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ABSTRACT The security of image steganography is an important basis for evaluating steganography
algorithms. Steganography has recentlymade great progress in the long-term confrontationwith steganalysis.
To improve the security of image steganography, steganography must have the ability to resist detection
by steganalysis algorithms. Traditional embedding-based steganography embeds the secret information
into the content of an image, which unavoidably leaves a trace of the modification that can be detected
by increasingly advanced machine-learning-based steganalysis algorithms. The concept of steganography
without embedding (SWE), which does not need to modify the data of the carrier image, appeared to
overcome the detection of machine-learning-based steganalysis algorithms. In this paper, we propose a
novel image SWE method based on deep convolutional generative adversarial networks. We map the secret
information into a noise vector and use the trained generator neural network model to generate the carrier
image based on the noise vector. No modification or embedding operations are required during the process
of image generation, and the information contained in the image can be extracted successfully by another
neural network, called the extractor, after training. The experimental results show that this method has the
advantages of highly accurate information extraction and a strong ability to resist detection by state-of-the-art
image steganalysis algorithms.

INDEX TERMS Steganography, without embedding, coverless, generative adversarial networks.

I. INTRODUCTION
Image steganography is the art and science of hiding secret
information in a carrier image so that a receiver can recover
the secret information while a warder cannot detect the
presence of the secret information. Currently, most image
steganography methods achieve the goals of steganography
by embedding secret information into carrier images, which
unavoidably leaves evidence of distortion. Steganalysis algo-
rithms are developed to determine whether an image has
been embedded based on statistical features of distortion [1].
Adaptive steganography algorithms are proposed to min-
imize the embedding distortion by using syndrome-trellis
codes [2]–[4]; however, they can also be detected by more
advanced machine-learning-based steganalysis algorithms,
such as rich models [5]–[7] and deep-learning-based meth-
ods [8]–[10]. To further reduce the risk of being detected
by steganalyzer, scholars have proposed the novel concept of
steganography without embedding (SWE) [11].

In SWE, the information of the cover image itself is used
to represent the secret information. Digital images already
contain rich information, such as pixel brightness, color,

texture, edge, contour and high-level semantics, and pixels
themselves. With appropriate description and processing of
this information, it is possible to create a mapping relation-
ship between this information and the secret information to be
hidden. We simply need to obtain suitable digital images that
can carry information via mapping and designing a method
for this type of mapping. Several SWEmethods have recently
been proposed [12]–[16]. In some of these works, SWEmeth-
ods were designed by mapping the secret information from
the semantic features of natural images with the help of bag
of words [12] or image hashing [13], [14]. This type of
method has the weakness of limited steganography capacity
and the need to construct a large natural image database.
In other works, SWE methods were proposed to map the
secret information from a class of texture synthesis [15], [16]
with the help of carefully designed reversible mathematical
functions. The steganography capacity of the second type
of SWE method is also limited. Another drawback of this
type of methods is that the carrier images are a fixed type of
texture synthesis image or fingerprint image, which may alert
the warder in real-world steganography applications. In this
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paper, we utilize the newly proposed GANs to design new
type of SWE to increase the steganography capacity while
providing various ‘‘natural’’ carrier images.

GANs, proposed by Goodfellow in [17], consist of a
generative model and a discriminative model. The henera-
tive model deceives the discriminative model via generated
images that appear like real images while the discriminative
model judges whether the images are real or unreal. The
ability of the two models is strengthened via adversarial
iterative training. The studies in [18] and [19] improved
GANs to produce images that look more natural, and many
optimizedmodels have been derived fromGANs. TheGoogle
Brain team compared the performance of GANs with that
of other superior optimized models. The results revealed in
their report [20] indicated that the original GANs model
showed the best performance. Deep convolutional gener-
ative adversarial networks (DCGANs) are an extension
of GANs in which the models are deep convolutional
networks [21]. Currently, GANs are widely used for image
generation [22], [23] and image restoration [24] but seldomly
used in image steganography, especially SWE. The research
in [25]–[27] proposed different methods using GANs for
embedding based image steganography to minimize the
embedding distortion and to enhance the ability to resist
steganalysis.

In this work, we propose a new SWE method based
on DCGANs. We establish a relationship between the
secret information and a noise vector, which is the input
of DCGANs. Stego images are generated by the generator in
DCGANs according to preprocessed secret information, and
no information is embedded in stego images during the gener-
ation period. Another convolutional neural networks (CNNs)
called the extractor is designed to recover the secret informa-
tion from these stego images.

