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ABSTRACT Networked robotics involves a collection of robots working together to perform complex tasks,
such as search and rescue task in disaster management. Because such tasks are beyond the capacity of a
single powerful robot, networked robotics has been widely researched. However, the modes of cooperation
in traditional networked robotics have been restricted by the inherent physical constraint that all computations
are performed in the robotic network, with knowledge sharing being limited to the collective storage
in the network. Cloud robotics, which allows robots to benefit from the rich storage, computation, and
communication resources of modern data centers, is widely accepted as a promising approach to efficient
robot cooperation in applications, such as disaster management. In this paper, we study robotic cooperation
in cloud robotics. We first give a conceptual view of the nature of this cooperation. We then propose three
novel robotic cooperation frameworks for cloud robotics: robotic knowledge sharing cooperation, robotic
physical-task cooperation, and robotic computation task cooperation. Finally, we identify several critical
challenges, and illustrate the potential benefits of robotic cooperation in cloud robotics.

INDEX TERMS Cloud robotics, multi-robot system, robot cooperation, quality of service.

I. INTRODUCTION
Networked robotics involves a collection of robots working
together to perform complex tasks that are beyond the capac-
ity of a single powerful robot. Because there are many
such tasks, networked robotics has been widely researched.
In particular, the task of disaster management has become a
crucial and urgent research issue [1]–[4]. As one example,
Figure 1 shows the networked robotics system that was used
at the Fukushima Daiichi nuclear power plant (NPP) after
the Great East Japan earthquake disaster [1]. It comprised
one relay station car, one operation car, one bulldozer, two
dump trucks, two backhoes, and seven camera cars. It was
used to remove debris in the interior and exterior areas of
the nuclear reactor buildings, to inspect buildings, and also to
monitor irradiation levels. Another example is the collabora-
tive mapping of a building damaged by the Great East Japan
earthquake at Tohoku university in Sendai city that used a
team of networked ground and aerial robots [4]. However,
although robots in such a robotic network could share their
knowledge and computation workloads with other robots in
the same network, the overall effectiveness of the robotic
network is still limited to storage space, the processing power,

FIGURE 1. A networked robotics system to remove debris at the
Fukushima Daiichi nuclear power plant [1].

and number and type of sensors and camera in the robots
themselves [5]. That is, the robotic cooperation in such a
robotic network is restricted by the inherent physical con-
straints of the collective computation and knowledge sharing
capacity of the computation and storage resources of the
robotic network.
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To overcome the limitations of simple networked robotics,
cloud robotics [6], which leverages emerging cloud-
computing technologies to extend networked robotics to
include the elastic resources of a cloud computing infras-
tructure, is now widely accepted as a promising approach
to improve efficiency in networked robotics. The academic
research project RoboEarth [7] has been developed as a giant
cloud-based database where various robots can share infor-
mation about environments, tasks and objects. The data set is
generated by both humans and robots in a machine-readable
format that includes maps for navigation, object-recognition
models, task knowledge, and software components. Another
academic research project is RoboBrain [8], which is a
large-scale knowledge engine deployed in the cloud that
learns and shares representations of knowledge for various
robots to enable a variety of tasks. Its knowledge in a graph
structure derives from multiple sources. These include the
physical interactions that robots encounter while performing
diverse tasks (perception, natural language understanding,
planning, and control), and large-scale knowledge bases
learned from the Internet. As an industrial example of
cloud robotics, Google’s self-driving cars [9] are one type
of cloud-connected vehicles. The autonomous cars access
data from Google Maps and images stored in the cloud
computing platform to recognize their surroundings (such
as road and weather conditions), collect information about
road and traffic conditions using cameras, radar, lidar, and
a wide range of vehicle sensors, and send the preprocessed
information back to the cloud. Another industrial exam-
ple is Amazon’s Kiva Systems robots [10] for warehouse
logistics, which interact with central servers to coordi-
nate routing and update the shared information about their
environment. However, most current research is focusing
on either knowledgebase building and database construc-
tion or computation offloading for parallel robotic-task pro-
cessing. There has been no study of the robot-cooperation
problem in cloud robotics for complex tasks such as disaster
management.

In this article, we study the application of cloud-robotics
concepts to robotic cooperation in complex tasks such as
disaster management. To the best of our knowledge, this is the
first attempt to study the robot cooperation problem in cloud
robotics. We first give a conceptual view of cloud robotics
for robot cooperation. We then propose three novel robotic
cooperation frameworks for cloud robotics: robotic knowl-
edge sharing cooperation, robotic physical-task cooperation,
and robotic computation task cooperation. Finally, we iden-
tify several critical challenges, including quality of service
issues, communication issues, safety issues, heterogeneity,
and security issues, and illustrate the potential benefits of
robotic cooperation in cloud robotics.

The remainder of this paper is organized as follows.
In Section 2, we introduce amotivating example. In Section 3,
we discuss robotic cooperation architecture. In Section 4,
we propose three novel robotic cooperation frameworks.
The potential benefits and challenges of robotic cooperation

in cloud robotics are discussed in Section 5, with Section 6
concluding the article.

II. MOTIVATING EXAMPLE: DISASTER MANAGEMENT
Consider the following scenario: after a large earthquake
disaster, one of the most urgent tasks is to search for and
rescue survivors in the disaster site within the critical first
48 hours. However, the mechanics of how large structures
collapse in a disaster site often prevent rescue workers
(however heroic) from searching buildings because of the
unacceptable personal risk from further collapse. Moreover,
earthquakes often leave damage so widespread that those
injured can often be inaccessible by search and rescue teams.
An alternative is to use search-and-rescue robots, which have
already been proven to play a vital role in getting life-
saving aid to those in need [1], [3]. The benefits of rescue
robots include reduced fatigue, reduced personnel require-
ments, and access to human-unreachable areas. For robots
to work well in disaster sites, they must satisfy two main
requirements. First, they must be well-tested and robust for
tasks in disaster sites. Robots that have demonstrated their
utility include small unmanned aerial vehicles such as robotic
helicopters and quadcopters, ‘‘snake’’ robots capable of slith-
ering through rubble and entering collapsed buildings, and
tethered unmanned ground vehicles such as sensor-packed
wheeled robots. The second main requirement is that they
must be able to move about without impacting on the physical
environment, while sensing the surrounding environment in
their search for survivors. For example, aerial vehicles could
be used for the inspection of the lower altitude checks and
upper levels of buildings with onboard cameras and lasers.
Snake robots could be sent to collapsed buildings to search
for survivors inside with sound sensors, cameras, and lasers.
Unmanned ground vehicles could carry cameras in addition to
infrared and carbon-dioxide sensors for searching survivors
trapped under collapsed buildings.

However, to improve the efficiency of search-and-rescue
robot teams, they should be able to mutually cooperate within
the disaster site. For example, aerial vehicles could provide
3D maps to snake robots and unmanned ground vehicles
for navigation, unmanned ground vehicles could be used to
remove debris to enable snake robots to move safely and
quickly, and snake robots and unmanned ground vehicles
should work cooperatively to search for survivors by sharing
information from different regions.

The workflow shown in Figure 2 explains how aerial vehi-
cles can provide 3D maps to snake robots and unmanned

FIGURE 2. A streaming workflow for map construction.
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ground vehicles. First, the aerial vehicles acquire picture data
in the disaster sites where the snake robots and unmanned
ground vehicles are moving. Next, algorithms process the
picture data to generate the 3DMap. These processes include
FeatureDetection, Segmentation, Matching, ObjectRotation,
3DReconstruction, PositionUnderstand, and MapCreation.
If the algorithms require too much computation power, they
could be distributed and executed not only in aerial vehicles,
but also in snake robots, unmanned ground vehicles, or the
remote cloud. Finally, after the data processing, the 3D Map
is sent to the snake robots and unmanned ground vehicles to
aid their navigation.

Networked robotics systems have become an active
research topic in the recent years. These research projects
focus on having a number of robots and cooperating to com-
plete the required task(s). Through robotic cooperation, some
goals that were impossible for a single powerful robot to
achieve become attainable. A networked robot can share its
knowledge and computational workloads with other neighbor
robots in the same network, but the overall effectiveness
of the robotic network is constrained by its overall storage
space, processing power, and number and type of sensors in
the network [5], [11]–[13]. Data-processing latency would
also affect the quality of robotic cooperation. For example,
although aerial vehicles can provide 3D maps to snake robots
and unmanned ground vehicles for navigation, if the map
construction takes too long, the snake robots and unmanned
ground vehicles may not be able to work effectively.

Networked robotics is ultimately a human-oriented system
in which all operations are controlled remotely by human
operators. However, a lack of operators was one of the most
significant problems during the Fukushima accident. There
were only about 20 skilled operators for unmanned con-
struction machines throughout Japan, and it was impossible
to place all the skilled operators at the Fukushima Daiichi
NPP [1]. Moreover, earthquake disaster mitigation requires
rapid and efficient search-and-rescue operations. Robotic
teams have only 48 hours to search trapped survivors, after
which the likelihood of finding alive victims is very small [2].
To mitigate these weaknesses, the use of cloud robotics
is considered to offer improvements in robotic cooperation
by extending the available computation and communication
capacities. Therefore, in the following sections, we discuss
robotic cooperation in cloud robotics.

