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ABSTRACT In this paper, we investigate the resource allocation problem for achieving spectral
efficiency (SE) and energy efficiency (EE) tradeoff with users’ minimum rate requirements in hybrid
multi-carrier non-orthogonal multiple access (MC-NOMA) systems which incorporate both NOMA and
orthogonal multiple access (OMA) modes into one unified framework. All the degrees of freedom involved
in resource allocation, including the choice of multiple access (MA) modes, user clustering, subcarrier
assignment, and power allocation, are jointly considered. We first formulate the SE-EE tradeoff as a multi-
objective optimization (MOO) problem with minimum rate requirement constraints. Then, considering the
non-convexity of the MOO problem, it is converted into a single-objective optimization (SOO) problem by
utilizing weighted Tchebycheff method. Lagrangian dual decomposition and sequential convex program-
ming are applied to solve the SOO problem. We propose a joint resource allocation algorithm which is
applicable to the general case, where an arbitrary number of users can be multiplexed on the same subcarrier.
Simulation results demonstrate that users’ minimum rate requirements and channel conditions have great
impact on the selection of MA modes. The proposed hybrid MC-NOMA mode significantly outperforms
MC-NOMA and OMA in terms of SE-EE tradeoff, and the performance gain brought by four or more users
sharing the same subcarrier is minimal. Meanwhile, the hybrid MC-NOMA also shows great potential to
improve the tradeoff between fairness and system efficiency.

INDEX TERMS MC-NOMA, energy efficiency, spectral efficiency, minimum rate requirement, user
clustering, subcarrier assignment, power allocation.

I. INTRODUCTION
Non-orthogonal multiple access (NOMA) has been recog-
nized as one of the promising candidate multiple access (MA)
schemes for performance enhancement in the fifth-
generation (5G) cellular communications [1]–[4]. Compared
to conventional orthogonal multiple access (OMA) such as
orthogonal frequency-division multiple access (OFDMA),
the major advantages of NOMA include improved spectrum
efficiency (SE), massive connectivity and lower transmission
latency and signaling cost [5]. In general, NOMA can be
divided into two categories, namely code-domain NOMAand
power-domain NOMA. In this paper, we focus on the power-
domain NOMA. In power-domain NOMA, two or more users
are multiplexed in the power domain. Specifically, the base

station (BS) transmits a superposition coded signal at the
same time, code and frequency, but with different power
levels. At the receiver sides, the composite signal of different
users is separated by multiuser detection (MUD) algorithms
such as successive interference cancellation (SIC) [6]. This
renders the resource allocation optimization problem in
NOMA more complex and different from the OMA systems.

Recently, related work has emerged to investigate the
resource allocation problem in NOMA systems to optimize
the system SE. In [7], game theory is applied to allocate
power among users in single-carrier NOMA (SC-NOMA)
systems to maximize the revenue of BS. Lei et al. [8] pro-
pose a suboptimal power and channel allocation algorithm
combining Lagrangian duality and dynamic programming to
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maximize the weighted sum rate in a multi-carrier NOMA
(MC-NOMA) system. In [9], for a two-user multiple-input-
multiple-output (MIMO) NOMA system, the authors pro-
pose two power allocation algorithms to maximize the sum
capacity under the total power constraint and the minimum
rate requirement of weak users. For uplink NOMA, Mol-
lanoori and Ghaderi [10] propose polynomial time algorithms
to solve uplink scheduling problems with fixed received
power of users. In [11], user clustering and power allocation
algorithms for both uplink and downlink NOMA are pro-
posed, but the user clustering and power allocation are car-
ried out separately, which degrades the performance advan-
tages of NOMA. In [12], by introducing matching theory,
a joint resource allocation algorithm is proposed to maximize
the weighted sum-rate in MC-NOMA systems, where the
subcarrier assignment problem is equivalent to a many-to-
many two-sided matching game and the power allocation is
performed after the subcarrier assignment is settled.

The aforementioned contributions to NOMA in resource
allocation aim at optimizing the system SE, while the energy
efficiency (EE) of NOMA systems has not been well investi-
gated. Li et al. [13] and Lei et al. [14] study the power min-
imization problem with minimum rate requirement of each
user in MC-NOMA systems, but the power minimization
does not directly lead to EE optimization. In [15], the EE
optimization is studied in fading MIMO-NOMA systems,
but the number of users is limited to two. In [16], a power
allocation strategy is proposed to maximize the EE subject
to a minimum required data rate for each user in SC-NOMA
systems. Fang et al. [17] optimize the subcarrier assignment
and power allocation to maximize the EE for the downlink
MC-NOMA networks, while the proposed EE maximization
resource allocation algorithms are only valid for the case
of two users. Moreover, the optimal EE and SE are not
achievable simultaneously, i.e., maximizing EE as in [17] will
normally lead to the degradation of SE if EE and SE are not
jointly considered in the problem formulation [18]. Consid-
ering the spectrum scarcity in wireless communications, it is
more advantageous to investigate the SE-EE tradeoff problem
compared to the EE maximization only resource allocation in
order to provide best levels of SE and EE tradeoff according
to different performance preferences [19], [20].

On the other hand, in NOMA systems, rate fairness
among users or quality-of-service (QoS) is another key issue
that should be guaranteed. This is because if no rate fair-
ness or QoS is imposed on the system, for the users mul-
tiplexed on the same subcarrier, all the available transmit
powerwill be allocated to the single user with the best channel
quality, which leads to absolute unfairness among users, and
NOMA will be reduced to OMA [8]. In [9], the minimum
rate requirement is applied to allocate non-trivial data rates
to the weaker users to ensure certain level of fairness in
MIMONOMA systems. In [3], [8], and [12], the optimization
objectives are all weighted sum-rate in order to guarantee
the rate fairness among users to some extent, but the mini-
mum rate requirement for each user cannot be guaranteed.

Timotheou and Krikidis [21] investigate the impact of power
allocation on the rate fairness of SC-NOMA, whereas only
the max-min fairness criterion is considered. To ensure the
QoS for each user in NOMA, in this paper, the users’ min-
imum rate requirements are set as constraints in the con-
sidered resource allocation problem, and such constraints
are also capable of providing various levels of rate fairness
among users by tuning the values of minimum rate
requirements.

Furthermore, according to the principle of NOMA, it is
evident that NOMA encourages multiple users to share the
same subcarrier simultaneously. However, for the case where
the users’ channel conditions are similar, the performance
advantages of NOMA over OMA can be diminished [2].
Besides, the implementation of NOMA causes higher decod-
ing complexity and error propagation than that of OMA [22].
This motivates us to investigate a new approach called hybrid
NOMA and the corresponding resource allocation problem.
Specifically, we investigate hybrid MC-NOMA which incor-
porates NOMA and OMA into one unified framework, and
the users are allowed to choose any one of the MA modes
(NOMA or OMA) based on the relationship of all users’
channel conditions. The adaptive selection of MA modes
introduces an extra degree of freedom in resource allocation,
which increases the complexity of the optimization but is
beneficial to fully exploiting the joint advantages of both
NOMA and OMA. Note that the hybrid NOMA model is
also mentioned in [3], where the weighted sum throughput
is maximized. Nevertheless, in the system model proposed
in [3], themaximum number of users multiplexed on the same
subcarrier is limited to two, which restricts the advantage of
NOMA. More importantly, as the authors mainly focus on
the full-duplex NOMA transmissions, the simulation results
do not shed light on the performance gain brought by hybrid
NOMA over NOMA and OMA, and how the minimum rate
requirement and channel condition of each user impact the
selection of MA modes remains unknown.