The main contributions of this paper includes:
• We propose a new approach of using GANs for
steganography, it is different from previous approaches.
Previous steganography methods using GANs are
embedding based ones, where traditional embedding
skills such as LSB-match are used in the to hide
the secret information. While in our method, we use
DCGANs to a generate cover image only according to
secret information, and the cover image (also is the stego
image) itself already ‘‘contained’’ secret information,
there is no embedding process in our method.

• Highly accurate secret data recovery is achieved by the
carefully designed training of the DCGANs in differ-
ent phases and by mapping the secret information into
noise vectors. In the first phase of training, the mapped
noise vectors are trained into ‘‘real’’ images (stego
images); in the second phase, we train the DCGANs
to ‘‘correctly’’ extract the noise vectors from the stego
images.

• Compared with other non-embedding-based image
steganography methods, the proposed method signifi-
cantly improved the steganography performance.

• Our method can resist detection by some state-of-the-
art steganalysis and image forensics algorithmswhen the
training image set is kept as a secret.

The rest of this paper is organized as follows: Section II
presents the related work on image steganography and ste-
ganalysis algorithms. Section III describes the proposed
method. Section IV presents the experimental results and
analysis. Conclusions are presented in Section V.

II. RELEVANT WORK
A. EMBEDDING-BASED STEGANOGRAPHY
Most traditional image steganography methods are embed-
ding based, in which the secret information is embedded
into the carrier image via a specific type of modification.
How to improve the embedding capacity while minimizing
embedding distortion is the main driving force of the research
in this field. Mielikainen et al. proposed an improved version
of least-significant-bit (LSB) matching that enables embed-
ding the same payload as LSB matching but with fewer
changes to the cover image [28]. Pevny et al. [2] introduced
highly undetectable stego (HUGO), a new embedding algo-
rithm for spatial domain digital images. The main design
principle is to minimize a distortion function that is defined
according to the weighted sum of differences between the
feature vectors extracted from a cover image and its stego ver-
sion in subtractive pixel adjacency matrix (SPAM) [29] fea-
ture space. Wavelet obtained weights (WOW), presented by
Holub et al. [3], embeds the payload in cover images while
following the rule that the more complex the texture of a
region of an image is, the more pixel values within that
region that will be modified. S-UNIWARD [4], proposed by
Holub et al., works in the spatial domain to achieve a sim-
ilar goal: to embed more information in noisy or complex
texture regions of the cover image. The source of the cover
image is important to take into account the security of image
steganography, but the greatest threat to embedding-based
steganography is steganalysis, a method for detecting stego
images from cover images. The ability of steganalysis has
increased sharply with the development of statistical analysis
and machine learning.

B. DEVELOPMENT OF STEGANALYSIS
Steganalysis algorithms are designed to determine whether
a given image is a stego image. Fridrich et al. [30] pre-
sented a reliable and accurate method for detecting LSB
non-sequential embedding in digital images. Shi et al. [31]
proposed a steganalysis scheme for JPEG steganography,
where a Markov process is applied to formulate the
JPEG steganalysis features. Pevny and Fridrich [32] pro-
posed a new merged feature set with Markov and dis-
crete cosine transform features for JPEG image steganalysis.
Pevny et al. [29] presented a SPAM to compute the fea-
tures for steganalysis of stego images in the spacial domain,
where the first-order and second-order Markov chains are
used to model the differences between adjacent pixels.
Fridrich and Kodovsky [5] proposed a general methodology
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for the steganalysis of digital images based on the concept
of a rich model consisting of a large number of diverse
submodels. Goljan et al. [7] proposed an extension of the
spatial rich model for the steganalysis of color images. With
the recent rapid development of deep learning, steganalysis
based on deep learning has been proposed. Qian et al. [10]
proposed a CNNs model for steganalysis that can automati-
cally learn feature representations in CNNs layers and capture
complex dependencies, which are useful for steganalysis.
Zeng et al. [9] proposed a hybrid deep-learning framework
for JPEG image steganalysis by incorporating the domain
knowledge of rich models. Hu et al. [33] proposed a selec-
tion region and a combined CNNs-based method for adap-
tive steganalysis. These machine-learning-based steganalysis
methods are becoming increasingly powerful, which poses a
major challenge to embedding-based steganography.

