conventional linear
quantization is not suitable for vision applications.

To reduce the effect of quantization on the gradient-based
feature, smaller differences between the neighboring pixels
should be retained. Therefore, residuals with smaller values
should be quantized by smaller QC. Based on this principle,

FIGURE 8. Differences between video coding and gradient-based feature
extraction. (for linear quantization, all residuals are quantized by four.)

an example of the GOQ for vision algorithms is shown
in Table 1.

TABLE 1. Example of gradient-oriented quantization.

For variable length coding, the basic concept of SBT [16]
coding is to present the residual with as many truncated
significant bits as possible. All the residuals within a sub-
block are coded with the same bit length. Based on the range
of quantized residuals (q) in a sub-block, a CM is determined.
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TABLE 2. Variable length coding for lossy GOQ coding.

Table 2 shows the relationship between the CM, range of the
quantized residual, and range of the residual based on QC,
as shown in Table 1. If the range of quantized residuals is
larger than ±16, that is, in the CM G, all the original pixels
in this sub-block are quantized by eight instead of residuals.

The proposed GOQ lossy coding is tested on the
VOC2007 trainval dataset (detailed experimental conditions
are presented in Section V). The probabilities of each CM are
shown in Table 2. According to Huffman coding, fewer bits
are used to present a CM with a large probability.

Additionally, both the GOQ in Table 1 and linear quantiza-
tion by four are evaluated on VOC2007. The average PSNR
of both the restored pixel map and gradient map are shown
in Table 3. For similar pixel PSNRs (0.2 dB difference),
the proposed GOQ coding achieves a much higher gradient
PSNR. Its gradient PSNR improves by 1.05dB, which implies
that the average gradient error of GOQ reduces by 11.2x com-
pared with linear quantization. The detailed experimental
results and analysis of the detection/classification accuracy
are presented in Section V.C.

TABLE 3. Average PSNR comparison between linear and
gradient-oriented quantization (GOQ).

B. PROCESSING FORMAT CONVERSION
To support multiple input/output scanning orders, a low-cost
format conversion is located between the external memory
and IIC core. Together with the required data formats in each
processing step, the format conversion is shown in Fig. 9,
which consistes of line decomposition and block recompo-
sition.

Flexible format conversion is added to address the follow-
ing three issues: 1) After compression, sub-block (n×1) is
encoded to a variable length, so the line decomposition por-
tion is added to map them into fixed-length words for storage.
2) Because of the variable compressed size, it is difficult to

FIGURE 9. Overview of the required data format in each processing step
of the IIC framework and processing format conversion.

locate the required compressed sub-block in DRAM during
decompression. Thus, without causing too much overhead,
efficient address generation is implemented. 3) To convert the
line-based input to block-based output (k×k), block recom-
position is applied, which divides this process into two steps:
from n×1 to n×k for decompression and then to k×k for
feature extraction.

1) LINE DECOMPOSITION
For one line of the input image, line decomposition and the
proposed address generation are described in Fig. 10. The
original image is first divided into n×1 sub-blocks (S) and
compressed into a variable length. These data are thenmerged
into a bit stream. Finally, the stream is split into 256-bit works
and stored in DRAM.

FIGURE 10. Line decomposition and address generation for one line of
the input image. If one sub-block is stored in two words, then it is
counted in the second.

Because of the variable compressed size and merged
storage of the sub-blocks (S), addresses for each sub-block
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need to be stored. To reduce redundant data access, these
addresses can be replaced by the start address of each
line and length of each compressed sub-block, as in [14].
However, in this work, the sub-block size is small (e.g. 4×1),
so it leads to a large number of lengths to be stored. Thus,
how to reduce this huge overhead is a problem. For vision
applications, all sub-blocks/blocks are written/read in a fixed
line/block-based raster order. Hence, instead of sub-blocks’
addresses or lengths, the number of sub-blocks (N ) in one
256-bit word is recorded. The exact length can be obtained
during decoding, which does not affect the decompression of
the following block.