III. CLOUD ROBOTICS COOPERATION ARCHITECTURE
A. SYSTEM OVERVIEW
Fig. 3 illustrates a generic architecture for cloud robotics,
comprising a set of robot clusters and a set of infrastructure-
based clouds. A robot cluster is formed by a dynamic set
of neighboring robots that work cooperatively to accomplish
complex tasks. As a robot moves from one environment to
another, it can seamlessly join a different cluster of robots
and can still benefit from cloud resources. A robot can com-
municate with its peers using messages transmitted over an
ad-hoc wireless network via a local wireless network

FIGURE 3. A conceptual view of cloud robotics: robots nearby are interconnected as robot cluster and also connected to a remote cloud.
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interface (e.g., Bluetooth, 3G,WIMAX, LTE,WiFi, ZigBee).
The link between any two peer robots might be direct or indi-
rect. If two peer robots can send and receive messages
directly to each other, then there is a direct link between
them. Otherwise, intermediary peers are required to forward
transmitted messages, leading to an indirect link between
the two peer robots. In this case, the intermediary peers act
as routers. Many benefits flow from forming a collaborative
computing fabric. First, individual robots that are not within
communication range of a cloud access point are allowed to
send computation offloading requests to the cloud or access
information stored in the cloud in a collaborative fashion.
Second, among the collaborative robots, information can be
shared and exchanged for distributed decision-making in var-
ious cooperative tasks. Finally, a virtual ad-hoc cloud can
be formed for computation-intensive tasks by pooling the
computational capability together from collaborative robots.

Complementing the robot-cluster infrastructure, the cloud
infrastructure comprises a pool of shareable computation
and storage resources, which are virtualized and provided
as service. Figure 3 shows proxy-server components being
deployed between the robots and the cloud. To access cloud
services, a robot can simply send a query to a nearby proxy
server. Because of their limited power supply and capacity for
onboard processing and storage, individual robots are con-
strained by numerous limitations on computational complex-
ity and knowledge sharing. Therefore, performing complex
computations or storing large-scale knowledge bases via a
remote cloud infrastructure is considered as a promising solu-
tion that can take advantage of the powerful cloud resources
to help collect, process, and store data for robots, thereby
requiring less computing power, memory, and battery capac-
ity on the robot itself. Many benefits flow from using this
elastic computing model. First, computation-intensive tasks
can be offloaded for remote execution from networked robots,
resulting in ‘‘remote-brain’’ robots. Second, a large volume of
information about the environment (such as map, and object
models) stored in cloud can be unified and organized in
a format usable by robots to achieve knowledge exchange
of higher quality. Finally, an extensive library of behav-
iors or skills that are related to situational complexities and
task requirements can be provided, making it possible to learn
from the history of other cloud-enabled robotic activities.

In summary, cloud robotics leverages a combination of dif-
ferent levels of architecture: stand-alone robots, ad-hoc robot
clouds formed by a robot cluster, and an infrastructure-based
cloud. For tasks that do not require additional robots or com-
plex computation, such as welding, assembly, painting, and
packaging, stand-alone robots have been successful applied
because of their high precision, speed, and endurance in both
static and structured environments. An ad-hoc robot cloud can
be a backup solution when a group of robots in a cluster are
unable to connect a cloud access point (e.g., robots in areas
of damage after a disaster). Even with good network access,
an ad-hoc robot cloud may be desirable for tasks with low-
latency requirement because transferring large volume of data

to a remote cloud could cause a large delay. An infrastructure-
based cloud allows robots to benefit from the rich communi-
cation, storage, and computation resources of modern data
centers.

Besides, all three levels of architecture can collaborate
with each other and might not work as effectively if one
of them is missing. For example, robotics networks are like
stand-alone robots in that they face some inherent physical
limitations. Because of the robot’s size and other factors,
there are obvious limitations to the storage and computation
capacity of individual robots. This implies a limited capacity
by traditional networked robotics to undertake highly com-
plex processing tasks. Fortunately, an infrastructure-based
cloud can solve this problem well by taking advantage of the
rich cloud resources to help process, and store large volumes
of data for the robots. Secondly, infrastructure-based cloud
robotics might become unavailable because of network prob-
lems. If a robot were to rely too much on the remote cloud,
a fault in the network could leave it ‘‘brainless’’. Here, the use
of a robot cluster could be a backup solution that shares
processing resources across a group of individual robots to
solve problems that previously needed help from a remote
cloud. It would be independent of connections to an outside
network, thereby avoiding possible communication bottle-
necks and improving response times. As a result, the ad-hoc
virtual cloud provides a solution to sporadic wireless network
connectivity. Therefore, by using this computing framework,
the stand-alone robots, the ad-hoc virtual cloud, and the
infrastructure-based cloud can complement each other in
addressing the issues of limited battery power, shortage of
processing and storage resources on the robots, and sporadic
network connectivity between robots and the remote cloud.

B. TOWARDS HIGHER-QUALITY ROBOTIC COOPERATION:
FROM NETWORKED ROBOTICS TO CLOUD ROBOTICS
Cooperation can refer to the situation whereby a number
of robots need to interact each other in completing cer-
tain tasks, which increases the total utility of the system.
Alternatively, cooperation can be considered an interaction
between robots, which works together towards a common
interest or reward [14]. Cooperating robots have a joint goal,
which includes various sub-goals. The advantages of robotic
cooperation in robot clusters, such as multi-robot systems and
networked robotics, have been studied in [15]. Some repre-
sentative examples of multi-robot cooperation are as follows:
task planning, motion coordination, localization, exploration,
search-and-rescue, and object transportation and manipula-
tion [16]. However, although a robot in a robotic network can
share its knowledge and computational workloads with other
robots in the same network, the overall effectiveness of the
robotic network is constrained by the limitation of the storage
and computing capacity of the individual robots. This leads to
a bottleneck in research and development when considering
tasks that involve highly complex processing [5].

With the introduction of cloud robotics, the above con-
straints can be overcome via the elastic and powerful
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TABLE 1. Comparisons of state-of-the-art approaches.

resources of an infrastructure-based cloud, as shown
in Table 1. Cloud robotics, which brings ad-hoc cloud com-
puting and centralized cloud computing models together,
and combines their advantages to release the resource con-
straint of traditional networked robotics, is able to effectively
support real-time processing and resource-intensive applica-
tions for more intelligent and efficient robotic cooperation.
It can perform resource-intensive applications using ad-hoc
cloud computing for communication-intensive tasks and
using centralized cloud computing for computation-intensive
tasks. The major advantages of robotic cooperation in cloud
robotics are as follows.

• The ability to gather and then share knowledge. In cloud
robotics, robots have the potential to instantly share all
the skills they have learned from other robots simply by
transmitting the information over a network.

• The ability to conquer complex tasks. The cloud (acts
as a ‘‘brain’’ for robots to collaborate and achieve com-
plex tasks) can provide both a powerful streamed-data
processing capacity to identify the surrounding environ-
ment and a large knowledge base to support appropri-
ate decision-making, enabling heterogeneous robots to
cooperate with each other effectively.

• Computation offloading. In cloud robotics, robots can
migrate computation-intensive tasks from the robot side
to an ad-hoc virtual cloud formed by a cluster of
robots, or to an infrastructure-based cloud. This is par-
ticularly significant for mobile robots that might have
low computation, storage and energy capabilities.

Cloud robotics allows robots to benefit from the rich
storage, computation, and communication resources of the
ad-hoc virtual cloud and infrastructure-based cloud, enabling
higher quality robotic cooperation in various applications.
However, although the benefits of robotic cooperation in
cloud robotics is obviously attractive, robotic cooperation in
cloud robotics has yet to be thoroughly studied. Therefore,
in the following, we propose three robotic cooperation frame-
works for cloud robotics.

IV. FRAMEWORK FOR CLOUD ROBOTICS COOPERATION
In this section, we propose three novel robotic-cooperation
frameworks in cloud robotics, namely knowledge-sharing
cooperation, physical-task cooperation, and computational-
task cooperation.

A. ROBOTIC KNOWLEDGE COOPERATION
Many complex tasks humans would like robots to perform,
such as assisting bedridden patients, or packing items in
warehouses, are not yet possible because existing robots
cannot recognize or easily handle common objects. In gen-
eral, human beings have no trouble packing items, because
we have all gone through ‘‘a big-data collection process’’
called childhood. For robots to perform the same types of
routine task, they would also need access to the vast amounts
of knowledge associated with grasping and manipulating
objects. However, where would all that knowledge come
from? It has usually to come via painstaking programming.
Ideally, robots could share learned information with each
other [7].