C. IMAGE STEGANOGRAPHY WITHOUT EMBEDDING
SWE, a new type of steganography focused on how to
establish the relationship between secret information and
cover images was recently proposed to provide a new way
to avoid the detection of machine-learning-based steganal-
ysis. Two methods are currently used to achieve SWE:
the cover-selection-based approach and the cover-synthesis-
based approach [34]. The cover-selection approach constructs
an image library collecting a set of natural images and
then establishes the relationship between the secret infor-
mation and the images in the library. Each message can be
mapped by a single image or a set of images. The cover-
synthesis approach first generates a new cover image driven
by the secret information. Zhou et al. [13] proposed an SWE
framework by constructing an image database composed of
a large number of images indexed according to their hash
sequence generated by a robust hashing algorithm. Then,
the binary secret data are divided into a number of segments.
For each segment, the method selects the image from the
database with the hash value equal to the value of the seg-
ment. Zhou et al. proposed another SWE method by using
the bag-of-words (BOW) model [12]. In this method, visual
words are extracted from an image set by the BOW model;
then, the mapping between text information keywords and
the visual words of images is established. According to the
mapping relation, a set of sub-images with visual words
related to the text information is found. The images con-
taining these sub-images are used as stego images for secret
communication. In [14], a robust image hash was proposed
to create the relationship between the secret data and the
image. The secret data are divided into segments to match
the images in the local image library according to the image
hash values. Due to the designed robust image hashing,
the steganography capacity is improved relative to that in
previous work, and the carrier image is resistant to common
image attacks. The drawbacks of the cover-selection-based
approach are obvious: the steganography capacity is limited
and a large local image library is required. Methods to gener-
ate texture images based on secret information were proposed

in [15], [16], and [35] from the perspective of cover-synthesis.
Otori and Kuriyama [35] presented an approach to image
coding that first paints a regularly arranged dotted pattern,
and then camouflages the dotted pattern using the same tex-
ture sample while preserving quality comparable to that of
existing synthesis techniques. Xu et al. [15] presented the
stego-texture, a unique texture synthesis method to transform
an input image or text message into an intricate texture image.
The stego-texture is generated by a real-time texture synthesis
system from a given message via a reversible mathemati-
cal function, and the hidden message can be retrieved by a
decrypter. Wu and Wang [16] proposed another steganog-
raphy approach by using reversible texture synthesis where
smaller texture images are re-sampled to create a new texture
image with a similar local appearance and an arbitrary size.
The texture synthesis process is weaved into steganography
to conceal secret messages. However, state-of-the-art cover-
synthesis-based approaches have the same weakness: the
synthetic images used for these SWE schemes are a special
class of images (such as a class of texture images), and it is
unusual to send a large number of this type of image, which
may alert a warden.

D. GANs FOR IMAGE STEGANOGRAPHY
The emergence of GANs has provided new approaches to
achieve image steganography. Hayes et al. proposed an image
steganography method using GANs [25] that is competitive
with state-of-the-art steganography techniques, as well as a
robust steganalyzer that performs the discriminative task of
determining whether an image contains secret information.
Suppose that Alice, Bob and Eve are three neural networks.
Alice is trained to generate stego images, Bob can extract
secret data from stego images, and Eve is a steganalysis
tool. Information is embedded into the least-cost location
in each training period. However, the experimental results
show that the trained steganalysis tool Eve does not achieve
the distinguishing goal with a probability of 0.5. Therefore,
stego images produced by this type of steganography method
are easily detected by other steganalysis algorithms, and the
secret data cannot be decoded completely by Bob.

Volkhonskiy et al. presented a new adversarial train-
ing structure for steganography called SGANs [26], which
accounts for not only the authenticity of the generated images
but also the resistance to the detection. The proposed model
trains a cover image container that can generate secure
steganography cover images to deceive a given type of ste-
ganalysis. The LSB-match embedding scheme is applied to
SGANs to produce the corresponding steganography con-
tainer. However, different embedding schemes may cause
SGAN retraining. The resistance to detection of current ste-
ganalysis algorithms is not reported in this paper.

Tang et al. [27] proposed an automatic stego distortion
learning framework by using GANs consisting of two adver-
sarial subnetworks. The proposed framework automatically
learns embedding change probabilities for every pixel in a
given spatial cover image. Then, a generator G produces
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FIGURE 1. The proposed steganography framework using DCGANs for SWE.

stego images according to the minimal embedding distor-
tion calculated based on the change probabilities while a
discriminator D distinguishes the produced stego images
from the cover images. However, the performance of this type
of method is no better than that of some state-of-the-art hand-
crafted steganography algorithms.