According to the lossy IIC in Section III.A, the length of
the compressed sub-blocks (S) ranges from 5 bits to 27 bits.
For 256-bit word access, N is less than 52, so 6 bits are
sufficient for presenting each N. Moreover, because of the
prediction in Fig. 6, a line buffer that is a quarter of the width
of the image resolution (when n=4) is required to store the
left-upper pixel for prediction in the next line.

2) BLOCK RECOMPOSITION
As shown in Fig. 9, block recomposition consists of a line
(from line-based n×1 to block-based n×k) and column (from
n×k to k×k) recomposition.

Two buffers with the total size of 3k words are required in
line recomposition, including a k-word buffer for storing N
from k lines and a 2k-word buffer for storing two neighbor-
ing S words from each line. If any of N/S words in one line
is empty (i.e., all decompressed), the request to read the next
N/S word from the same line is sent to DRAM. Because of
a fixed starting address of each line, the address of the next
S word is only related to the position of the N value in one
N word. The request to read an N word is always prior to S
words. Thus, before reading an S word, its related N word is
always retrieved and ready, and requests for N/S words could
be sent contiguously.

Because all n×k blocks are decoded in fixed raster order,
column recomposition is achieved by a buffer with the size of
2k2 bytes to store two adjacent k×k reconstructed blocks.

IV. HARDWARE IMPLEMENTATION
The lossy IIC hardware implementation consists of a
compress core and decompress core. Comparedwith previous
lossless works [14]–[16], the main difference is the addition
of GOQ. Because the quantization in GOQ coding is not two-
based, it can be achieved by just shifting. Hence, several look-
up tables (LUTs) are designed to match residuals, quantized
residuals, and reconstructed residuals.

Fig. 11 shows a two-stage pipelined architecture for the
compress core. One sub-block is processed every cycle.
In stage 1, pixels in a block are processed in order from
p0 to p1. Pixel pi is first predicted by its restored neighboring
pixels value di−1. Then the obtained residual is quantized
to be qi and decoded to calculate the restored pixel value
according to LUTrd . In stage 2, the CM is determined based
on the range of quantized residuals qi, as shown in Table 2.

FIGURE 11. Two-stage pipelined compress core architecture.

The CM is coded as per LUTCM presented in Table 2, and
merged with p0 and coded residuals ci as a bit stream output.
For decompression, a two-stage pipelined architecture is

designed, as shown in Fig. 12. Two sub-blocks are decoded
every cycle. In stage 1, the compressed image data is first
shifted and split into CM and residuals of one sub-block
(Subr ). Then, in stage 2, the merged residuals (Subr ) are fur-
ther split into four 5-bit quantized residuals qi. Using LUTird ,
reconstructed residuals are obtained and used to calculate the
restored pixel value by inverse DPCM scanning.

The detailed input and output information of LUTs for
residual quantization and CM coding are shown in Table 4.
These LUTs are designed based on the QC in Table 1
and CM coding in Table 2. Because residual quantization
and reconstruction are achieved using LUTs, quantization
by different QCs can be easily implemented by replacing
LUTrd and LUTird .

TABLE 4. Look-up table for the compress and decompress cores.

One cycle is required to compress a line-based sub-block,
whereas it takes four cycles to decompress one 8×4 block.
To read a 1080p@60fps video sequence, the required
throughput of the decompressor is 186.6 Msamples/s under
4:2:0 sampling. The throughput of the decompress core can
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FIGURE 12. Two-stage pipelined decompress core architecture, where ‘‘BS’’ denotes
‘‘barrel shifter’’.

reach up to 2.4 Gsamples/s at 300MHz, that is, 12 times more
than the requirement of real-time 1080HD video. Hence,
the proposed decompress core can support a 12-scale detec-
tion core even without multi-scale optimization, such as [6].

V. EXPERIMENTAL RESULTS
To evaluate the efficiency of the proposed lossy IIC
framework, we test its compression performance on the
VOC2007 [23] and ImageNet ILSVRC-2012 [24] validation
datasets. Because the image quality decreases because of
lossy compression, the detection performance of the restored
images is tested. Among the best available vision algorithms,
we select two widely used algorithms for the two tasks of
detection and classification. One is HOG-based deformable
part models (DPM) [25] for detection. The other algorithm is
CNNwith themodel of AlexNet.Moreover, another detection
algorithm of histogram of sparse codes [28] is also tested to
verify the feasibility of the non-gradient-based hand-crafted
feature. A tradeoff between compression and vision perfor-
mance is then presented. Finally, the hardware implementa-
tion results are presented together with the analysis of power
consumption.