Search and rescue robots play a significant role in saving
people from natural and man-made disasters such as earth-
quakes hurricanes, and terrorist attacks. Allowing these res-
cue robots to cooperate with each other by sharing knowledge
and learning from each other can open up a realm of new
possibilities.

Consider the following scenario. A search and rescue robot
(Rescuer #1) in a disaster site has been programmed to per-
form amedical service (providingwater) to a survivor trapped
under a building, so that the survivor is better able to wait for
rescue. This task includes locating a bottle of water delivered
by an unmanned aerial vehicle in advance, navigating to the
bottle’s position, grasping, picking up the bottle, locating the
survivor trapped under a building, navigating to the survivor,
and delivering the bottle to the survivor. Suppose that during
task execution, Rescuer #1 monitors and logs its progress,
thereby continuously updating and extending its rudimentary,
preprogrammed-world model with additional data. It updates
and adds the positions of detected objects, evaluates the
correspondence between its map and its actual perception,
and logs successful and unsuccessful attempts during the
performance of its task. If the robot is not able to perform
a task, it asks a remote operator for help while storing its
newly acquired knowledge. At the end of the search-and-
rescue task, the robot shares its acquired knowledge to others
by uploading it to a remote distributed database in the cloud.

Sometime later, the similar task is to be executed by a
second search-and-rescue robot (Rescuer #2) that has no prior
knowledge about how to execute the task. Rescuer #2 queries
the database for relevant information and downloads the
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knowledge previously collected by Rescuer #1. There might
be differences between the two robots, such as wear and
tear or different robot hardware, or in the environment, such
as changed object locations or a different disaster site. This
means that the downloaded information by itself may not be
sufficient to allow Rescuer #2 to repeat a previously success-
ful task. Nevertheless, this information can provide a useful
a-priori starting point. Recognized objects, such as the col-
lapsed building, can now provide rich disaster-site knowledge
even for areas not directly observed by Rescuer #2. Detailed
object models, such as the bottle of water or a collapsed build-
ing in the disaster site, can increase the reliability and speed
of Rescuer #2’s interactions. Task descriptions of previously
successful actions, such as driving around the disaster site and
overcoming obstacles on the way, can provide guidance on
how Rescuer #2 may be able to successfully perform a given
task.

This and other prior knowledge, such as the previous loca-
tion of the bottle or that the collapsed building is a likely place
to find the survivor, can help Rescuer #2’s search-and-rescue
strategy. In addition, as Rescuers #1 and #2 continue to exe-
cute their tasks, gather their data, and share their knowledge
to each other, the quality of prior knowledge improves and
begins to reveal underlying patterns and hidden correlations
about the robots and their environment.

Robotic cooperation on knowledge sharing instantly shares
all the skills robots have learned with other robots simply
by transmitting the information via the cloud, to speed up
robot learning and to allow robots to perform well beyond

their preprogrammed behaviors. This is a major extension to
the capabilities of robots. With the introduction of large scale
knowledge in the cloud, even a small amount of uploaded
uncompleted characteristic data can enable matching to a
cloud-based scenario. Then the characteristic data for the
complete scenario can be downloaded and sent back to the
robots for execution of the operation.

Figure 4 shows a conceptual diagram of robotic cooper-
ation in knowledge sharing. The framework has two main
elements: a set of groups of robots and a remote centralized
cloud. Robots are heterogeneous in nature with a wide variety
of hardware, OS, platforms and communication standards.
Because modern robots are typically equipped with sensors
that are capable of sending environmental information, they
can act not only as cloud-service consumers, but also as data
sources and producers of cloud-service information. At any
one time, some groups of robots may be responsible for col-
lecting data, while other groups are receiving cloud services.
On the cloud side, we can identify four layers, as shown
in Figure 4 and described below.

1) COOPERATIVE ROBOT COMMUNICATION (CRC) LAYER
The CRC layer is responsible for connecting individual
robots with the message broker. Because the remote cloud is
designed to serve heterogeneous robots, it needs a ‘‘gateway’’
component to record specific information about the individ-
ual robots and the map between message-broker channels
and native robotic-data channels. All individual robots are
connected through these gateways. Below the gateways are

FIGURE 4. A framework of robotic cooperation on knowledge sharing.
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remote cloud-robotic drivers that convert robotic data into
messages that the cloud services can process. The cloud-
robotic drivers first obtain data from individual robots and
then use application-programmer interfaces (APIs) to send
converted data to the remote cloud. The gateway main-
tains connections between individual robots and the cloud.
Besides, there is a gateway master that coordinates multiple
gateways and registers connection information, such as data
channel mappings between message brokers and individual
robots, enabling the CRC layer to discover robots and provide
service entries.

Unlike traditional web applications, stateful communica-
tion protocols in the CRC layer, such as the publish/subscribe
model, are required to push information asynchronously from
the remote cloud to the robots. The cloud-robotic drivers
subscribe to robot operating system (ROS) topics to obtain
robot-state data, such as odometry data and laser scans. They
then convert the data into messages that can be transmitted
through a broker to the cloud. After the data-processing
procedures, the remote cloud sends back velocity commands
through themessage broker. The remote cloud driver converts
each velocity command message into a ROS message that is
then sent to the correct ROS topic to enable the robot to be
controlled. To distinguish the messages sent from different
robots, a unique robot ID generated by the cloud driver
is attached to the message. For different types of robots,
the cloud drivers are different, but for the same type of robots,
the same cloud driver can be used, and it only needs to
spawn a new driver instance for each individual robot. Using
the robot ID attached in the message, the gateway creates a
command queue for each cloud driver instance, and sends
each message to the correct queue for the target robot.

2) PROCESSING LAYER
It is increasingly preferred for information from various
sources to be integrated into a single common shared repos-
itory called a ‘‘data lake’’. The job of the processing layer is
to process this lake of big data, handling issues of volume,
velocity, and variety, by providing a rich set of features for
preparing and enriching data before storing or publishing
them. The data-processing layer is used to filter, cluster, and
process the collected data from robots, and to prepare the
required data for storage and analysis. Its main components
are as follows.

• Real-time streamed-data processing. This component
receives streamed data (camera data and sensor data
from robots) in small chunks (a few rows per sec-
ond/minute interval), and reacts to the streamed data
as it arrives with low latency. The reaction is often the
result of applying a set of rules to the arriving streamed
data, in the context of data that has been precomputed
in the data store. Streamed data in this component is
characterized by incremental changes or events.

• Batch data processing. This component transforms data
(such as aggregation, mapping, calculating, filtering,
or joining) on a periodic basis. It is responsible for

heavy-duty or expensive processing, creating data in a
format useful for downstream users of the data (robots
or remote operators). Its operations are fairly complex
in nature (characterized by re-computations or complex
aggregations) and typically take place over a very large
and growing set of records.

• Data enrichment processing. This component makes use
of data from multiple sources in different robots, and
combines the data after the integration phase (entity
recognition, duplication removal, and matching), result-
ing in enriched data. Data enrichment may be performed
by combining data from multiple sources, including
public data sources and data stored in the database layer
on the cloud side.

3) DATABASE LAYER
The database layer’s data lake stores a global world model,
including information on software components, environ-
ments (such as object locations, and maps for navigation),
object recognition models (such as point clouds, images,
and models), and task knowledge (such as action recipes
and skills, and manipulation strategies). The database layer
provides a key resource for enabling robots to store and share
information collaboratively. Such knowledge bases in the
cloud enable robots to cope with the complexities of human
environments and offer a powerful approach to increase the
speed of learning by leveraging the experience of other
robots. The Willow Garage Household Objects Database,
the MIT KIT object data set, and the Columbia Grasp data
set are available online and have been widely applied to
evaluate different aspects of grasping algorithms, including
robust grasping, grasp stability, and scene understanding [11].
RoboBrain [8] is a large-scale robotic knowledge system,
which learns and shares knowledge representations from real-
life robot trials, computer simulations, and publicly available
Internet resources, to enable robots to perform a variety
of tasks. RoboEarth [7] is a cloud-based knowledge base
designed for the share and exchange of knowledge among
robots, by encoding the object descriptions, environment
information, task structure, and commonsense knowledge in
a formal knowledge base. By storing and sharing knowledge
about software components, maps, objects, and actions in a
common framework, RoboEarth enables different robots to
exchange and collectively improve their knowledge.

4) SERVICE LAYER
Human beings share their experiences and expertise through
language and demonstration, whereas robots have the poten-
tial to instantly share all their learned skills with other robots
via robotic knowledge base in the cloud, so that other robots
could increase the speed of leaning by reusing the shared
knowledge. Consider a robot that has found an object that
it has never encountered before. The robot could simply
send an image of the unknown object to knowledge base
in the cloud via a API and receive the object’s information,
3D model, and detailed instructions on how to handle it
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from the API. The service layer provides a mechanism for
enabling any robot with a network connection to generate,
reuse, and share information in different domains (such as
disaster management, medical and nursing care, and living
assistance) through a set of standardized APIs. Typical every-
day manipulation tasks are vaguely specified, and the robot
must therefore infer by itself how to carry out the appropriate
actions on objects in an appropriate manner to accomplish
these tasks. These inferences are only feasible if the robot
has access to the necessary knowledge base through APIs
provided in service layer, including precise information about
an object’s model, properties, location, and what might hap-
pen if particular actions are performed on it. Such knowledge
acquired through APIs in service layer could reduce the need
for meticulous reprogramming, and it could enable robots to
adapt quickly and accurately when facing with an unfamiliar
setting or a new task by the sharing, reuse, and learning of
knowledge from others’ experiences.