The steganography methods with GANs in the methods
described above are embedding based. In this paper, we pro-
pose an SWE method that applies DCGANs.

III. THE PROPOSED IMAGE STEGANOGRAPHY
WITHOUT EMBEDDING
As illustrated in Fig. 1, the proposed steganography frame-
work consists of three phases. In first phase, we train
DCGANs on an image set and obtain generator G after
DCGANs convergence. The network parameters of G are
determined after the first phase, and the cover images are
produced by G. During the second phase, we train a CNNs
model, called the extractor E, based on the recovery errors
from a large number of random noise vectors. We use G to
extract information from stego images produced by G. In the
third phase, the sender and the receiver hold the network and
parameters of G and E, respectively. The sender divides the
secret information into segments Si, maps the segments into
vectors zi, and generates stego images by G according to z.
After the receiver receives the stego images, who uses E to
extract vector z′i and then restores the secret data from z′i. The
main notation used in this section is given in Table 2.

A. COVER IMAGE GENERATION
The phase of cover image generation includes twomain steps.
In the first step, we divide the secret information S into

segments Si and then map each segment Si to noise vector zi.
In the second step, we generate a cover image stegoi (which
is also a stego image because the scheme is an SWE method)
from the noise vector zi with the help of DCGANs. In the
mapping procedure, several bits (2 or three) of the segment
are mapped to a noise value with a given interval according
to the following equation:

r = random(
m

2σ−1
− 1+ δ,

m+ 1
2σ−1

− 1− δ), (1)

where the function random(x,y) denotes a random noise value
produced between x and y, r is the mapped noise vector
within the interval ( m

2σ−1
−1+δ, m+1

2σ−1
−1−δ),m is the value

of the secret data bits to be mapped, and σ is a positive integer
variable that represents the number of secret data bits carried
by one bit of random noise, σ = |Si|/|zi|. δ is the gap between
the divided intervals, which allows a deviation tolerancewhen
extracting data from a stego image and ensures the extraction
accuracy of the secret data during the secret communication
phase.

To further illustrate how the formula works, we present the
details in Table 1 when σ is 3 and δ is 0.001.We convert every
three bits of payload into random noise within an interval
between -1 and 1. Eight intervals are obtained from (-1, 1)
with a gap of 0.001, and each payload value from ‘000’ to
‘111’ corresponds to an interval. Therefore, the steganogra-
phy capacity of each stego is σ × |zi| = 3× |zi|.

The size of stego images generated from G is limited by
the scale of the CNNs in DCGANs: the larger the dimension
of noise is, the richer the details the generated image con-
tains [21]. Secret information is converted into corresponding
noise vectors and fed into the generator in the DCGANs to
produce stego images.
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FIGURE 2. Diagram of mapping secret data into vectors.

TABLE 1. Relationship between noise and secret information with 300 bit
steganography capacity.

The structures of the generator G and discriminator D in
DCGANs are introduced in [21]. G and D both are CNNs.
G consists of a fully connected layer and four deconvolution
layers and is used to fit the data distribution of the real images
in the training set to produce an artificial image. D consists of
four convolution layers and a fully connected layer. The input
of D is an image with dimensions of 64×64×3, followed
by four convolutional layers where the image dimensions are
halved, and the number of channels is doubled from the previ-
ous layer. The last layer is a two-class softmax that outputs the
probability of the image is from G or the training image set.
The two CNNs are trained according to the loss calculated
based on the feedback of each other. We train DCGANs
to optimize the objective function defined as [21, eq. (2)],
where D and G represent the generator and discriminator in
the DCGANs, respectively. z is the noise vector from which
G produces an artificial image, and x denotes images from
the image set.

min
G

max
D
V (G,D) = Ex∼pdata(x) [logD(x)]

+Ez∼pz(z) [log(1− D(G(z)))] (2)

stego = cover = G(z) (3)

We train DCGANs on an image set to obtain the generator
model from which the stego image is derived. We map the
preprocessed secret information into noise vectors, which are
used as the input of G to generate stego images. Then G is
used to convert the secret information into an image carried
by the payload. In other words, there is a corresponding
relationship between stego images and the secret information.
Eq.(3) indicates that stego images are driven directly by secret
data with the help of G, and they are not modified to hide
information. Thus, the stego images and cover images are the
same.