A. COMPRESSION PERFORMANCE
The required memory traffic for writing or reading input
images is proportional to the data size of compressed images.
Hence, the data reduction ratio (DRR) is used to evaluate
compression performance, which is the percentage of the
reduced data size compared with the original data size.

DRR = (1−
Compressed data size
Original data size

)× 100% (1)

All 4,952 images from 20 object categories for the
VOC2007 test are used. Because of the large size of Ima-
geNet, we test the first 10,000 images from its validation
dataset. Moreover, the compression performance of the
lossless SBT coding [16] is also simulated for comparison.

Table 5 shows the compression performance of the lossless
SBT and proposed lossy GOQ coding based on QC shown
in Table 1. The DRRs of the proposed lossy IIC are 49.63%
and 50.56% for the VOC2007 test and ImageNet2012 valida-
tion dataset, respectively. Compared with lossless SBT com-
pression, the proposed lossy GOQ coding further improves
the DRR by 28.7% and 29.2% on average for VOC2007 and
ImageNet, respectively.

TABLE 5. Average DRR, CR, and PSNR of the pixel map.

B. DETECTION PERFORMANCE
To estimate the influence of image quality loss on the detec-
tion performance of computer vision algorithms, the restored
images are further detected. For the HOG-based DPM detec-
tion, we use the model trained on the VOC2007 dataset
and provided by [26]. The detailed detection average preci-
sions (APs) are shown in Table 6. Compared with the original
image, the mean APs (MAPs) of the proposed lossy GOQ
coding decreases by 0.135% without context optimization.
TheMAPs are slightly improved by the restored lossy images
with context optimization [26]. Detection with the restored
lossy images results in almost no loss in MAPs.

C. TRADEOFF BETWEEN COMPRESSION AND VISION
PERFORMANCE
The performance of compression and vision is influenced by
the QC in lossy GOQ coding (described in Section III.A).
With a large quantization value, memory traffic and power
dissipation are less, but vision accuracy decreases consider-
ably. Therefore, a tradeoff between compression and vision
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TABLE 6. Detection average precision (AP, %) for the VOC2007 test using
the HOG-based deformable part model [26].

performance is presented based on the experimental results
of widely applied HOG-based DPM [26], Caffe [27] and
histogram of sparse codes [28]. For the battery-less case,
the acceptable detection/classification accuracy drop can be
1-10% to save more power, whereas it is less than 0.1-1% for
the full-battery case.

1) HOG-BASED DPM ON VOC2007
According to the QC in Table 7, all the test images from
VOC2007 are compressed and decompressed by the proposed
lossy GOQ coding. As a comparison, the linear quantization

TABLE 7. Quantization coefficients (QC) for each lossy compression
version (v0 − v2) and coding mode (CM).

that involves quantizing residuals in lossless DPCM-based
SBT by 2n (SBT_nbit) is estimated. Furthermore, the pro-
posed IIC is compared with four previous lossless/lossy IICs
[16], [17], [19] and directly discarding the trailing n bits of
the original images (divided by 2n, Image_nbit).
The relationship between the compression performance of

the DRR and detection performance of the MAP are shown
in Fig. 13. Compared with linear quantization (SBT_nbit) and
previous lossy works (Song et al. [17] and Gupte et al. [19]),
the detection accuracy of the proposed GOQ IIC is always
better. Although the lossless IIC [18] could achieve a DRR
of 50.24% without a decrease in accuracy, its high complex-
ity and data dependency make it difficult to support high-
throughput DRAMaccess. To obtain a similar DRR, theMAP
degradation of the proposed IIC is less than 0.135%.

FIGURE 13. Comparison results of the DRR and MAP (tested in DPM).

The PSNR is widely used as the cost function to effi-
ciently evaluate image quality based on a visual experience.
However, it is not very appropriate for computer vision appli-
cations that are based on detection accuracy. With similar
PSNR values (a difference of 0.0056dB), the difference in
the MAP can be up to 0.79%. This difference is even larger
than the decrease in the MAP caused by lossy GOQ compres-
sion. Therefore, detection performance cannot be estimated
directly from the PSNR values of the input images.