Based on the concepts of robotic cooperation in knowl-
edge sharing, knowledge-based solutions such as RoboBrain
and RoboEarth are becoming popular research tools.
Although these solutions have obtained some positive results
for smarter robots, there remain some challenging research
problems in this area to be addressed.

First, not all the knowledge robots could potentially learn
is easily exchangeable via a joint knowledge repository. Raw
trajectory data or actuator and sensor parameters are often
too hardware-specific to be shared successfully. Standardiza-
tion is therefore one widespread challenge to create outward
homogenization of heterogeneous entities to enhance quality
of service (QoS). Robotic middleware (such as OpenRTM,
and ROS) could interpose an abstraction layer and act as
an arbiter to smooth out the impact of heterogeneity for
knowledge sharing, enabling communication between het-
erogeneous robotic systems. However, contemporary middle-
ware requires considerable research and development before
becoming an appropriate heterogeneity-handling technique
in cloud robotics. In addition, a bridge component for dif-
ferent middleware, such as the OpenRTM–ROS bridge com-
ponent, is needed to build interoperability and to enable
seamless communication among heterogeneous robotic
middleware.

A second challenge involves semantic technology. This
is another distinctive research field for bridging and inter-
connecting heterogeneous data, applications, and processes
by encoding meanings and providing abstraction layers [17].
Semantic systems based on logic and knowledge can surpass
human deductive abilities. With a powerful ability to create
semantic links betweenmined data, such a system can present
logical results from big-data warehouses [18]. Therefore,
semantic technology in cloud robotics has the potential to
provide context-awareness, data portability, interoperability,
flexibility, and scalability across heterogeneous environments
and robotic systems.

Finally, the complicated and nuanced nature of human
environments cannot be summarized within a limited set of

specifications, but will require diverse robots to systemati-
cally share data and build on each other’s experiences. Today,
thousands of robotic systems solve the same core problems
over and over again. We believe that the benefits of stor-
ing, reusing, and sharing information in robotic systems will
enable the robots to perform successfully in increasingly new
and complex tasks and in unstructured environments.

B. ROBOTIC PHYSICAL-TASK COOPERATION
The complexity of many environments may require teams
of possibly heterogeneous robots to work together to carry
out a mission that no individual robot can accomplish alone.
However, it is not yet possible for robot teams to be aware of
their dynamically changing environments cooperatively, and
to make appropriate real-time decision and reaction seam-
lessly. This is because robots find it difficult to recognize
and deal with unexpected and unfamiliar situations. Human
beings usually have no trouble controlling their hands and
legs to accomplish complex tasks in complex environments
because the powerful human brain can process streamed envi-
ronmental data and make quick decisions about cooperation
between hands, legs, and other body parts. For cooperating
robots to perform as well, they will also need a powerful
‘‘brain’’ that can process data in real time and have access
to rich knowledge. What might constitute that ‘‘brain’’? The
cloud can be considered a remote robot ‘‘brain’’ that can
enable heterogeneous robots to cooperate with each other
effectively by offering a powerful computation capacity and
a large knowledge-storage capacity.

On March 11, 2011, at 2:46 p.m. local time, a magnitude-
9.0 earthquake struck off the East coast of Japan and an
ensuing huge tsunami hit the Fukushima Daiichi NPP. This
resulted in a hydrogen explosion, which affected a very wide
area in Fukushima prefecture. Light debris was scattered
along the roadway surrounding the power plant far from the
buildings. Pieces of radioactive debris varying in size and
shape were also piled on top of trailers and cars around
the turbine and reactor buildings, which hampered access
to the reactor buildings by fire-extinguishing vehicles and
concrete pumping trucks. Moreover, it was strictly prohibited
for workers to enter the buildings because of the high radioac-
tivity. As a result, the amount of damage within the buildings
was unknown.

To recover from such an urgent accident, it is essential to
access the buildings and investigate the type and amount of
damage. Therefore, the mobilization of many different types
of tele-operated robotic systems was urgently needed in this
case. For example, just after the accident occurred, a remotely
operated system comprising an operation car, a relay station
car, a monitoring camera car, and a concrete pumping track
were brought into operation to pour water into the spent
nuclear fuel pool. This was considered one of the most urgent
and critical tasks immediately after the accident occurred,
because if all the water in the pool had evaporated, most
of the fuel in the pool would have melted down, producing
levels of radioactivity so high that recovery would have

VOLUME 6, 2018 36669



W. Chen et al.: Study of Robotic Cooperation in Cloud Robotics: Architecture and Challenges

been impossible. Another remotely operated system, avail-
able from the beginning of April 2011, was used for the
removal of radioactive debris outside the buildings, which
resulted not only in clear access to the buildings, but
also decreased the level of airborne radiation. This sys-
tem comprised the unmanned construction machinery shown
in Figure 1, namely a relay station car, an operation car, a bull-
dozer, two dump trucks, two backhoes, and seven camera
cars. Again, in April 2011, some U.S. military robots were
specially modified for the Fukushima Daiichi NPP accident
and were used to investigate the severity of the damage and
to monitor the airborne radiation.

The networked robot technologies applied to this disaster
achieved certain results. The results and trials of the practi-
cal applications, however, revealed new issues regarding the
management of these robot technologies. First, there was a
high usage threshold. With only about 20 skilled operators
for unmanned construction machines in all of Japan, it was
impossible to place sufficient operators at the Fukushima
Daiichi NPP, therefore the lack of skilled operators was one
of the most significant problems during the accident. Second,
there was a low safety guarantee. The average worker’s exter-
nal exposure value for 3,765 people during March 2011 was
high at 13.81 mSv. Even in April 2012, the average value
for 5,128 people was 1.07 mSv/month, this is approximately
10 times the normal annual average-exposure radiation level
of 1.4 mSv/y for workers at the Fukushima Daiichi NPP.
Finally, low efficiency is also a problem with traditional
networked robotic systems. For example, the robot group
designed for the removal of debris required about six
months to remove the outdoor debris at the Fukushima
Daiichi NPP.

Fortunately, with the help of cloud robotics, robots can
use the cloud computing platform as a common medium of
collaboration in undertaking such common and challenging
tasks. Therefore, it is important to study robotic physical-task
cooperation using cloud robotics.

First, it is necessary to process continuous streamed data
in a real-time manner for robots to identify their surrounding
environment, such as scene understanding, path plan-
ning, object labeling, robot localization, and object affor-
dances [19]. For robots to operate autonomously, they should
be able to perceive their environments, manipulate objects,
plan paths and interact with our human beings. If a large
number of individual robots are connected to the cloud, mas-
sive amounts of real-time streamed data from these individual
robots needs to be analyzed and processed quickly before they
can be recorded in the database and processed offline by the
cloud [20]. Data from individual robots or databases can be
injected into the data-processing engine as streams and the
computing logic running in the engine will continuously pro-
cess the data and then emit the results. In some scenarios such
as robot control, the streamed data from individual robots will
have to be processed and fed back in real time. These time-
critical tasks require the system to respond sufficiently and
rapidly [21].

Second, it is necessary to have access to a large-scale
knowledge base for robots to be able to carry out a variety of
cooperative tasks [22], [23]. To perform such a task, robots
require access to a wide range of information that includes
fine details about how to perform the tasks of perception,
control, planning, and natural language understanding [24].
For example, when asked to serve a cup of green tea, the robot
would have to access to large-scale knowledge about ground-
ing the language symbols into physical entities, the knowl-
edge that green tea can either be in a fridge or on a table,
and appropriate knowledge about inferring the detailed plans
for grasping and manipulating the green tea cup. We can log
the entire body of information that is relevant for achieving
robot manipulation tasks including the images interpreted by
the robot perception system, pose data, and other sensor and
control signal streams, into large scale big-data knowledge
bases and annotate them with semantic-indexing and well-
organized structures that are generated automatically by the
interpreter of the robotic systems. These ‘‘episodic memo-
ries’’ enable the robots to answer queries about what they did,
how they did it, why they did it, what happened when they did
it, what they saw when they did it, and how to cooperate with
other robots.