Motivated by the above observations, in this paper,
we focus on a novel joint resource allocation problem, com-
bining the selection of MAmodes, user clustering, subcarrier
assignment and power allocation together to achieve best
levels of SE-EE tradeoff according to different preferences
in hybrid MC-NOMA systems. The primary contributions of
this paper can be summarized as follows:

1) We propose a hybrid MC-NOMA resource allocation
model which incorporates NOMA and OMA to fully exploit
the joint advantages of the two kinds of MA modes. In the
proposed algorithm, all the degrees of freedom in resource
allocation, including the selection of MA modes, user clus-
tering, subcarrier assignment and power allocation, are jointly
considered. By performance comparisons, it is found that the
hybrid MC-NOMA significantly outperforms MC-NOMA
and OMA in terms of SE-EE tradeoff, especially when the
number of subcarriers is lower. Moreover, our proposed
hybrid MC-NOMA resource allocation scheme shows great
potential to improve the tradeoff between user fairness and
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system efficiency thanks to the wider capacity region of
NOMA compared to OMA.

2) Unlike some previous literature such as [3] and [17]
where the maximum number of users sharing the same sub-
carrier is restricted to 2, we propose a resource allocation
algorithm applicable to the general case where arbitrary num-
bers of users can be multiplexed on the same subcarrier.
Moreover, we investigate the SE-EE tradeoff performances
when different numbers of users are allowed to share the
same subcarrier. It is demonstrated for the first time that the
performance gain brought by allowing four or more users to
share the same subcarrier is very small, Thus, considering
the decoding complexity of receivers and the error propa-
gation problem, our research suggests to set the maximum
number of users sharing the same subcarrier as 3 in hybrid
MC-NOMA systems. Such result has not yet been seen in
previous literature and can provide deep insights on the
parameter design for hybrid MC-NOMA systems.
3) In our resource allocation problem, the minimum rate

requirement for each user is imposed to guarantee the rate
fairness and QoS, which is different from [3], [8], and [12].
By accurately counting the number of subcarriers applying
NOMA and OMA, it is demonstrated for the first time that
the minimum rate requirement has significant impact on the
selection of MA modes when NOMA and OMA coexist in
the system. In general, with the increase of minimum rate
requirement for each user, the ratio of subcarriers applying
NOMA mode also rises. A more significant observation is
that the users with the best and worst channel conditions
are more inclined to transmit in NOMA mode. To our best
knowledge, no similar results have been reported in the
existing work from the perspective of optimization. Besides,
by adjusting the minimum rate requirement, the proposed
resource allocation algorithm for hybridMC-NOMA systems
can achieve various levels of fairness, but higher fairness
results in degraded performance of SE.

The rest of this paper is organized as follows. In Section II,
we present the systemmodel for hybridMC-NOMA systems.
In Section III, the resource allocation problem for achieving
the SE-EE tradeoff is formulated as a multi-objective opti-
mization problem. In Section IV, the optimization problem
is solved by the weighted Tchebycheff method, and a joint
resource allocation algorithm is proposed. Simulation results
are presented in Section V and Section VI finally concludes
this paper.

II. SYSTEM MODEL
Consider a single-cell downlink MC-NOMA system as
shown in Fig. 1, where one BS communicates with L users
simultaneously through K subcarriers by applying hybrid
MA transmission protocols of OMA (e.g., OFDMA) and
NOMA. All subcarriers are assumed to undergo quasi-static
Rayleigh fading, where the channel coefficients are constants
for each transmission block but independent between differ-
ent blocks.

FIGURE 1. System model for the proposed hybrid MC-NOMA.

Without loss of generality, we first focus on the k-th sub-
carrier and suppose Lk users are clustered and assigned to
transmit on this subcarrier. Here, the number of Lk should
satisfy the condition of 1 ≤ Lk ≤ V , whereV is themaximum
number of users allowed to transmit on the k-th subcarrier.
If Lk = 1, it means that a single user transmits on subcarrier k
in OMA mode, while if Lk > 1, Lk users transmit on subcar-
rier k simultaneously by applying NOMA protocol. In such
transmission scenario, the user l ∈ {1, · · · ,Lk} may receive
interference from other users multiplexed on the same subcar-
rier. We define9k as the set of users assigned on subcarrier k
and denote Lk = |9k |. Consequently, the received signal for
user l on subcarrier k is given by

yk9k (l) = f kl
∑
i∈9k

√
pk9k (i)x

k
9k
(i)+ nkl , (1)

where xk9k (i) is the transmit signal from BS to user i on
subcarrier k; nkl is the additive white Gaussian noise (AWGN)
at user l on subcarrier k with variance σ 2; f kl is the channel
coefficient between the BS and user l on subcarrier k; pk9k (i)
is the transmit power allocated to user i on subcarrier k .
For each subcarrier where NOMA scheme is invoked, it is

assumed that the normalized channel gains of Lk users on
subcarrier k follow the order as 0 < hk1 ≤ hk2 ≤ · · · ≤ hkLk ,

where hkl =
∣∣f kl ∣∣2/σ 2, l ∈ {1, · · · ,Lk}. As a result, SIC can

be carried out at the users with stronger channels [23]. If we
assume 1 ≤ j ≤ l < i, the l-th user can decode the message
of the j-th user and treat the message for the i-th user as
interference. Specifically, the l-th user decodes the messages
of all the first (l − 1) users, and then successively subtracts
these messages to obtain its own information. Following the
above principle, the received signal to interference plus noise
ratio (SINR) for the l-th user on subcarrier k is given by

γ k9k (l) =
hkl p

k
9k
(l)

hkl
∑

i∈9k
∣∣hki ≥hkl ,i 6=l pk9k (i)+ 1

. (2)

Then, the normalized achievable data rate over a unit
bandwidth for user l on subcarrier k can be expressed as

rk9k (l) = log2
(
1+ γ k9k (l)

)
. (3)
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Remark 1: The SINR expression (2) is derived based on
the principle of NOMA. However, it is worth noting that if
Lk = 1, it means a single user has access to subcarrier k
orthogonally. In such case, (2) still holds as the first term
of the denominator vanishes and thus there is no inter-user
interference on subcarrier k , which is just the case of OMA.
That is the reason why (2) is applicable to both NOMA and
OMA. Hence, our proposed systemmodel is actually a hybrid
MC-NOMA model which incorporates NOMA and OMA
into one unified framework by the generic SINR expres-
sion. The advantage of such a framework lies in that we
can perform the optimization and resource allocation algo-
rithm design for both NOMA and OMA by a using unified
approach, rather than addressing them separately.