B. TRAINING OF THE EXTRACTOR
We design the CNNs, called the extractor E, to recover the
secret data from stego images generated by G. We study
the architecture of D to accurately recover the information
from E. Similar to the structure of D, E has four convolutional
layers and a fully connected layer, as shown in Fig. 3.

FIGURE 3. The structure of extractor E.

The input of E is a stego image of dimensions 64×64×3,
and the output is a noise vector with dimensions of 1×100.
We change the function in the output layer of D from
softmax to tanh. The output of the tanh activation func-
tion satisfies the condition that the noise values must be
between−1 and 1. In CNNs, the dropout operation, activation
function and pooling layer are used to enhance the nonlinear
learning capabilities of neural network. The purpose of the
CNNs are to use nonlinear features to learn the fitting param-
eters. The weight parameters in each layer of the network are
learned to fit the mapping between the input and output. The
effect of CNNs is similar to that of linear multivariate equa-
tions if the roles of these nonlinear operations are ignored.
From this perspective, we design E with a network structure
that is opposite to that of the generator. We use a leak-Relu
activation function and batch normalization in each layer with
no pooling layer or dropout operation. Additionally, a fully
connected layer is used after the last convolutional layer.
We train E to extract information from the generated stego
images from G. The training procedure of the extractor is
illustrated as phase 2 in Fig. 1.

L(E) =
n∑
i=1

(z− E(stego))2 =
n∑
i=1

(z− E(G(z))2 (4)

We constantly generate random noise vectors
between −1 and 1 with the same dimensions as zi as the
input of G. In addition, to avoid over-fitting when E extracts
information from stego images generated by certain noise
vectors, the noise vectors fed to extractor E are generated with
different random seeds. Then, the generator produces cover
images as the input of the extractor according to these noise
vectors. E outputs z′ as the recovery of z. The optimization
goal for training E is to minimize the deviation between
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TABLE 2. Notation used in this paper.

noise z and recovery z′ resolved by the extractor. The loss
function of the extractor model is defined as the square
loss, which is shown in Eq.(4), where z represents the noise
vector and E denotes the extractor. E(stego) is the noise
vector recovered from the stego image by the extractor, and
G(z) is the image generated by G from noise z. We train E
for a specific G obtained from different image databases.
When the loss of training is sufficiently small or the network
of E is convergent, we use E to recover secret data from the
stego images produced by G.

C. SECRET COMMUNICATION
As illustrated in phase 3 of Fig. 1, the conditions for secret
communication by the proposed method are that the sender
holds the CNNs model G and the corresponding network
parameters of G and the receiver holds the CNNs model E
and the corresponding network parameters of E. The detailed
hiding algorithm is shown in Algorithm 1. After training
the DCGANs, the sender divides the secret information
into segments with the length of the steganography capac-
ity of the stego image. The sender calculates the value m
of every σ -bits binary numbers in each information seg-
ment and then maps the σ -bits into a value in the noise
vector according to the mapping rule defined in Eq.(1).
The sender sends these noise vectors to the input of gen-
erator G to produce the corresponding stego images. The
sender transmits all the stego images in turn. The recovery
algorithm is shown in Algorithm 2. The receiver receives
the stego images, uses E to extract the noise vectors, and
restores the secret data according to the reverse mapping
rules.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
We trained the DCGAN model on two datasets1: Celebri-
ties, which contains 200k face images, and Food101,
which contains 50k food images. All the images in the
two datasets are cropped to 64×64, and the models are
trained with mini-batch stochastic gradient descent (SGD)
with a mini-batch size of 100. The generated images
are 64×64.

We hope that the learning rate is generally set according
to the number of training rounds. From the change in loss
in the experiments, we found that it is suitable to set the
initial learning rate to 0.0002. The learning rate after a certain
number of training rounds should be gradually reduced; thus,
we use Adam optimization [36] to train the DCGANs and the
extractor E, and we use the steganography capacity and the
resistance to detection by steganalysis and forensics methods
to evaluate the SWE methods. Because we generate stego
images by using DCGANs and recover the information from
stego images by using CNNs, we analyze the anti-forensic to
image tempering of stego images and the accuracy of secret
data recovery from stego images. The experiments consist
of five parts. In the first part, we train the DCGANs on the
two image sets to obtain the generator to create cover images.
In the second part, we train the extractor E based on the output
of the convergent generator G. In the third part, we test the
secret information recovery accuracy by using the convergent
extractor. In the fourth part, we compare the steganography
capacity of our method with that of several state-of-the-art