Robotic cooperation on physical tasks aims to enable het-
erogeneous robots to cooperate with each other effectively,
using the cloud to provide both a powerful streamed-data
processing capacity to identify the surrounding environment
and a large knowledge base to support appropriate decision-
making for better robot task cooperation. A robotic coopera-
tion system involves robot clusters, in which heterogeneous
individual robots are connected and cooperate to perform
complex tasks that no single robot can accomplish. A robot
cluster has two major functions. First, it dispatches smaller
sub-problems to individual robots in the group and allows
them to interact with each other to find solutions to com-
plex problems. Second, and more importantly, it connects to
the cloud to enable the real-time processing of continuous
streamed data to model the surrounding environment and to
access a large-scale knowledge base about appropriate reac-
tions to the environment and identified conditions. By using
the remote cloud, the robot cluster can become smarter and
improve the cooperation between its robots in carrying out a
variety of cooperative tasks.

Figure 5 shows a conceptual diagram of robotic coopera-
tion on physical tasks.

Firstly, the stream-processing layer handles the processing
of real-time streamed data, enabling the robots to analyze
streamed data continuously as it is captured in a real-time
manner and take immediate action, which can be significant
in the control of robots. Streamed-data processing applica-
tions require a continuous stream of often unstructured data
(such as audio, video, or pictures) to be processed. There-
fore, data should be continuously analyzed and processed
in memory before it is stored on disk. In this layer, Apache
Storm [25] can be used as the computation engine, which is
a distributed processing system for real-time streams that can
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FIGURE 5. A framework of robotic cooperation on physical-task cooperation.

process up to one million ‘‘tuples’’ (the data type processed
in Storm) per second. It is well suited to processing streamed
data from numerous individual robots. In general, a real-time
application running in a distributed streamed-data framework
can be modeled as a directed graph with processing tasks
defining the nodes and streams defining the edges. A stream
is a continuous and unbounded sequence of events flowing
through the edges of the graph and each such event comprises
a chunk of data with a predefined window size. The process-
ing tasks at the nodes continuously consume input streams
and produce output streams. To use the real-time stream-
processing service in this layer, data from individual robots
should be sent to the correct message broker channels, which
are connected to the input of a real-time application via a
gateway application that connects to the robot’s data stream.
Then, by subscribing to the channels that connect to the out-
put of the real-time application, results can be fetched in real
time. Such a data processing paradigm is well suited to robot
control. By deploying multiple instances of the application or
increasing the number of computation nodes for the applica-
tion, the data processing ability can be scaled appropriately.

Secondly, the batch/storage layer (see Figure 5) stores
data from the stream-processing middle layer and provides
batch processing/data mining services for static data from
various distributed databases. First, it splits the file data into
manageable chunks or blocks and distributes them across
multiple nodes for parallel processing. The data being orga-
nized, which may include images, videos, human-language
data, and even physical-interaction data, can take several
forms, such as column-oriented data, semi-structured XML
data, relational-database items, document-database items,

key/value pairs, or a raw format. This means that sev-
eral techniques and tools need to be employed for the
effective retrieval and organization of the data. Second,
the batch/storage layer extracts knowledge by advanced anal-
ysis using mining techniques. This involves constructing
analytical models, finding patterns and associations, and
performing classifications and predictions. With potentially
large volumes of stored data, scalable distributed parallel
processing is used. The batch layer uses a batch-processing
model because huge amounts of data have already been
collected before the data processing is undertaken. It tar-
gets the production of accurate results by performing sta-
tistical analyses of tens of terabytes or even petabytes of
the stored data. In contrast to the stream-processing layer,
the batch/storage layer would usually have a large latency, in
the order of minutes to hours. Known as an effective solution
for the batch/storage layer, Davinci [26] makes use of the
Hadoop Map/Reduce framework for the batch processing
of visual information and sensor data to learn from many
types of learning signals and from a variety of multimodal
data. Rapyuta [27] is another open-source cloud-robotics
framework that allows diverse robots to offload their heavy
computations to secure computing environments in the cloud
computing platform.

With the help of cloud robotics, robots can cooperate in
more complex tasks than can be undertaken by traditional
multi-robot systems. One of the challenging issues is to
reduce the delay incurred during big-data processing. latency
is becoming a more critical concern for robotic coopera-
tion in cloud robotics. For example, a self-driving car in
high speed must make snap decisions. Even slight delays
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in updating weather and road conditions could mean longer
travel times or dangerous errors (such as collision between
two autonomous cars). The new 5G network [28] can be
considered as a potential solution to delay control by reducing
latency from 40-60ms to 1-10ms. Especially, low latency
and low mobility interruption gab together with reliability
are of the highest importance in the 5G agreed scenarios
for cloud robotics, e.g. in order to connect cars, drones and
other mobile robots to the cloud. However, there remainmany
issues related to the network architecture and network access
protocols. Even with current 5G methods, cellular-network
bandwidth may never be low-cost, making bandwidth utiliza-
tion and optimization an important concern.

Robot mobility is another challenge for robotic coopera-
tion on physical tasks. Individual robots in cloud robotics
establish connections with others, even using fixed nodes
in a wired network, as they move about. As an individual
robot moves from one environment to another, it may con-
nect to a new cloud proxy or join a new cluster of robots.
Therefore, a new prediction strategy and adaptation policy
should be developed to ensure that they can still benefit from
computation and storage-power enhancement seamlessly.
This might involve dynamic application offloading or virtual
machine (VM) migration techniques. Moreover, because of
the mobility of individual robots, the communication network
associated with a robot cluster will change over time and
space, bringing some challenging issues to QoS guarantees.
Therefore, cloud robotics should consider a dynamic robotic-
cooperation strategy when aiming to improve the quality of
robotic cooperation.

Finally, context awareness is another difficult challenge for
robotic cooperation on physical tasks. Context awareness in
an application model refers to its ability of discovering and
reacting to changes in its physical environment [29]–[31].
For example, it is critical for service robots to be aware of
the dynamic characteristics of information about a person’s
activities, such as survivors’ movements in a disaster site.
To achieve a ubiquitous robotized environment, the capa-
bility of being sensitive to changes in context is required
to adapt the system’s reaction to the movement intentions
of the people involved. Context awareness has been studied
in the domain of mobility systems, usually with respect to
personal devices such as smartphones and PDAs, focusing
on how they adapt to changes in network connections [29].
The application of context awareness in robotics will require
the integration of many more information sources than the
ones mentioned in these examples. However, the particular
case of sharing context information between distinct and het-
erogeneous networks without having to redevelop the entire
system from scratch remains a challenge.

C. ROBOTIC COMPUTATION COOPERATION
Resource-intensive applications, such as those involving
streamed video and sensors mounted on robots, produce
continuous streams of data about the robot’s environment.
They are increasingly being deployed in robotic computing.

However, the built-in processing capacity of individual robots
will not be able to keep pace with the increasing need
for resource-intensive processing. Resource limitation means
that individual robots will not be able to support resource-
intensive features such as artificial vision and object tracking.
CPU performance, battery life and memory are some of
the non-scalable resources in individual robots. Motivated
by this problem, cloud-robotic cooperation on computation
addresses the limitations of individual robots both by resource
sharing among robots and by computation offloading to
the resource-abundant cloud. Computation-intensive applica-
tions can be partitioned, with components migrated to the
robot cluster or to the remote cloud in a cooperative manner.
After the intensive computations are executed either by
robot–robot or by robot–cloud cooperation, the processed
results are sent back to the robots for incorporation into the
overall computation.

Consider the following scenario, a set of rescue robots
enter a disaster area, aiming to observe the condition and
location of the survivors, the interior of the rubble, and
any potential dangers. This will involve video streams cap-
tured by cameras. The core function in this application is
object recognition from sequences of video frames. A res-
cue robot’s onboard processor would usually execute this
function periodically as it moves about, aiming to identify
features of the environment in real time. The execution time
for such a recognition function on mainstream hardware
(1.7 GHz, 4-Core CPU, and 2 GB RAM) has been inves-
tigated [32]. It requires at least 60 seconds to process one
1,000×800-pixel frame in the video stream. Higher resolu-
tion implies a longer time and more energy consumption.
However, the rescue robot could offload this task, by sending
the streamed data to the cloud, where a cloud-based appli-
cation performs object recognition, and receiving back the
processed results. In this way, the energy consumption and
the execution time could be reduced.

In reality, however, a rescue robot in a disaster area is
likely to encounter bandwidth fluctuations or even discon-
nections. This may involve a long wait for the results to
become available. In such cases, a better solution would be to
execute the application within a robot cluster by cooperating
with the computation resources of neighboring robots. In fact,
by enabling both robot–robot and robot–cloud cooperation,
the robotic system can adapt to changes in its surround-
ing environment such as network bandwidth fluctuations,
enabling complex robotic computations to be more effective,
saving execution time and energy consumption.

Robot cooperation in computation involves not only robot–
robot cooperation but also robot–cloud cooperation, and aims
to enable computation-intensive or energy-intensive work-
loads via the distributed execution of robot-cloud applica-
tions. This is achieved by migrating a portion of the complex
application state from the individual robots to remote cloud-
based computation resources. Robot–robot cooperation can
be supported by an ad-hoc network formed by a cluster
of neighboring robots that work cooperatively to achieve
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application offloading. However, robot–cloud cooperation is
driven by cloud clones and remote execution engines, where
resources are elastic and available on demand.