III. PROBLEM FORMULATION
In this section, we provide the problem formulation for the
hybrid MC-NOMA resource allocation scheme, where the
objective is to achieve the SE-EE tradeoff with minimum
rate requirement of each user. All the degrees of freedom
in resource allocation are jointly considered and arbitrary
numbers of users are allowed to be multiplexed on the same
subcarrier.

A. ACHIEVABLE DATA RATE
Suppose at most V ≥ 2 users are allowed to be clustered
and multiplexed on the same subcarrier by applying NOMA
protocol. The user cluster for subcarrier k is denoted as
9k = {l1, l2, . . . , lV }, where l1, l2, . . . , lV ∈ {1, 2, . . . ,L}.
According to (3), if hkl1 ≥ hkl2 ≥ . . . ≥ hklV , the normalized
achievable data rate of user l1 is obtained by

rk9k (l1) = log2
(
1+ pk9k (l1) h

k
l1

)
, (4)

and the normalized achievable data rate of user l2 is expressed
as

rk9k (l2) = log2

(
1+

pk9k (l2) h
k
l2

1+ pk9k (l1) h
k
l2

)
. (5)

Similarly, the normalized achievable data rate of the other
users in 9k , i.e., rk9k (l3) , . . . , r

k
9k
(lV ), can also be obtained

on the basis of (3), which are omitted here for the sake of
simplicity.

Accordingly, the total normalized data rate of subcarrier k
is

RkSC = rk9k (l1)+ r
k
9k
(l2)+ . . .+ rk9k (lV ) . (6)

For the special case of hkl1 = hkl2 = . . . = hklV ,
(4), (5) and (6) still hold. In fact, the channel gains of different
users for a given subcarrier cannot be the same due to their
mutually independent random nature [24]. In particular, it can
be proved that the event of two links having the same channel
gain has Lebesgue-measure zero when the fading process
has a continuous cumulative distribution function [25]. As a
consequence, the special case of hkl1 = hkl2 = . . . = hklV occurs
if and only if l1 = l2 = . . . = lV . When l1 = l2 = . . . = lV ,

it means a single user l1 (which can be equivalently denoted
by l2, l3,. . . , or lV ) is assigned to transmit on subcarrier k ,
i.e., user l1 has access to subcarrier k orthogonally. This
illustrates again that the proposed system model in this paper
is a hybrid MA model which incorporates both NOMA and
OMA.

In order to represent NOMA and OMA in a unified frame-
work, for the special case of hkl1 = hkl2 = . . . = hklV ,
we still view user l1, l2,. . . , and lV as different users from
the mathematical perspective. When hkl1 = hkl2 = . . . = hklV ,
no matter what the decoding order is and how the power on
subcarrier k is allocated between pk9k (l1), p

k
9k
(l2),. . . , and

pk9k (lV ), the total normalized data rate of subcarrier k , RkSC,
remains the same, since l1, l2,. . . , and lV actually represent
the same one user.

Then, to represent the system throughput and power con-
sumption, we introduce a binary variable xk9k ∈ {0, 1} and
a parameter yk9k ∈ {0, 1}. x

k
9k

is the subcarrier assignment
and user clustering indicator. If subcarrier k is assigned to
the user cluster 9k , xk9k = 1; Otherwise, xk9k = 0. For the
parameter yk9k , we define

yk9k =
{
1, if hkl1 ≥ h

k
l2
≥ . . . ≥ hklV , ∀k,

0, otherwise.
(7)

Note that yk9k is a constant parameter depending on the
channel conditions of all users in the cluster 9k , rather than
an optimization variable. With the help of xk9k and yk9k ,
the hybrid MC-NOMA system throughput is the summation
of data rates generated by all the subcarriers, which can be
expressed as

R =
L∑

l1=1

L∑
l2=1

. . .

L∑
lV=1

K∑
k=1

xk9k y
k
9k

(
rk9k (l1)+ r

k
9k
(l2)

+ . . .+ rk9k (lV )
)
. (8)

We next derive the data rate of any user l. For any user
l ∈ {1, 2, . . . ,L}, its data rate consists of multiple parts.
If user l is the one with the highest channel gain in the user
cluster 9k , the generated data rate is given by

Rl,1 =
L∑

l2=1

L∑
l3=1

. . .

L∑
lV=1

K∑
k=1

xkll2l3...lV y
k
ll2l3...lV r

k
ll2l3...lV (l). (9)

For the case where user l is the one with the second highest
channel gain in the user cluster 9k , the generated data rate is
expressed as

Rl,2 =
L∑

l1=1

L∑
l3=1

. . .

L∑
lV=1

K∑
k=1

xkl1ll3...lV y
k
l1ll3...lV r

k
l1ll3...lV (l). (10)

Likewise, we can also derive the other data rate expressions,
i.e., Rl,3,Rl,4,. . . , and Rl,V , when the channel gain of user l
is in the other orders in the user cluster 9k , which take the
forms similar to (9) and (10) and are omitted here for brevity.
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Therefore, the total data rate of user l is the summation of
data rates generated from all the above cases, which is given
by

Rl =
L∑

l2=1

L∑
l3=1

. . .

L∑
lV=1

K∑
k=1

xkll2l3...lV y
k
ll2l3...lV r

k
ll2l3...lV (l)

+

L∑
l1=1

L∑
l3=1

. . .

L∑
lV=1

K∑
k=1

xkl1ll3...lV y
k
l1ll3...lV r

k
l1ll3...lV (l)

+ . . .+

L∑
l1=1

L∑
l2=1

. . .

L∑
lV−1=1

×

K∑
k=1

xkl1l2...lV−1ly
k
l1l2...lV−1lr

k
l1l2...lV−1l (l). (11)

B. POWER CONSUMPTION MODEL
With the aid of xk9k and y

k
9k
, the transmit power of BS can be

expressed as

Pt=
L∑

l1=1

L∑
l2=1

. . .

L∑
lV=1

K∑
k=1

xk9k y
k
9k

(
pk9k (l1)+ p

k
9k
(l2)

+ . . .+ pk9k (lV )
)
. (12)

Then, the total power consumption of BS is generally
the summation of the static circuit power and the dynamic
amplifier’s power [26], which is given by

P = PC + εPt, (13)

where PC is the static circuit power of BS and 1/ε represents
the amplifier’s efficiency.

C. PROBLEM FORMULATION
In this paper, we focus on the resource allocation problem for
the SE-EE tradeoff with each user’s minimum rate require-
ment in hybrid MC-NOMA systems, where SE is defined as
the normalized system throughput over bandwidth, and EE is
defined as the delivered bits per unit energy, i.e., SE=R and
EE=R

/
P. All the degrees of freedom in resource allocation,

including the selection of MAmodes, user clustering, subcar-
rier assignment and power allocation, are jointly considered.
As explained in [27], the tradeoff between SE and EE can be
actually equivalent to maximizing the SE and minimizing the
total power consumption simultaneously. Hence, we formu-
late it as a multi-objective optimization (MOO) problem as
follows:

min
x,p
−R (x,p), (14a)

min
x,p

P (x,p), (14b)

s.t. C1 : Pt ≤ PT, (14c)

C2: pk9k (l1)≥0, p
k
9k
(l2)≥0, . . . , pk9k (lV )≥0, ∀k,

(14d)

C3:
L∑

l1=1

L∑
l2=1

. . .