1Celebrities is available at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.
html. Food101 is available at http://www.vision.ee.ethz.ch/datasets_
extra/food-101/.
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Algorithm 1 Cover (stego) Image Generation
Input: Variables:S, t, σ, δ.
Output: stego
1: train the DCGANs on an image set to obtain generator G

by using Eq.(2);
2: l = σ × t;
3: n = dlength(S)/le;
4: divide secret information into n segments with length of
l;

5: for i = 1 to n do
6: //loop will iterate for all secret information segments

from 1 to n;
7: for k = 1 to l do
8: //loop will iterate for all bits of each secret informa-

tion segment;
9: m = 0;
10: for j = k to k + σ − 1 do
11: m = m+ 2k+σ−1−jSij;
12: end for
13: k = k + σ ;
14: generate r by using Eq.(1);
15: insert r into zi;
16: end for
17: insert zi into z;
18: end for
19: for i = 1 to n do
20: input zi into DCGANs and get stegoi = G(zi);
21: insert stegoi into stego;
22: end for
23: return stego.

Algorithm 2 Secret Data Extraction and Recovery
Input: Variables:stego, t, σ .
Output: S
1: train the extractor E according to the generator G by using

Eq.(4);
2: n = length(stego);
3: for i = 1 to n do
4: //loop will iterate for all stego images
5: zi = E(stegoi);
6: m = 0
7: for j = 1 to t do
8: m = b(zij + 1)× 2σ−1c;
9: //recover secret data according to the reverse map-

ping rules
10: insert binary bits with value of m into Si;
11: end for
12: insert Si into S;
13: end for
14: return S.

SWE methods. Finally, we analyze the security of the pro-
posed SWE method.

In our method, we used TensorFlow running in GPU mode
while computing gradient. In the training phase, the model is

run on a machine with an NVIDIA gtx1070 GPU and 128GB
of memory. We trained the DCGANs for 300 epoches on two
datasets, Celebrities and Food101, for 6 days and 4 days,
respectively.

A. TRAINING OF DCGANs
The training of DCGANs is carried out on the Celebrities
and Food101 image training sets. The dimension of the noise
vector z, the input of the generator, is 100. In this section,
we focus on how to obtain a generator G that can produce
high-quality cover images. We optimize DCGANs based on
the objective function defined in Eq.(2). In the experiments,
we set the learning rate to 0.0002 and the mini-batch to 100.
For each image sets, DCGANs are trained in 300 epochs.
Some details of a mini-batch sample output fromG are shown
in Fig. 4. Fig. 4(a) shows samples trained on Celebrities, and
Fig. 4(b) shows samples trained on Food101. After training,
due to the characteristic of DCGANs, the output image fits the
data distribution of the images in the corresponding training
set. Fig. 4(a) and Fig. 4(b) show artificial face and food
images produced by G, respectively.

B. TRAINING OF THE EXTRACTOR
In this section, we train the extractor with a large number
of random noise vectors. The noise values are uniformly
distributed in (−1, 1). We optimize the extractor by training
as much as possible to improve its accuracy. The differences
between the outputs fromE and the original noise vectors rep-
resent the recovery accuracy; thus, we take the square loss as
the training loss function. In the training procedure, the inputs
to the extractor are images of size 64×64, the learning rate
is set to 0.0002, and the size of a mini-batch is set to 100.
In each training mini-batch, a 100×100 random noise matrix
is produced as the input of the generator, from which mini-
batch images are generated. Then, these images are sent to the
input of the extractor as stego images. The loss is calculated
from the noise matrix and the outputs from extractor via the
loss function, and Adam optimization is used in training.
We train extractor E based on the convergent generator G
trained separately on the two training sets. We record the loss
value after every 100 batches, which is called a step. The loss
curves with steps of training are shown in Fig. 5 and Fig. 6.

For conciseness, we call the curve shown in Fig. 5 loss
a and the curve shown in Fig. 6 loss b. Loss a and loss b
show that the loss value of E for generator G trained on
Celebrities is approximately 3.7 while the loss value of E
for generator G trained on Food101 is approximately 3 at
the beginning of training. Loss a and loss b fluctuate vio-
lently initially, which means that extractor’s ability to resolve
secret information is weak. However, the losses gradually
decrease as more training steps are completed, indicating that
the training of extractors to resolve information based on
different generators G is effective. Although loss a fluctuates
in a larger range than that of loss b, their convergence speeds
are equivalent. After approximately 300 steps, loss a and loss
b both become stable at approximately 0.3. Therefore, the
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FIGURE 4. Mini-batch generated images output from G trained on different images. (a) Samples generated
by G trained on Celebrities. (b) Samples generated by G trained on Food101.