Figure 6 shows the components of an computation offload-
ing system, which is composed of a client module running
on the individual robots, and a server module running in the
ad-hoc network formed by a cluster of heterogeneous robots
nearby that either share their computation resources among
the cluster to quickly solve computationally hard problems,
or communicate with the remote infrastructure-base cloud,
which enables the robots to benefit from the powerful storage,
computation, and communications resources of modern data
centers. The client module has three major functions. First,
it monitors and predicts the network and processing perfor-
mance of the individual mobile robots. Second, it tracks and
predicts the execution requirements for resource-intensive
applications in terms of execution time on both the individ-
ual robot and the cloud and input/output data requirements.
Third, by using this information, the client module chooses
some portions of the resource-intensive applications to exe-
cute in the cloud to minimize the total energy consumption
and execution time. Alternatively, the server module exe-
cutes these offloaded portions immediately in the cloud after
receiving them and returns the processed results back to the
client module, after which the resource-intensive application
can be resumed on the individual robots.

To enable distributed execution of a resource-intensive
application, the computation offloading framework must
determine the efficient partition of the given application
for scheduling on individual robots and cloud servers.

This is the job of the task-offloading decision engine, which
may be present either in the individual robot or in a predefined
server in remote cloud. The task-offloading decision engine
must effectively identify the most energy or computation
intensive tasks in the given application to migrate some por-
tions of the running applications. Using information about the
running application and the available resources in the cloud-
robotic system, it selects program components to be offloaded
for remote execution in ad-hoc virtual cloud and remote
cloud. The decision about where to place the execution should
be made by considering the relative amounts of computation
and communication resources required by these portions of
the running application. Intuitively, a task involving little
communication combined with a large amount of computa-
tion should point to remote execution, whereas much com-
munication combined with little computation should indicate
local execution of the task.

However, when considering the delay constraints and the
extra costs of data transmission and remote computation,
it is not trivial to make optimized decisions. First, the com-
putational offloading strategy should consider various fac-
tors such as offloading granularity, robot capacities, network
delays, local and remote execution overheads, and the delay
deadline for task completion. Particular consideration should
be given to the amounts of data that must be exchanged
and bandwidth limitations between individual robots and
servers in the remote cloud. Second, given the presence and
dynamics of cloud resources and computation requirements,
the offloading strategy should also dynamically consider the
relative advantages of executing the task within the group of

FIGURE 6. A framework of robotic cooperation on computation cooperation.
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networked robots or to the remote cloud. In general, task com-
ponent offloading can be either static or dynamic. In static
computation offloading, the programmers predetermine the
task components that can be offloaded to the ad-hoc virtual
cloud or the remote cloud. However, this solution may not
be very effective, as many issues may affect the performance
of computation offloading. Alternatively, in dynamic com-
putation offloading, the execution location of the task com-
ponents is not predetermined, and the offloading decisions
are intelligently made by analyzing contextual information,
such as, robotic computation and communication resources,
bandwidth, energy, latency, and available resources in the
cloud.

Computation offloading first requires the data to be tra-
nsmitted and processed before receiving back the results,
which can be time consuming. Although several app-
roaches [33]–[36] can facilitate and promote mobile cloud-
based computational offloading, research and development
in this domain remains a high priority. There are two main
issues, which we can identify as follows.

First, the partition of robotic applications (or task graphs)
is critical for computation offloading in cloud robotics.
However, identifying resource-intensive task components in
robotic task graphs is a challenging task because there are
few hard rules that indicate a task component’s intensity.
For instance, a task component might be resource-intensive
(in terms of computation time) for a robot with low processing
power, but not for a robot with high computation capac-
ity. Even if intensity is defined in terms of computational
complexity (the number of instructions per unit of process-
ing data), partitioning robotic applications remains an issue.
For example, static application partitioning and decisions
regarding the task components’ execution location would
not be a foolproof solution and might fail in a number of
scenarios. Even though context-aware dynamic application
partitioning has an edge over static application partitioning,
it still requires timely repartitioning of task graphs to accom-
modate changes caused by the inconsistently available cloud-
based resources and mobile robots’ dynamic environments.

Second, computation offloading in cloud robotics always
trades off communication costs for computation gain.
Previous systems [37]–[40] usually assume adequate mobile
cloud-based computation resources and stable network
connectivity. However, in cloud robotics environments, an
individual mobile robot may experience poor or even inter-
mittent connectivity, while cloud services may be busy or
even temporarily unavailable. This would lead to high data
transmission latency and low energy efficiency for compu-
tation offloading. In such cases, it might not be beneficial
for the individual robots to offload computational tasks to
the remote cloud. Besides, achieving efficient computation
offloading coordination among individual robots is still a
challenging task. If too many individual robots choose to
simultaneously offload computational tasks to the cloud via
wireless access, this might generate severe mutual interfer-
ence, which would reduce the data rates for computation data

transmission [41] and therefore increase the latency of data
transfer. Here, the communication cost may be higher and the
computation gain may be lower. Moreover, the network and
execution predictions may be inaccurate, causing the overall
performance of the cloud robotic systems to be degraded.

V. APPLICATIONS AND CHALLENGES
A. APPLICATIONS
After the Great East Japan earthquake disaster, we started
a cloud-robotic cooperation project sponsored by the
Fukushima prefecture. The project aims to build a cloud-
robotic cooperation system to help future disaster man-
agement, as explained in Section 2, and the challenging
demolition task at the Fukushima Daiichi NPP.

Figure 7 shows the framework of our cloud-robotic coop-
eration system. First, there are cloud-based data centers, with
all robots being able to connect to the cloud. This enables
the robots to benefit from the rich storage, computation, and
communications resources of the cloud data centers. Second,
a group of robots can communicate with each other, learn
from each other effectively, and ask for help in performing
a required operation with the support of the cloud. A group
of robots working as cooperative agents with the help of the
cloud can significantly improve their overall efficiency and
reduce the burden on the human controllers.

FIGURE 7. The framework of our cloud robotic cooperation system.

In our cloud-robotic cooperation system, a robot can call
for help from other neighboring robots in the network. The
robot can send its navigation direction, exact GPS location,
and other relevant information (such as an unusual obstacle
in the way or a useful detour) that it has learned during its
travels. When new robots arrive, they can collaborate with
each other in the rescue operation, which will then be much
more effective. With our cooperative network, robots can
avoid redundant operations and can make intelligent plans.
After a robot has completed its search of an area, it can
mark that area as covered and notify other neighboring robots
not to waste time searching the area. Moreover, if a device
fails or power/battery problems occur, it can notify other
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neighboring robots to take its place. We now summarize
the characteristics of our cloud-robotic cooperation system
in terms of the aspects of robotic cooperation discussed in
Section 3.

1) APPLYING ROBOTIC KNOWLEDGE-SHARING
By using robotic knowledge-sharing, our cloud-robotic coop-
eration system can learn from individual-robot experiences,
leading to greatly enhanced robotic capabilities. The cloud
provides a common medium for the cooperative robots to
share gathered information and to learn new knowledge and
skills from each other. The cloud can host a knowledge
base or a library of behaviors and skills that map to differ-
ent environmental complexities and task requirements. One
representative application for robotic knowledge-sharing is
determining the optimal way to grasp an object in a disaster
site, such as debris or an injured survivor trapped under a
building. In general, if the full 3D model of the object is pre-
cisely known, then one of the various standardmethods can be
used to synthesize the object grasping procedure. However,
if the object is not precisely known or completely unknown,
the problem becomes much more challenging, and will need
much data preprocessing and a large amount of computation.
Recently, data-driven or information-based object grasping
methods [22] have been developed to enable robotic grasping
for any object and any robot hand. But all these methods
require access to large databases. Cloud-based resources can
facilitate incremental learning of appropriate object grasping
strategies, by matching sensor data against 3D CAD models
stored in the cloud in advance. Examples of sensor data
include 3D point clouds, 3D features, and 2D image fea-
tures, in addition to demonstrations [11]. With the support of
cloud-based robotic knowledge-sharing, a mechanical hand
can send featured data obtained from a small number of
sensors to the cloud using a specific data format. The cloud
processes the featured data and performs model matching
using a knowledge base stored in the cloud, and returns
back data for a set of candidate objects, each with grasping
options. The robot itself compares the received 3D CAD
models from the cloud with the detected point cloud to refine
its identification and to perform pose estimation, and finally
selects an appropriate grasping solution. Moreover, model
knowledge with respect to new objects learned by various
robots in disaster sites can be added to the knowledge base in
the cloud and become available for future reference by other
robots in similar cases of similar need. Figure 8 is an example
of debris grasping using robotic knowledge-sharing, where
the grasping options were acquired from different robots in
domains other than disaster management.