L∑
lV=1

xk9k ≤1, ∀k, (14e)

C4: xk9k ∈ {0, 1} , ∀k, (14f)

C5: Rl ≥ Rmin, ∀l. (14g)

In problem (14), p =
{
pk9k (l1) , p

k
9k
(l2) , . . . , pk9k (lV )

}
and x =

{
xk9k

}
with l1, l2, . . . , lV ∈ {1, 2, . . . ,L} and

k ∈ {1, 2, . . . ,K }. The constraints C3 and C4 indicate that
each subcarrier k can be assigned to only one user cluster
(l1, l2, . . . , lV ), while the maximum number of subcarriers
that can be occupied by one user is not constrained. C5 is
the minimum rate requirement serving as the QoS guarantee
for each user.

For the formulated MOO problem (14), as pointed out
in [28], after converting it into a scalar problem, the EE
maximization corresponds to a specific choice of the weight-
ing parameter. If the largest weighting parameter is imposed
on the single objective (14a), the SE is maximized. Hence,
although the MOO problem (14) maximizes the SE and min-
imizes the total power consumption instead of maximizing
the SE and EE directly, it can still achieve the SE-EE tradeoff
for a specific range of the weighting parameter [27].

IV. JOINT RESOURCE ALLOCATION FOR THE HYBRID
MC-NOMA SYSTEMS
In this section, we first solve the MOO problem (14) by
utilizing the weighted Tchebycheff method. Then, a joint
MA mode selection, user clustering, subcarrier assignment
and power allocation algorithm for achieving the SE-EE
tradeoff in hybrid MC-NOMA systems is proposed.

A. TRANSFORMATION TO SINGLE OBJECTIVE
OPTIMIZATION
For aMOO problemwith conflicting objectives, the weighted
Tchebycheff method is one of the most general methods to
convert it into a single-objective optimization (SOO) prob-
lem [29]. Such method is also employed in [30] where it is
termed as the utility profile method. In [30], after the con-
version of a MOO problem into a SOO problem, it is equiva-
lently reformulated as a max-min problem, and the sequential
generalized fractional programming is proposed to operate
the max-min problem directly. Since the subcarrier allocation
problem is not involved in [30], in this paper, in order to facil-
itate the subcarrier allocation, the transformed SOO problem
will be solved by using the Lagrangian dual method.

To employ the weighted Tchebycheff method, in the first
step, we normalize the two conflicting objective functions to
ensure a consistent comparison [31] as follows

min
x,p

Rmax − R (x,p)
Rmax

, (15a)

min
x,p

P (x,p)
Pmax

, (15b)

where Rmax is the maximum achievable system throughput
and Pmax denotes the maximum total power consumption of
BS. Mathematically, they are defined as Pmax = PC + εPT
and Rmax = max

x,p
R (x,p)

∣∣Pt=PT , respectively.
VOLUME 6, 2018 37059
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Then, according to the weighted Tchebycheff method,
the MOO problem (14) can be converted into a SOO problem
as

min
x,p

max
{
w
Rmax−R (x,p)

Rmax
, (1−w)

P (x,p)
Pmax

}
, (16a)

s.t. C1-C5, (16b)

where w ∈ [0, 1] is the weighting parameter, which is used to
reflect the importance levels of the two conflicting objectives.

To solve such a min-max problem, we introduce an addi-
tional auxiliary optimization variable φ to make it tractable.
Hence, the SOO problem (16) is further rewritten as

min
x,p,φ

φ, (17a)

s.t. C1-C5, (17b)

C6: w
Rmax − R
Rmax

− φ ≤ 0, (17c)

C7: (1− w)
P

Pmax
− φ ≤ 0. (17d)

By relaxing the constraints C6 and C7, the partial
Lagrangian function is given by

G (x,p, φ, λ, µ) = φ + λ
(
w
Rmax − R
Rmax

− φ

)
+µ

(
(1− w)

P
Pmax

− φ

)
= λw

Rmax − R
Rmax

+ µ (1− w)
P

Pmax
+ (1− λ− µ) φ, (18)

where λ ≥ 0 and µ ≥ 0 are Lagrangian multipliers corre-
sponding to the constraints C6 and C7, respectively. Then,
the dual function is expressed as

H (λ, µ) =

min
x,p,φ

G (x,p, φ, λ, µ) ,

s.t. C1-C5.
(19)

Note that relaxing the constraints C6 and C7may introduce
duality gap due to the non-convex nature of problem (17).
In the simulation results, we will illustrate that the perfor-
mance gap between the Lagrangian dual method and the
exhaustive search method is very small.

Observing (18) and (19), for a given set of Lagrangian
multipliers (λ, µ), the optimization problem
min
x,p,φ

G (x,p, φ, λ, µ) consists of two parts, which are the

joint MA mode selection, user clustering, subcarrier assign-
ment and power allocation optimization problem

min
x,p

G1 (x,p, λ, µ)=λw
Rmax−R
Rmax

+µ (1−w)
P

Pmax
,

(20a)

s.t. C1-C5, (20b)

and the adaptive φ selection problem

min
φ

G2 (φ, λ, µ) = (1− λ− µ) φ. (21)

B. JOINT MA MODE SELECTION, USER CLUSTERING,
SUBCARRIER ASSIGNMENT AND POWER ALLOCATION
In the following, we solve the optimization problem (20),
which is divided into an outer and an inner subproblem. In the
outer subproblem, joint MA mode selection, user clustering
and subcarrier assignment are obtained by the Lagrangian
dual decomposition method, while for the inner subprob-
lem, the power allocation problem is solved by employing
the sequential convex programming. As the Lagrangian dual
decomposition is not guaranteed to be globally solved with a
finite number of subcarriers, problem (20) is not sure to obtain
the globally optimal solution.

The technological advancement of Lagrangian dual
decomposition is that it can decouple the dual objective func-
tion intoK independent problems. As the decoupled indepen-
dent problems are unconstrained, they are more manageable
than the primal problem. While for the sequential convex
programming, the advantage lies in that it can solve the non-
convex power allocation problem with low complexity and
fulfilling the KKT first-order optimality conditions. More
importantly, as we will illustrate in the simulation results,
the sequential convex programming actually attains the global
optimum.

1) JOINT MA MODE SELECTION, USER CLUSTERING AND
SUBCARRIER ASSIGNMENT PROBLEM
Due to the existence of inter-user interference and integer
allocation indicators, (20) is a non-convex mixed-integer
non-linear optimization problem, which is NP-hard. This
motivates us to consider efficient algorithms to find near-
optimal solutions in polynomial time. One natural approach
is to apply Lagrangian relaxation. Since problem (20) is non-
convex, there may exist duality gap between the primal and
dual solutions. Nevertheless, in [32] and [33], it is shown
that if the optimization problem satisfies the time-sharing
condition, the duality gap is zero even if the problem is
not convex. We now show the time-sharing condition holds
for (20) as K →∞.
Definition 1 [32]: Let

(
x1,p1

)
and

(
x2,p2

)
be the opti-

mal solutions to the spectrum optimization problem (20)
with power and minimum rate constraints

{
P1T,R

1
min

}
and{

P2T,R
2
min

}
, respectively. The optimization problem (20)

is said to satisfy the time-sharing condition if for any{
P1T,R

1
min

}
and

{
P2T,R

2
min

}
and for any v ∈ [0, 1],

there always exists a feasible solution
(
x3,p3

)
, such

that P3t ≤ vP1T + (1− v)P2T, R3l ≥ vR1min +

(1− v)R2min, and G1
(
x3,p3, λ, µ

)
≥ vG1

(
x1,p1, λ, µ

)
+

(1− v)G1
(
x2,p2, λ, µ

)
, where P3t and R3l are the resulting

transmit power of BS and the data rate of each user calculated
by (12) and (11) with the solution

(
x3,p3

)
.