FIGURE 5. The training loss of extractor based on generator G trained on
celebrities.

FIGURE 6. The training loss of extractor based on generator G trained on
Food101.

losses of extractor E based on the two training sets reach
the same value when E converges, despite the differences in
training procedures. Thus, the extraction ability of extractor
E is not dependent on the image set but on the CNNs structure
of generator G. After 300 steps, there is no significant decline
in loss a and loss b.

C. ACCURACY OF SECRET DATA RECOVERING
The extraction accuracy of the noise vector is the key to
recovering secret data. To assess the accuracy of data recov-
ery under different conditions, we conduct experiments to
recover secret data from the output of extractor E under
different σ and δ values. We use G obtained by training
DCGANs to generate stego images and use E to recover secret
data according to the reverse mapping rule.

To illustrate the impact of the number of training steps
on the accuracy of the extractor, we set δ to 0.01 and
vary σ from 1 to 3 and conduct extraction experiments
with the E obtained by training. The recovery accuracy is
defined as the ratio of the number of binary bits recovered
correctly from the stego image to the length of the original
secret information. Fig. 7 and Fig. 8 show the curves of the
recovery accuracy under different σ values. The recovery
accuracy increases as the number of training steps increases.
After 300 steps, the recovery accuracy exceeds 0.90
when σ is 1 and 2 and reaches approximately 0.96 when
σ is 1. When σ is 3, the recovery accuracies for the
two training sets are 0.893 and 0.887. Additionally, the

FIGURE 7. Recovery accuracy of secret information extracted from stego
images by using E trained on the Celebrities image set.
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FIGURE 8. Recovery accuracy of secret information extracted from stego
images by using E trained on the Food101 image set.

recovery accuracy decreases with increasing σ . In other
words, the smaller the payload is, the higher the extraction
accuracy becomes.

To demonstrate the impact of δ on the recovery accu-
racy, we vary σ from 1 to 3 and use E after 300 epochs to
recover secret data under different δ. The recovery results are
shown in Fig. 9 and Fig. 10. σ is the index representing the

FIGURE 9. Recovery accuracy of secret information extracted from stego
images under different δ on the celebrities image set.

FIGURE 10. Recovery accuracy of secret information extracted from stego
images under different δ on the Food101 image set.

steganography capacity. The results show that the recov-
ery accuracy increases with increasing δ under different
steganography capacities. When σ is 1 and δ is 0.1, the recov-
ery accuracy is approximately 0.98. We also perform experi-
ments to illustrate the impact of σ on the recovery accuracy;
the results are shown in Fig. 11, where δ is 0.01 and σ is varied
from 1 to 5. As the steganography capacity increases,
the recovery accuracy decreases. By comparison, the recov-
ery accuracy of method in [25] is less than 0.87 when the
payload is 0.4 bpp, which is lower than our recovery accuracy.

FIGURE 11. Recovery accuracy from stego images under different
steganography capacities.

D. STEGANOGRAPHY CAPACITY
Currently, the steganography capacities of SWE methods
are much lower than those of traditional embedding-based
steganography. Because our method is a new SWE method,
in this paper we simply compare the steganography capacity
with other state-of-the-art SWEmethods, including the cover-
selection-based and the cover-synthesis-based methods. The
comparison results are shown in Table 3, where the second
column is the absolute steganography capacity (steganogra-
phy capacity per image), the third column is the the size of the
stego image, and the last column is the relative steganography
capacity (steganography capacity per pixel):

Relative capacity =
Absolute capacity

The size of the image
(5)

The relative capacity of our method is 9.16e-3 bytes/pixel,
which is shown in the last row of Table 3. Rows 1-3 show
the capacities of cover-selection-based methods. Apparently,
the relative capacity of our methods is much greater than
those of cover-selection-based methods. Rows 4-6 show
the capacities of cover-synthesis-based methods. Although
compared with the relative capacities of the cover-selection-
based methods the relative capacities of cover-synthesis-
based methods are improved significantly, they are still lower
than our capacities. In other words, our method outperforms
state-of-the-art SWE methods, including the cover-selection-
based and cover-synthesis-based methods.
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TABLE 3. Steganography capacities of SWE methods.