2) APPLYING ROBOTIC PHYSICAL-TASK COOPERATION
The complexity of many environments and missions in dis-
aster sites may require teams of possibly heterogeneous
robots that can collaborate with each other. Fortunately,
robotic physical-task cooperation can mimic the abilities of
the human brain by providing rapid-response streamed-data

FIGURE 8. Debris grasping using robotic knowledge sharing.

processing and knowledge about task execution to pro-
vide high-quality heterogeneous-robot cooperation. A repre-
sentative application for physical-task cooperation is robot
navigation in disaster sites [42]. In a disaster scenario,
the environment after widespread damage is completely
unknown and the task of robot navigation is to determine
the robot’s own position with respect to a certain reference
point and then plan a path to reach a desired location [43].
There has been extensive research, including both map-based
approaches and map-less approaches [44], [45]. However,
because of limited onboard processing and storage resources,
these methods usually suffer from reliability problems. The
map-less approach can involve large-scale computing tasks
(processing observations from perception sensors) and the
map-based approach can involve large-scale storage issues
(the process of building and searching the map for navigation
routes). Robotic physical-task cooperation provides a very
promising solution for future cloud-enabled navigation that
overcomes these challenges. It can not only provide sufficient
storage platform to store the large-scale knowledge for map-
ping, but also provide enough computing capacity to quickly
facilitate the searching and building of the map by processing
streamed big data in real time. Figure 9 shows an example
of navigation in a disaster site using robotic physical-task
cooperation. The robots in the disaster site not only send
streamed camera data about their environment continuously
to the cloud for real-time 3D map construction [46], but

FIGURE 9. Navigation in a disaster site using robotic physical-task
cooperation.
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also share with each other their exact GPS locations and
navigation directions [47], together with other relevant infor-
mation that they have learned along the way, such as unusual
obstacles or useful detours.

3) APPLYING ROBOTIC COMPUTATION COOPERATION
The basic idea of robotic computation cooperation is to
enable individual robots to leverage the computation and
energy in robot clusters and cloud servers cooperatively
to execute computational tasks that require heavy use of
computing and/or network resources. An individual robot
in our robotic cooperation system only has to support its
cameras, other sensors, and actuators with basic process-
ing power. Despite its limited processing power, it can be
involved in computationally intensive actions. A represen-
tative application for robotic computation cooperation is
simultaneous localization and mapping (SLAM) in disaster
sites. This is a technique enabling an autonomous vehicle
or a mobile robot to build a map of its environment with-
out any priori knowledge, and to localize itself simultane-
ously in the completely unknown environment [48]. Although
SLAM-based algorithms are becoming more and more accu-
rate, the superiority of the current algorithms for large scale
maps cannot make up for the limited storage and computa-
tional resources on board individual robots. Therefore, the
formation of large-scale maps often required excessive time
before the advent of cloud robotics, well outside the needs
of real applications. The emergence of cloud-based tech-
nologies, together with robotic computation cooperation, can
remove the bottleneck caused by limited onboard storage and
computing equipment by offloading tasks such as map filter-
ing and fusion for state estimation to the cloud. For example,
offloading the visual SLAM (VSLAM) processing to systems
running in a cloud-based deployment of the ROS has been
proposed as a method for managing increasing processing
constraints [49]. The FastSLAM algorithm has been imple-
mented in Map/Reduce and experimental results show sig-
nificant execution-time gains when building a map of a large
area [26]. As demonstrated in [50], the cloud can substantially
improve the processing speed of SLAM. Figure 10 is an
example of SLAM in a disaster site using robotic computation
cooperation. Tasks such as TakePicture and Segmentation are

executed in an ad-hoc network formed by a group of neigh-
boring robots that work cooperatively. Other tasks, including
FeatureDetection,Matching,ObjectRotation, 3DReconstruc-
tion, PositionUnderstand, andMapCreation, are offloaded to
the remote cloud’s powerful computation resources. Finally,
the received map can be displayed and used by various robots
in the disaster site, having been produced with low latency
and high energy efficiency.

B. CHALLENGES
In this subsection, we discuss some specific research chal-
lenges to robotic cooperation in cloud robotics that should be
addressed.

1) QoS ISSUES
The QoS for robotic cooperation in cloud robotics refers to
its performance in satisfying its users’ preferences [51], [52].
In particular, two QoS factors, namely latency and energy
consumption, are discussed below.

a: LATENCY ISSUES
Cloud robotics needs to collect and analyze data in real time
and make quick decisions. Such systems are sensitive to
latency [53]. In cloud robotics, latency is defined as the time
involved in acquiring the necessary knowledge or offload-
ing the computational tasks and retrieving the results from
the cloud. It involves many factors, such as processing
time on individual robots, processing time in the cloud,
the input/output data sizes, data transport time, and network
latency. On the one hand, to reduce latency, a task application
must be aware of the task’s computation time on both the
robot side and the cloud side for latency estimation. The
challenge here is that estimating the computation time of
task components in an application is a complex problem.
First, the robots have heterogeneous hardware specifications,
thus there can be no predefined computation time for task
components in an application. Second, the type of coding
and data input size used for instructions are much impor-
tant factors that can affect a task component’s computation
time. This may be partially resolved by profiling robot and
cloud-based component executions, however, the overhead of

FIGURE 10. SLAM in a disaster site using robotic computation cooperation.

36676 VOLUME 6, 2018



W. Chen et al.: Study of Robotic Cooperation in Cloud Robotics: Architecture and Challenges

profiling every execution of a task component against
variable input-data size should be considered.

On the other hand, to reduce interaction latency, proposals
in [33]–[36] aim to create a proximate cloud to access nearby
remote resources. However, security and trust matters are
the most important factors hampering the proposed solution.
Further research is therefore needed to develop systems
that are trustworthy and offer a rapid response. In partic-
ular, latency-aware global resource-scheduling approaches,
such as algorithms [54], [55] for service placement, data
placement, task placement, and their joint optimization, are
needed to allocate tasks to cloud-robotic systems optimally
for latency reduction. Besides, latency-aware communication
protocols should also be developed to support communication
in cloud robotics that offers further latency reduction.

b: ENERGY EFFICIENCY ISSUES
Battery is one of themost precious resource formobile robots.
The key of energy-efficiency cloud robotics is to seek better
tradeoff between the transmission energy consumption and
computation energy consumption. To make robotic appli-
cations energy efficient, the applications must be aware of
the amount of energy required for computation offloading
to the remote cloud and robot-based application execution.
Otherwise, bad offloading decisions could overwhelm the
mobile robots’ energy capacity. However, monitoring the
energy consumption of task components in an application
is a challenging task. First, the amount of energy consumed
by an task component depends on the robotic model (its
hardware specifications). For example, different amounts of
energy will be consumed by two robots with different types
of processors, such as quad-core versus single-core. Second,
a task component’s energy consumption can vary depending
on the CPU frequency and utilization level. The problem is
that robots do not provide low-level energy information about
their communications and computations.

Besides, energy-efficient communications are critical
when applying the cloud to extend the capabilities of individ-
ual robots. The stochastic characteristics of wireless networks
may lead to unpredictable energy consumption for commu-
nications between individual robots and the remote cloud.
For example, the network capacity and availability, includ-
ing the signal strength and bandwidth at access points,
can vary from place to place. Moreover, there are uplink
and downlink bandwidth fluctuations caused by, for exam-
ple, mobility issues, building shields, flash crowds, and the
weather. Measurement studies [56] have shown that the
energy consumption for transmitting a fixed amount of data
is inversely proportional to the available bandwidth. This
implies that frequent transmission during bad connectivity
may consume excessive energy, making the computation
offloading unattractive. A recent practical solution called
eTime [57] adaptively and aggressively uses periods of good
connectivity to prefetch frequently used data while deferring
delay-tolerant data during bad connectivity. However, it is
a challenge to estimate network connectivity both quickly

accurately. In addition, more energy-efficient communication
protocols such as the HpFP protocols [59] are needed to sup-
port mobile communications with high energy efficiency for
cloud robotics. Finally, edge computing [60] which has been
considered as a potential solution to address the concerns of
energy-efficiency and latency by processing the data at the
edge of the network, needs further research for cloud robotics.

2) COMMUNICATION ISSUES
Cloud robotics should ensure that there is fast and contin-
uous Internet connectivity between robots and the remote
cloud. The individual robots are always linked to the remote
cloud from any time and place for task execution [58].
However, when compared with wired networks, wireless
networks are characterized by intermittent, low-bandwidth,
and less-reliable transmission. Establishing and maintaining
seamless sessions between the remote cloud and individual
robots using wireless networks are critical to fully realizing
the power of cloud robotics. Intermittent connectivity leads
to several challenges such as the excessive consumption of
limited robotic resources, dismissal of always-on connectiv-
ity, and disproportionate delaying of application execution
that can sharply degrade the overall performance of robotic
cooperation. Therefore, during the development of the cloud-
robotic cooperation models, much efforts must be made to
address these challenges.