Proposition 1: The time-sharing condition holds for
problem (20) in the limit K →∞.

Proof: Please see Appendix A. �
Since the time-sharing condition holds in the limit

K →∞, problem (20) can be solved by applying Lagrangian
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min
x,p

L1 (x,p, η, θ , λ, µ) =
L∑

l1=1

L∑
l2=1

. . .

L∑
lV=1

K∑
k=1

xk9k y
k
9k

{
−λw
Rmax

(
rk9k (l1)+ r

k
9k
(l2)+ . . .+ rk9k (lV )

)
+

(
µ (1− w) ε

Pmax
+ η

)(
pk9k (l1)+ p

k
9k
(l2)+ . . .+ pk9k (lV )

)}
−

L∑
l=1

L∑
l2=1

L∑
l3=1

. . .

L∑
lV=1

K∑
k=1

xkll2l3...lV y
k
ll2l3...lV θlr

k
ll2l3...lV (l)

−

L∑
l1=1

L∑
l=1

L∑
l3=1

. . .

L∑
lV=1

K∑
k=1

xkl1ll3...lV y
k
l1ll3...lV θlr

k
l1ll3...lV (l)− . . .

−

L∑
l1=1

L∑
l2=1

. . .

L∑
lV−1=1

L∑
l=1

K∑
k=1

xkl1l2...lV−1ly
k
l1l2...lV−1lθlr

k
l1l2...lV−1l (l) (22)

min
x,p

L1 (x,p, η, θ , λ, µ) =
L∑

l1=1

L∑
l2=1

. . .

L∑
lV=1

K∑
k=1

xk9k y
k
9k

{(
−
λw
Rmax

− θl1

)
rk9k (l1)+

(
−
λw
Rmax

− θl2

)
rk9k (l2)+ . . .

+

(
−
λw
Rmax

− θlV

)
rk9k (lV )+

(
µ (1− w) ε

Pmax
+ η

)(
pk9k (l1)+ p

k
9k
(l2)+ . . .+ pk9k (lV )

)}
. (23)

dual method. Note that in practical systems, the number
of subcarriers, K , is usually large but not infinite. Hence,
although the duality gap is not strictly zero, it is nearly
zero. By relaxing the constraints C1 and C5, substituting
(8), (11) and (12) into (20) and deleting the constant terms,
the Lagrangian function is obtained as (22) at the top of this
page.

In the Lagrangian function (22), we note that the term
L∑
l=1

L∑
l2=1

L∑
l3=1

. . .
L∑

lV=1

K∑
k=1

xkll2l3...lV y
k
ll2l3...lV

θlrkll2l3...lV (l) actually

represents the weighted data rate (Lagrangian multiplier θl
can be viewed as the weighting parameter) generated by
user l when hkl ≥ hkl2 ≥ . . . ≥ hklV . Therefore, in order
to unify the notations in (22) and facilitate the dual decom-
position method [34], the notation l can be replaced by l1
without changing the physical significance. Likewise, in the

term
L∑

l1=1

L∑
l=1

L∑
l3=1

. . .
L∑

lV=1

K∑
k=1

xkl1ll3...lV y
k
l1ll3...lV

θlrkl1ll3...lV (l),

the notation l can be replaced by l2, and so forth. With these
replacements, problem (22) is rewritten as (23) at the top of
this page.

The optimization problem (23) can be decomposed into
K independent subproblems, and each of the subproblem
corresponding to subcarrier k takes the form as

min
xk ,pk

Lk1
(
xk ,pk , η, θ , λ, µ

)
=

L∑
l1=1

L∑
l2=1

. . .

L∑
lV=1

K∑
k=1

xk9k2
k
9k

(
pk
)
, (24)

where

xk =
{
xk9k

}
, pk =

{
pk9k (l1) , p

k
9k
(l2) , . . . , pk9k (lV )

}
,

and 2k
9k

(
pk
)
is defined as

2k
9k

(
pk
)

= yk9k

{(
−λw
Rmax

− θl1

)
rk9k (l1)

+

(
−λw
Rmax

− θl2

)
rk9k (l2)+. . .+

(
−λw
Rmax

− θlV

)
rk9k (lV )

+

(
µ (1− w) ε

Pmax
+η

)(
pk9k (l1)+p

k
9k
(l2)

+ . . .+ pk9k (lV )
)}

. (25)

According to the constraints C3 and C4 in (14), each
subcarrier k is exclusively assigned to only one user cluster
9k = {l1, l2, . . . , lV }. If we denote

2k∗
9k
= min

pk
2k
9k

(
pk
)
, (26)

to minimize Lk1
(
xk ,pk , η, θ , λ, µ

)
, subcarrier k should be

allocated to the user cluster 9k with the minimum value
of 2k∗

9k
, which yields the optimal user clustering and subcar-

rier assignment indicator as

xk∗9k =

1, if (l1, l2, . . . , lV ) = argmin
9k

2k∗
9k
,

0, otherwise.
(27)

Remark 2: It is noteworthy that for the obtained xk∗9k ,
if the indexes of the users in 9k are identical, i.e., l1 = l2 =
. . . = lV , it represents that user l1 (or equivalently denoted by
l2, l3,. . . , or lV ) has access to subcarrier k orthogonally; Oth-
erwise, it means that subcarrier k is simultaneously utilized
by multiple users (l1, l2, . . . , lV ) in NOMA mode. Hence,
xk∗9k is also the indicator of MA mode selection.
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2) POWER ALLOCATION PROBLEM
The following problem to be solved is the power allocation
optimization problem (26) in order to obtain 2k∗

9k
for any

fixed user cluster 9k and subcarrier k , which is the inner
subproblem. Due to the existence of inter-user interference,
problem (26) is not convex, and therefore obtaining its global
optimum is rather difficult. Here, we employ the sequen-
tial convex programming [35] to solve the power allocation
problem (26), which allows us to develop a low-complexity
algorithm guaranteed to converge to a first-order optimal
solution and applicable to the general case where arbitrary
numbers of users are allowed to share the same subcarrier in
NOMA mode.