E. SECURITY ANALYSIS
In the proposedmethod, there is no way to reveal the informa-
tion concealed in the stego images except with the extractor E.
Hence, we consider two aspects of security: the resistance
to detection of steganalysis and the anti-forensics of gener-
ated stego images. Due to the characteristics of SWE, there
is no difference between cover images and stego images.
Thus, SWE can effectively resist the detection of steganalysis
algorithms. By contrast, the stego images are generated by
CNNs in our method. To prove that the stego images in our
method can also resist detection by steganalysis algorithms,
experiments are conducted on the detection of stego images
produced by our method via state-of-the-art image steganal-
ysis algorithms. Since the stego images generated by CNNs
are computer-generated images, which are unnatural images
even though they look like natural images, the ability of
the proposed method to resist detection by image forensics
algorithms is also considered in this section.

We generate 5000 stego images via the proposedmethod as
samples and then detect them with different steganalysis and
image forensic algorithms. The probability of being identified
as a stego image or tampered image is shown in Table 4.
The CRM proposed in [7] is an extension of the spatial rich
model for steganalysis of color images. Ni’s model [37] is a
CNN-based steganalysis algorithm for steganographic algo-
rithms in the spatial domain. Median filtering is among the
most common manipulation methods in image processing.
The image forensics algorithm that we use, CMFF, which is a
CNN-based forensics algorithm with image median filtering,
was proposed in [38].

In the experiment, we consider two different cases.
In the first case, the training data set of the steganalysis
methods [7], [37] consists of the cover images used in our
method and the stego images generated using embedding-
based algorithms, and the training data set of [38] consists of
the cover images used in our method and the splicing image
generated by adding media filtering. Thus, the training image
sets of [7], [37], and [38] are different from our image sets,

TABLE 4. The probability of identifying a stego image or tampered image
under detection by different algorithms.

and their detection accuracies are shown in the first row of
Table 4, fromwhich we can see that their detection accuracies
are low (0.008, 0.47 and 0, respectively). In the second case,
the training sets of [7], [37], and [38] are same as ours (that
is to say, in [7] and [37] we use a natural image in our model
as the cover images, and we use the generated images in our
model as the ‘‘embedded stego’’ images; in [38] we use the
natural image in our model as the natural images, and we use
the generated images in our model as the tampered images).
Their detection accuracies are shown in the second row of
Table 4, from which we can see that the detection accuracies
of the three algorithms are not low (0.56, 0.98 and 0.74,
respectively).Thismeans that when directly using our training
set to train the classifies in [7], [37], and [38], they achieve
good detection ability. However, in real-world applications,
we can keep the training set of our method as a secret, thus
ensuring security in terms of resisting detection by steganal-
ysis and forensics methods.

F. FURTHER DISCUSSION
To generate more realistic stego images with high steganogra-
phy capacity, we can change the structure of DCGANs, such
as increasing the length of the noise vectors, and changing
the depth and parameters of the CNNs. In this paper, we can-
not ensure that secret information is recovered with one
hundred percent accuracy; the same question exists in [25].
The reason for this problem is that instead of recovering
secret information according to human-designed extraction
rules (which are used in the traditional embedding-based
steganography schemes), we train the CNNs to recover secret
information. The loss of the CNNs is negligible when used for
classification, but there is a loss in recovery accuracy when
the CNNs are used for steganography extraction. We may
further improve the extraction accuracywith the help of Reed-
Solomon error-correction codes. We can calculate the check
codes of all secret message segments and hide these check
codes into additional stego images. The parameters (σ and δ)
can be changed to ensure that the check codes contained in
these stego images are recovered correctly (however, it may
cause the additional images to look similar).

V. CONCLUSIONS
This paper proposes a new image steganography method
based on stego images generated by DCGANs according to
secret information. In other words, we build a functional rela-
tionship between secret information and stego imageswithout
embedding by using CNNs. Moreover, CNNs model that can
successfully extract secret information from stego images
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is proposed. The imperceptibility of secret information by
this method is significantly improved such that the image
steganography can effectively resist detection by steganaly-
sis and forensics algorithms. We apply DCGANs to image
steganography, so the disadvantages of DCGANs result in
some drawbacks. For example, some generated stego images
are not sufficiently natural to completely escape detection by
steganalysis, the size of the stego image is small, and the
steganography capacity is not big adequate. These problems
can be resolved with the development of more powerful
neural networks. The recovery accuracy of our method is
not perfect, but this problem can be resolved by including
error-correction codes in our method. These problems will
be addressed in future work.
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