First, communication issues in extremely bad environ-
ments such as high radiation levels and signal black-spot
areas need to be investigated [61]–[63]. For example, the radi-
ation tolerance of the electronic components in Quince robots
were checked by means of gamma-ray irradiation tests. It was
found that the high-power wireless communication devices
previously used in Quince robots could not work in the
Fukushima Daiichi NPP [64]. In addition, a wireless relay-
communication technology that uses other robots to control
robots beyond the line of sight has been developed [65].
This aims to maintain the control link continuously when the
relay route changes as the robots move about and to support
stable operation of remotely controlled robots in a poor radio-
propagation environment. The robots cooperate with each
other to maintain a continuous wireless control link, even
in the presence of obstacles such as thick walls, buildings,
trees, or mountains. Second, the communications associated
with real-time big-data processing also raises challenges.
HpFP [59] was developed for high-quality streamed-data
transfer. It outperforms UDP and TCP protocols in terms
of latency and tolerance to packet loss. Finally, existing
approaches [66]–[70] are further compared and summarized
in Table 2.

3) SAFETY ISSUES
Safety is essential for robots, given the mission-critical
deployment of many cloud-robotic applications such as air
and ground transportation systems, disaster monitoring and
warning systems, and medical and healthcare systems [71].
It is therefore important to ensure the overall stability of
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TABLE 2. Comparisons of different communication models.

physical systems to avoid potential dangers such as imminent
collision. ISO 60601 defines safety as the avoidance of haz-
ards to the physical environment during the operation of a
medical device under normal or single-fault conditions [72].
We believe that this definition of safety can also be applied
to nonmedical domains such as cloud robotics by broadening
the scope of the hazards considered, including radiation leaks,
faulty operation of the computation unit, thermal effects,
software failures, biocompatibility issues, electrical hazards,
and mechanical hazards. However, because there are various
fault sources in the physical, networking, sensing, comput-
ing, and actuation domains that can make systems behave
anomalously, it is challenging to achieve this goal in cloud
robotics. Many uncertainties exist in their environment and
physical systems. Any one of a variety of types of failure
can occur at any place and at any time in cloud-robotic
systems [73].

More work is needed on interaction safety [72]. There
are two main cases. The first is when the cyber-physical
interaction between the computation units in two different
individual robots may affect either one’s operation in haz-
ardous ways. Second, the cyber-physical interaction between
the computation units and the physical environment may have
harmful effects on the physical environment. The nature of
the physical environment may hinder the operation of the
computation unit in the second case. For example, tissue
growth around implanted sensors could reduce communica-
tion and sensing capabilities.

Finally, from the social perspective of the robotic commu-
nity, work is needed to enhance the safety of cloud robotics.
First, laws, regulations, and social structures such as insur-
ance should be in place [61]. Second, high-quality simulators
are needed and robotic test fields should be constructed.
Third, robotic systems should be continuously tested, and
exercised at real scenarios (such as disaster sites) and in
simulated mock-ups. Fourth, there should be active user com-
munities to enable information exchange and user collabo-
ration. In other words, sufficiently robust technology must
be adopted for robotic systems developed for use at real
scenarios (such as disaster sites). Otherwise, it would be
unclear if the cloud robotic systems could work well in real
scenarios, for example. If a robot becomes inoperable on an
access path, the robot itself would become an obstacle to other
robots [1].

4) HETEROGENEITY
Heterogeneity is a major concern for robotic service pro-
visioning. There are main areas of heterogeneity in cloud
robotics.

First, heterogeneity among individual robots arises from
technological variation in terms of OS, software, hard-
ware architecture, features, platform, and the communi-
cation medium. Bridging this heterogeneity to provide a
homogenous processing solution for distributed applications
remains a very challenging issue for cloud robotic systems.
For example, interoperability is one of the most significant
technological and standards challenges [74]. Existing hard-
ware, platform, operating system, API, and feature hetero-
geneities among the multitude of robot types necessitate
standardization.

Second, heterogeneity in cloud systems arises because
there are numerous cloud providers in the market, each pro-
viding a variety of cloud services using their own customary
policies. This leads to cloud heterogeneity as these vendors
develop their respective infrastructures, platforms, and APIs,
which leads to interoperability and portability challenges.

Third, there is heterogeneity in the wireless networks.
In cloud robotics, wireless networking is the major commu-
nication medium, which can be cellular, WiMAX, GPRS,
WLAN, CDMA2000, WCDMA, or satellite-based. Hetero-
geneous networks operate with different connection protocols
and technologies and network traffic is time-varying and
uneven [75]. This variation affects the mobility, augmenta-
tion, and usability of individual robots. It raises the problem
of managing the wireless connections in addition to address-
ing cloud-robotic needs such as being energy-efficient on the
robot side, always being connected, and achieving scalability
of on-demand wireless connectivity [76].

Therefore, during the development of cloud-robotic coop-
eration systems, work on middleware such as OpenRTM and
ROS must be undertaken to address these challenges.

5) BIG-DATA PROCESSING
Because cloud cooperation services usually deal with large-
scale data sensed by individual robots, the overhead of data
transmission and processing is a key challenging issue.

First, a variety of types of sensor on individual robots
will be widely deployed and robots in the same region may
therefore generate duplicated data. An in-network processing
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mechanism is needed for network components to aggregate
data from downstream nodes and filter duplicated and noisy
data.

Second, unstructured or semi-structured information
sensed from different sources may be correlated. Seeking
efficient algorithms for in-network processing and compres-
sion, such as compressive sensing, to reduce the cost of data
transmission is a popular recent research topic [76].

Cloud robotics provides massive storage and computing
resources for storing and processing large volumes of data,
which is hosted in large data centers and accessed through
the cloud on demand. However, analyzing, indexing, and
querying large volumes of spatial and high-dimensional big
data, when the data may be unstructured or semi-structured,
is difficult to perform at high speed. Moreover, software
solutions and algorithms for high-performance distributed
big-data computing on a large scale is a nontrivial challenge.
Cloud robotics demands highly distributed big-data pro-
cessing techniques with low communication and computing
requirements. In particular, processing large amounts of real-
time data, while aiming to make quick decisions and transmit
the relevant instructions back to the sensing robots in a timely
manner, is now a major challenge in both research and appli-
cation development [77].

6) PRIVACY AND SECURITY ISSUES
Because individual robots upload their personal private data
for storage and processing by a remote cloud, there is a major
concern about privacy and the leakage of private informa-
tion [78]. A particular privacy issue for mobile robots is
the leakage of their private location information in location-
based services. To solve this problem, a method called
‘‘location cloaking’’ makes users’ location data slightly
imprecise before being uploaded to the remote cloud [79].
Sometimes, however, imprecise data could not provide sat-
isfactory or relevant results for some certain applications.
Therefore, location cloaking needs to be adaptively tuned to
balance the trade-off between result accuracy and privacy for
cloud robotics.

Security issues arise from every aspect of cloud robotics.
This includes security for individual robots (e.g., eliminat-
ing the threat of worms and viruses), security in the cloud
data-center nodes (e.g., preventing unauthorized access to
personal data stored in the remote cloud), and security for
data transmission over networks (e.g., encrypting commu-
nication protocols). First, security mechanisms should be
lightweight, without involving much computation power and
energy consumption by the robots. Second, cloud clones
should be trusted. The robot should be able to check the
identity of the cloud clone based on trust measurements
(i.e., reputation-based trust [80]) or to identify a trusted cloud
clone by itself (i.e., trust establishment [81]). Third, storage
and computation services provided by the cloud computing
platform must be trusted. Finally, there is an urgent demand
for technologies that endeavor to enforce security and
privacy in data transmission whenmoving crowdsourced data

to cloud data centers [82]. Blockchains [83]–[85] which has
been considered as a potential solution to address the con-
cerns of vulnerabilities, potential threats, and attacks, needs
further research for cloud robotics.

VI. CONCLUSIONS
Cloud robotics is a frontier interdisciplinary area that com-
bines robotics and computer science to investigate the huge
expansion in the capability of robotic systems. Computer
science’s role is to make robots smarter by introducing cloud
computing, big-data science, andmachine learning in the near
future. Robotic cooperation will become a major trend and
even more popular in cloud-robotics research as increasingly
complex tasks are undertaken by a group of robots. In this
paper, we have proposed three novel robotic-cooperation
frameworks for cloud robotics to enable improved robotic
cooperation. This will open new horizons in the domain of
robotics that we believe will lead to wide-ranging research
and development initiatives. The challenges emerging from
these three robotic cooperation frameworks were discussed.
We introduced our ongoing cloud-robotic cooperation system
using the proposed robotic cooperation frameworks in terms
of disaster management. Some of the challenges for robotic
cooperation in cloud robotics were identified and discussed.
These include QoS, communication, safety, heterogeneity,
big-data processing, and privacy and security issues. In future
work, we will continue to develop our cloud-robotic coop-
eration system, aiming to improve robotic cooperation for
disaster management such as the challenging demolition task
at the Fukushima Daiichi NPP. We also aim to address the
various identified challenges. We plan to test our cloud-
robotic system in the Fukushima robot test field being built
in in the Fukushima prefecture.
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