We observe that for ∀γ and γ ≥ 0, the following inequality
holds [35]:

log2 (1+ γ ) ≥ blog2γ + c, (28)

where b and c are defined as

b =
γ

1+ γ
, (29)

c = log2 (1+ γ )−
γ

1+ γ
log2γ , (30)

respectively. The bound is tight for γ = γ .
As a consequence, the upper bound to the objective

function in (26) is obtained as

2k
9k

(
pk
)

≤ yk9k

{(
−λw
Rmax

− θl1

)
r̄k9k (l1)

+

(
−λw
Rmax
−θl2

)
r̄k9k (l2)+. . .+

(
−λw
Rmax
−θlV

)
r̄k9k (lV )

+

(
µ (1− w) ε

Pmax
+ η

)(
pk9k (l1)+ p

k
9k
(l2)

+ . . .+ pk9k (lV )
)}

, (31)

where

r̄k9k (lm) = bk9k (lm) log2
(
γ k9k (lm)

)
+ ck9k (lm) ,
m = 1, 2, . . . , V . (32)

Next, we adopt the transformation pk9k (l1) = 2q
k
9k
(l1),

pk9k (l2) = 2q
k
9k
(l2),. . . , pk9k (lV ) = 2q

k
9k
(lV ) and define

qk =
{
qk9k (l1) , q

k
9k
(l2) , . . . , qk9k (lV )

}
. Thus, the follow-

ing optimization problem can be obtained from (31):

min
qk

2̄k
9k

(
qk
)

= yk9k

{(
−λw
Rmax

− θl1

)
r̄k9k (l1)

+

(
−λw
Rmax

− θl2

)
r̄k9k (l2)+. . .+

(
−λw
Rmax

− θlV

)
r̄k9k (lV )

+

(
µ (1− w) ε

Pmax
+ η

)(
2q

k
9k
(l1)
+ 2q

k
9k
(l2)

+ . . .+ 2q
k
9k
(lV )
)}
. (33)

To solve the optimization problem (33), we have the fol-
lowing proposition.

Proposition 2: 2
k
9k

(
qk
)
is a convex function of qk .

Proof: Please see Appendix B. �
Since2

k
9k

(
qk
)
is a convex function of qk , the optimization

problem (33) is a standard convex optimization problem.
There exist many efficient numerical algorithms such as the
interior-point method to obtain the optimal solution. Then,
we iteratively update the power allocation vector pk by solv-
ing (33) to tighten the upper bound in (31) until convergence.
In summary, the power allocation algorithm for users sharing
the same subcarrier in hybrid MC-NOMA systems is out-
lined in Algorithm 1. Note that Algorithm 1 is a general
power allocation algorithm applicable to the general case
where arbitrary numbers of users are multiplexed on the same
subcarrier in hybrid MC-NOMA systems.

Algorithm 1 Power Allocation for Users Sharing the Same
Subcarrier in Hybrid MC-NOMA Systems

1. For any given weighting parameter w and Lagrangian
multipliers η, θ , λ, µ, initialize the power allocation
vector pk ;

2. Calculate γ k9k (l1), γ
k
9k
(l2),. . . , and γ k9k (lV ) according

to (2);
3. Set γ k9k (l1) = γ k9k (l1), γ

k
9k
(l2) = γ k9k (l2),. . . ,

γ k9k (lV ) = γ k9k (lV ), and then compute bk9k (l1),
ck9k (l1), bk9k (l2), ck9k (l2),. . . , bk9k (lV ), ck9k (lV )
according to (29) and (30), respectively;

4. Solve the standard convex optimization problem (33)
and obtain the optimal solution qk∗;

5. Update the power allocation vector as pk = 2q
k∗
;

6. Repeat 2 to 5 until convergence.

Proposition 3: Algorithm 1 monotonically decreases the
value of2k

9k

(
pk
)
at each iteration and finally converges. The

convergent solution satisfies the KKT optimality conditions
of the optimization problem (26).

Proof: Please see Appendix C. �
Remark 3: Simulation results will show that the sequen-

tial convex programming in Algorithm 1 actually attains the
global optimum, as it achieves the same solution as the one
obtained by the exhaustive search method.

C. ADAPTIVE OPTIMIZATION OF φ
The optimization problem regarding φ is

min
φ

G2 (φ, λ, µ) = (1− λ− µ) φ. (34)

Observing (17c) and (17d), it is known that φ ≥ wRmax−R
Rmax

and φ ≥ (1− w) P
Pmax

. Furthermore, since Rmax−R
Rmax

, P
Pmax

and
w are all in the interval of [0,1], we have wRmax−R

Rmax
∈ [0, 1]

and (1− w) P
Pmax
∈ [0, 1]. Thus, it is evident that

max
{
w
Rmax − R
Rmax

, (1− w)
P

Pmax

}
≤ φ ≤ 1. (35)
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Then, from (34), the optimal solution of φ denoted by φ∗ can
be readily obtained as

φ∗ =

1, if λ+ µ > 1,

max
{
w
Rmax − R
Rmax

, (1− w)
P

Pmax

}
, if λ+ µ ≤ 1.

(36)

D. LAGRANGIAN MULTIPLIERS UPDATE
To obtain the optimal solution by dual method, the dual
multipliers are updated by the subgradient method as

η (t + 1) = [η (t)+ υ (t) (Pt − PT)]+, (37)

θl (t + 1) = [θl (t)+ χ (t) (Rmin − Rl)]+, ∀l, (38)

λ (t + 1) =
[
λ (t)+ α (t)

(
w
Rmax − R
Rmax

− φ

)]+
, (39)

µ (t + 1) =
[
µ (t)+ β (t)

(
(1− w)

P
Pmax

− φ

)]+
, (40)

where [x]+
1
= max {0, x}, t is the iteration index and υ (t),

χ (t), α (t) and β (t) are sufficiently small positive step sizes.
Typical step size rules are constant and square summable but
not summable [32]. In the paper, we choose the latter and set
υ (t) = χ (t) = α (t) = β (t) = 0.1

t .

E. THE PROPOSED JOINT RESOURCE ALLOCATION
ALGORITHM
With the optimization results obtained in this section, the
proposed joint resource allocation algorithm for achieving
SE-EE tradeoff in hybrid MC-NOMA systems, including
MA mode selection, user clustering, subcarrier assignment
and power allocation, is summarized in Algorithm 2. Note
that Algorithm 2 is a general resource allocation algorithm
applicable to the cases of arbitrary numbers of users can be
multiplexed on the same subcarrier.

F. CONVERGENCE AND COMPLEXITY ANALYSIS
As presented, the proposed resource allocation Algorithm 2 is
divided into an outer and an inner problem. The convergence
of the inner power allocation problem (i.e., Algorithm 1) is
proved by Proposition 3. Since the inner problem actually
attains the global optimum, the subgradient update of dual
multipliers for the outer problem is guaranteed to converge
as long as the step size is chosen to be sufficiently small [32].
In Section V, we will further illustrate the convergence evo-
lution of Algorithm 2 by simulations.