2) AlexNet on ImageNet2012
In CNN-based classification, the AlexNet Caffe model
trained on ImageNet2012 and provided by [27] is used in
our experiments. Because a fixed-point arithmetic operation
is used in some real ASIC CNN implementations, such
as [30], we evaluate the classification accuracies of the top-1
and top-5 based on a 16-bit fixed-point weight model.
The results are shown in Fig. 14. When the DRR ranges
from 50.56% to 61.22%, the corresponding top-1 accuracies
decrease by 0.28%–0.61%, whereas there is almost no loss in
the top five accuracies. For standard floating-point weights,
the top one accuracy is 57.3%, which is 4.4% greater than the
16-bit fixed-point case. Compared with the accuracy degra-
dation from fixed-point processing, the effect of lossy IIC on
input images is much lower. Compared with previous works,
the proposed GOQ achieves slightly better top-1 and top-5
accuracies. However, this improvement is not as large as that
for gradient-based feature extraction, such as HOG.
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FIGURE 14. DRR and classification accuracy of the top-1 and top-5 on a
16-bit fixed-point AlexNet weight model. (Fractional length is 8 bits.
Without using the lossy compression, the top-1 and top-5 accuracies
of 16-bit fixed-point AlexNet model are 52.9 % and 76.4%, respectively.)

3) HISTOGRAM OF SPARSE CODES ON VOC2007
Additionally to HOG-based DPM in Section V.C.1,
we also test another hand-crafted feature of histogram
of sparse codes [28], that is, the non-gradient. For the
VOC2007 dataset, the pretrained part model in [28] is used
and the MAP results for different DRRs are shown in Fig. 15.
With lossy IICs, there is almost no degradation in the MAP.
Even if the proposed GOQ is not always better than the linear
quantization (SBT_nbit), the maximum difference for similar
DRRs is only 0.125%, which is a slight fluctuation. Thus,
although the proposed GOQ is aimed at preserving gradients,
it is still as efficient for vision algorithms with non-gradient
features.

FIGURE 15. Comparison result of GOQ and linear quantization (SBT_nbit),
which is tested in histogram of sparse codes [28].

D. RESULTS OF THE HARDWARE IMPLEMENTATION
1) PROCESSING FORMAT CONVERSION
The line buffer is a straightforward and widely applied
solution to convert the scanning order of an image. To obtain
a k×k block from a line-based scanning image, the corre-
sponding k lines of the image should be stored on-chip. Thus,
we compare the hardware cost of the proposed line-to-block
conversion with a line buffer. Compared with the overall on-
chip memory, a proportion of the input line buffer is related
to input image resolution and processing scales. It is larger
for higher resolution and more scales. For example, in the
12-scale HOG detector [6] for 1080HD video, although sev-
eral optimizations have been proposed to reduce the size of
the input line buffer, the latter still occupies 25.3% of the
total on-chip memory. Even if the input line buffer is not the
dominant fraction, saving it with a sufficiently small overhead
is still valuable.

Table 8 shows the comparison of the required buffer size.
The ratio is calculated as the buffer size of the line buffer
divided by that of the proposed conversion. It becomes larger
as the resolution increases from low to high. Therefore,
the proposed conversion is suitable for high-resolution
images that are difficult for the line buffer.

TABLE 8. Required buffer size during conversion (bytes).

2) LOSSY INPUT IMAGE COMPRESSION
Table 9 shows the hardware implementation results of the
proposed IIC core. The compress core achieves a throughput
of 800 Mpixels/s at 300 MHz under a 4:2:0 video sam-
pling, and the decompresser is designed with a throughput
of 1.6 Gpixels/s. This throughput can support up to 12-scale
1080p@60fps video for real-time detection, which is suffi-
cient to support all previous vision cores.

3) ANALYSIS OF RESOURCE CONSUMPTION
The IIC framework reduces power dissipation by reducing
the amount of external memory traffic; however, it also con-
sumes power as an additional portion to the vision core. The
power presented in Table 9 is estimated with the Synopsys
Design Compiler from the switching activity statistics from
the post-synthesis simulation. For the proposed IIC core, the
total power dissipation is the sum of memory traffic and the
IIC core.