Next, we analyze the complexity of the proposed resource
allocation Algorithm 2 and compare it with other approaches.
For the exhaustive search method, if at most V users can be
clustered and multiplexed on the same subcarrier, the match-
ing times of user clustering for each subcarrier are 3 =
C1
L + C

2
L + . . .+ C

V
L , and therefore, the total complexity for

user clustering and subcarrier assignment is O
(
3K

)
, which

is in exponential complexity. In addition, for the monotonic
optimization proposed in [3], although its complexity is much

Algorithm 2 MA Mode Selection, User Clustering,
Subcarrier Assignment and Power Allocation for Hybrid
MC-NOMA systems (V ≥ 2)

1. Initialize η, θ , λ and µ.
2. for k = 1 : K
3. for l1 = 1 : L
4. for l2 = 1 : L
5. . . . . . .
6. for lV = 1 : L
7. if hkl1 ≥ h

k
l2
≥ . . . ≥ hklV

8. Solve the optimization problem (26) by
Algorithm 1, and thus obtain2k∗

9k
and the

optimal power allocation vector pk ;
9. end if
10. end for
11. . . . . . .
12. end for
13. end for
14. Determine the MAmode selection, user clustering

and subcarrier assignment indicator xk∗9k by (27);
15. end for
16. Optimize φ by (36);
17. Update η, θ , λ and µ according to (37)-(40);
18. Repeat 2-17 until convergence of the Lagrangian

dual method.

lower than the exhaustive search method, it is still expo-
nential in the number of variables. While for our proposed
Algorithm 2, the total complexity of user clustering and
subcarrier assignment is O

(
KLV

)
. As we will illustrate in

the simulations, compared to V = 3, the performance gain
brought by the cases of four or more users sharing the same
subcarrier (V ≥ 4) is very small. Accordingly, in order to
keep the receiver complexity comparatively low and restrict
the error propagation, it is suggested to set the maximum
number of users multiplexed on the same subcarrier as V = 3
in hybridMC-NOMA systems. Hence, our proposed resource
allocation algorithm is in polynomial complexity and helpful
to the practical implementations.

V. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
MA mode selection, user clustering, subcarrier assignment
and power allocation algorithm for hybrid MC-NOMA sys-
tems. In the simulations, we consider a single cell with cir-
cular coverage, where the BS is in the center of the cell and
the users are placed within the coverage area following the
uniform distribution. The detailed simulation parameters are
given in Table 1.

A. CONVERGENCE AND OPTIMALITY OF THE PROPOSED
ALGORITHMS
For the proposed power allocation Algorithm 1, the conver-
gence evolution is shown in Fig. 2 with one random fading
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TABLE 1. Simulation parameters.

FIGURE 2. Convergence of the power allocation Algorithm 1.

sample of four specific subcarriers, i.e., k = 1, 5, 8, 10
with 91 = {1, 3, 6}, 95 = {2, 7, 8}, 98 = {2, 5, 6} and
910 = {3, 4, 8}. Apparently, just as we proved in Proposi-
tion 3, in Fig. 2, the value of 2k

9k

(
pk
)
is decreased at each

iteration and Algorithm 1 converges within five iterations.
As for the optimality of Algorithm 1, it has been proved in
Proposition 3 that the convergent solution satisfies the KKT
conditions of the power allocation problem (26). Further-
more, we discretize the transmit power into uniform steps and
set 0.01 W as the power step size to perform the exhaustive
search for problem (26). As shown in Table 2, the sequential
convex programming (SCP) in Algorithm 1 can actually
attain global optimality, as it achieves almost the same value
of 2k

9k

(
pk
)
obtained by the exhaustive search method with

a tolerance of around 1%, which is in accordance with the
results in [36]. Since Algorithm 1 is the inner algorithm
for Algorithm 2, the global optimality of Algorithm 1 is a
necessary condition for the convergence of Algorithm 2.

Next, we display the convergence behaviour of the pro-
posed resource allocation Algorithm 2. In Fig. 3, the con-
vergence of the outer Lagrangian dual method (Steps 2-17)
is demonstrated, where one of the Lagrangian multipliers
θ = (θl) is taken as an example. Note that this figure is
also plotted based on one random channel sample. It is
observed that the outer loop of Algorithm 2 converges fast.

TABLE 2. The values of 2k
9k

(
pk

)
for sequential convex

programming (SCP) and exhaustive search method.

Since the outer Lagrangian dual method and the inner Algo-
rithm 1 are both converged, the proposed resource allocation
Algorithm 2 is guaranteed to converge.

FIGURE 3. Convergence of the outer Lagrangian dual method for
Algorithm 2.

FIGURE 4. SE-EE tradeoff performance comparison between the
exhaustive search method and the proposed Algorithm 3.

In Fig. 4, we compare the performances of exhaus-
tive search method and the proposed resource allocation
Algorithm 2 for hybrid MC-NOMA systems. Due to the
high computational complexity of exhaustive search method,
a small-scale problem with 3 users and 6 subcarriers is sim-
ulated, and at most 3 users are allowed to share the same
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FIGURE 5. Ratio of subcarriers applying NOMA mode vs. Rmin.

subcarrier in NOMA mode. As shown in Fig. 4, the SE-EE
tradeoff performance gap between the two methods is very
small, which mainly stems from the duality gap. As the dual-
ity gap approaches zero when the number of subcarriers goes
to infinity, it is predicted that the performance gap will further
diminish with the increase of the number of subcarriers.

B. THE RATIO OF SUBCARRIERS APPLYING NOMA MODE
Next, we investigate the impact of Rmin on the ratio of subcar-
riers applyingNOMAmode. In Fig. 5, it includes two kinds of
legends. The legend Rto(V ) represents the ratio of subcarriers
applying NOMA mode when the maximum number of users
allowed to share the same subcarrier is V , while the legend
Rto(V , S) denotes the ratio of subcarriers multiplexed by
S users in NOMA mode with the parameter V . As shown
in Fig. 5, when Rmin = 0, no subcarrier is applied in NOMA
mode. This is because in this case, the constraint C5 can be
satisfied naturally. Then, all the users choose OMA mode
since OMA provides the largest summation of data rates if no
fairness or QoS requirement is imposed on the system, which
is consistent with our analysis in Section IV. For OMAmode,
each subcarrier is allocated to a single user with the highest
channel gain and the power allocation among subcarriers is
conducted by the classical water-filling algorithm. With the
increase of Rmin, the ratio of subcarriers applying NOMA
mode also rises. As NOMA is capable of providing a wider
capacity region, when Rmin cannot be satisfied naturally,
the data rates of weak users can be increased by apply-
ing NOMA mode with less reduction of strong users’ data
rates compared to OMA mode. As observed in Fig. 5, when
Rmin ≥ 1.85 bits/s/Hz, more than 90% of the subcarriers are
accessed by users in NOMA mode.

Besides, when V > 2, the ratio of subcarriers shared by
over two users, i.e., Rto(3,3), Rto(4,3) and Rto(4,4), also rises
with the increase of Rmin. As allowing more users to share
the same subcarrier provides more degrees of freedom in user
clustering and subcarrier assignment, some subcarriers may

FIGURE 6. Ratio of subcarriers applying NOMA mode for each
user vs. Rmin.

be shared by more than two users to fully exploit the potential
performance gain of NOMA. However, even if Rmin is large
enough, the ratio of subcarriers multiplexed by four users
(i.e., Rto(4,4)) is still very low, which implies that allowing
four or more users to share the same subcarrier in NOMA
mode may not obtain extra gain. This is mainly because more
users sharing one subcarrier will also introduce larger inter-
user interference, which reduces the performance advantage
of NOMA to some extent.