When images are read with the IIC core, power is
consumed by memory traffic and the decompress core.
According to DRRs of different quantization versions
depicted in Fig. 13, Fig. 16 shows an example of the total
power dissipation for reading a 1080p@60fps video. Under
4:2:0 sampling, the required throughput for reading 1080p
video is 186.6 MB/s. Without optimization, the power con-
sumption is 96.6 mW (186.6 MB/s×517.63 mW/GB/s [31]).
With the proposed IIC, the required power for reading can be
reduced by 46.9%–57.8%. The overhead of decompress core
is approximately 5% compared with the power reduction by
the IIC core.

Based on an HOG-based DPM detector [32], the analysis
of power dissipation in a system is presented in Table 10.
Because the detector is implemented on older 65 nm CMOS
technology, the DDR2 interface is considered as matching
technology for DRAM. To read a 1080p@30fps video,
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TABLE 9. Comparison of hardware implementations.

FIGURE 16. Simulated result of the consumed power related to memory
traffic. (DDR3-1333 interface [35]. For v0-v2, only the quantization
coefficients are different as shown in Table 7; thus the power of the
IIC core is the same.)

TABLE 10. Analysis of power dissipation for the detection based on DPM.

90.7 mW (93.3 MB/s×971.51 mW/GB/s [31]) is consumed.
For the detection process that includes a decompress core and
detector, 33.0% of power can be reduced by the proposed
lossy IIC. For the entire system, such as that in Fig. 2, which
contains processes for both reading and writing images,
41.3% of the total power dissipation is saved.

Using the proposed IIC framework, although the system-
level power dissipation can be reduced, the total area (i.e.
gate count) increases because of the additional compression.
However, as shown in Table 11, the increase is less than 3% of

detection systems. Compared with the saved power of 41.3%,
the increased gate count is acceptable.

TABLE 11. Analysis of consumed gates.

In addition to the above analysis of power dissipation in
the detection process, we also provide a similar analysis of
the classification of AlexNet. In the CNN accelerator [37],
AlexNet consumes 450 mW on 65 nm CMOS technology.
Hence, the DDR2 interface is considered as the matching
technology for DRAM, and 45 images are read from DRAM
per second. The power consumption for the classification
process is shown in Table 12, which includes the power of
the classification core and reading input images fromDRAM.
The resolution of input images for AlexNet is 227×227.
However, for a system on chip, input images are typically
shared by multiple components, such as the object detector,
image classifier, and video encoder; hence, images from the

TABLE 12. Analysis of power dissipation for the classification with
AlexNet.
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sensor are stored directly in DRAM without resizing for a
certain component. For the classification process, the res-
olution of input images depends on the sensor, and five
typical resolutions are considered in Table 12, including
the minimum/maximum resolution in ImageNet (80×60,
4288×2848), input resolution of AlexNet (227×227), and
two typical resolutions of sensor (720p, 1080p). Except for
the minimum resolution of 80×60, the other resolutions can
achieve 0.3–44.5% power reduction for the classification
process. For the entire system, such as that shown in Fig. 2,
the power reduction with the proposed IIC is 0.7–50%.

VI. CONCLUSION
To reduce power dissipation in embedded systems for com-
puter vision, we present a lossy compression framework.
By compressing the input images, memory traffic from the
external DRAM substantially decreases, thereby reducing
power consumption. Because of the application of lossy
compression, a tradeoff between the detection/classification
accuracy and compression performance is explored according
to experimental results on the widely accepted HOG-based
DPM, AlexNet and histogram of sparse codes.

In our future studies, this framework will be extended to
improve energy efficiency for accessing feature maps and
weights. Moreover, exploring an efficient input image com-
pression algorithm remains vital work, such as compression
in the frequency domain. Because of the complexity of the
transformation, a tradeoff between the overhead caused by
compression and energy consumption may be involved.

APPENDIX
For clarity, abbreviations that are frequently used in this paper
are summarized in Table 13.

TABLE 13. Summary of abbreviations.
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