In the following, we demonstrate the ratio of subcarriers
applying NOMA mode from the perspective of each user,
where a four-user case is taken as an example. The indexes
of the four users in Fig. 6 follow the same order with their
distances to the BS, i.e., user 1 and user 4 are closest to and
furthest from the BS, respectively, while users 2 and 3 are
located between user 1 and user 4. As can be seen from Fig. 6,
with the increase of Rmin, the ratio of subcarriers applying
NOMA mode for each user also rises, consistent with the
trend in Fig. 5. A more significant observation is that all the
subcarriers allocated to user 4 are applied in NOMA mode
exceptRmin = 0, and the ratio of user 1’s subcarriers applying
NOMA mode is the second highest. This observation indi-
cates that the users with the best and worst channel conditions
are more inclined to transmit in NOMA mode. Interestingly,
in our simulations, it is found that user 1 and user 4 are
most likely to be clustered in one group to perform NOMA,
which implies it is more preferable for NOMA to cluster users
whose channel conditions are more distinctive.

C. COMPARISONS OF SE-EE TRADEOFF PERFORMANCES
FOR DIFFERENT MA MODES
Fig. 7 shows the SE-EE tradeoff performances of MC-OMA,
MC-NOMAand the proposed hybridMC-NOMA systems by
tuning the weighting parameter w. Note that the performance
of MC-NOMA is obtained in Algorithm 2 by excluding
the case that two users with l1 = l2 are assigned on the
same subcarrier k . As illustrated, with the increase of SE,
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FIGURE 7. Energy efficiency vs. spectral efficiency with different
MA modes.

the optimal achievable EE gradually rises to the maximum
point, and then decreases to a lower level. By tuning w, it is
flexible to perform the tradeoff between SE and EE for dif-
ferent performance preferences. Moreover, it is observed that
hybrid MC-NOMA significantly outperforms MC-OMA and
MC-NOMA, which indicates that our proposed hybrid MC-
NOMA resource allocation algorithm is able to fully exploit
the joint advantages of both OMA and NOMA. Meanwhile,
although NOMA introduces inter-user interference, the weak
users are enabled to transmit with strong users simultane-
ously on the same subcarrier. Consequently, as illustrated
in Fig. 7, for the same level of SE, the achievable EE gain
of MC-NOMA over MC-OMA is approximately 15%-25%,
which implies that the increase of data rate brought by the
power domain multiplexing is larger than the negative impact
of inter-user interference.

In Fig. 7, we also demonstrate the SE-EE tradeoff perfor-
mances of hybrid MC-NOMA when the maximum numbers
of users sharing the same subcarrier are 3 and 4, i.e., V = 3
and V = 4. It is observed that the performance gain brought
by four users over three users sharing the same subcarrier is
very small. This is consistent with the result in Fig. 5, where
the ratio of subcarriers multiplexed by four users is very
low. Thus, considering the decoding complexity of receivers
and the error propagation problem, it is suggested to set the
maximum number of users sharing the same subcarrier as 3 in
hybrid MC-NOMA systems.

D. IMPACT OF THE NUMBERS OF SUBCARRIERS AND
USERS ON THE SE-EE TRADEOFF PERFORMANCE
In Fig. 8, we investigate the impact of SUR, i.e., the ratio
between the numbers of subcarriers and users, on the
SE-EE tradeoff performances. It can be seen that when the
SUR increases from 8 to 16, the SE-EE tradeoff performances
of MC-OMA and hybrid MC-NOMA are both improved.
This is because the system benefits from larger diversity
gain brought by more subcarriers in resource allocation.

FIGURE 8. Energy efficiency vs. spectral efficiency with different SURs
and MA modes.

FIGURE 9. Energy efficiency vs. spectral efficiency for the proposed
hybrid MC-NOMA with different circuit power.

Regarding the individual performance of the two MAmodes,
the SE-EE tradeoff performance of hybrid MC-NOMA is
improved marginally, while for the MC-OMA mode, it is
improved substantially, and accordingly, the performance gap
betweenMC-OMA and hybridMC-NOMA diminishes when
SUR goes up. Such an observation demonstrates that the
hybrid MC-NOMA is more effective than MC-OMA when
the ratio of the numbers of subcarriers to users is lower.

E. IMPACT OF THE CIRCUIT POWER ON THE SE-EE
TRADEOFF PERFORMANCE
The SE-EE tradeoff performances for the proposed hybrid
MC-NOMA systems with different circuit power are dis-
played in Fig. 9, where the maximum number of users
allowed to be multiplexed on the same subcarrier is 3.
Apparently, as the circuit power has no contributions to the
achievable SE, EE is always reduced by increasing the circuit
power. Therefore, it can be seen from Fig. 9 that increasing
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FIGURE 10. Fairness index and spectral efficiency vs. Rmin.

circuit power always degrades the performance of SE-EE
tradeoff. Besides, the maximum achievable EE with larger
circuit power corresponds to a larger SE.

F. FAIRNESS AND EFFICIENCY TRADEOFF FOR DIFFERENT
MA MODES
Finally, Fig. 10 shows the rate fairness and SE of MC-OMA
and hybrid MC-NOMA by varying the values of Rmin, where
the rate fairness is measured by Jain’s fairness index [37],

which can be calculated by
(∑L

l=1 Rl
)2/(

L
∑L

l=1 R
2
l

)
. The

value range of Jain’s fairness index is
[
1
/
L, 1

]
with the

maximum achieved by identical users’ rates. As the disparity
of data rates increases, the fairness index gradually decreases
to 1

/
L. As can be seen from Fig. 10, with the increase of

Rmin, the rate fairness of MC-OMA and hybrid MC-NOMA
both rises. By contrast, since fairness and efficiency are
generally conflicting objectives, the SE of MC-OMA and
hybrid MC-NOMA both decline with the increase of Rmin.
However, the SE of MC-OMA decreases much more signif-
icantly than the hybrid MC-NOMA mode. This verifies that
our proposed hybrid MC-NOMA resource allocation scheme
has great potential to improve the tradeoff between user
fairness and system efficiency thanks to the wider capacity
region of NOMA compared to OMA.

VI. CONCLUSIONS
In this paper, we have studied the joint resource allocation
for achieving SE-EE tradeoff in hybrid MC-NOMA systems.
The SE-EE tradeoff was formulated as a MOO problem with
the minimum rate requirement serving as QoS guarantee for
each user. The hybrid MC-NOMA scheme incorporates both
NOMA and OMA into one unified framework, and all the
degrees of freedom in resource allocation, including MA
mode selection, user clustering, subcarrier assignment and
power allocation, were jointly considered. We have proposed
a joint resource allocation algorithm for hybrid MC-NOMA
systems which is applicable to the general case where an
arbitrary number of users can be multiplexed on the same
subcarrier.

In the simulations, we have found that users’ minimum
rate requirements show significant impact on the selection of
MA modes when NOMA and OMA coexist in the system.
The hybrid MC-NOMAmode significantly outperforms both
NOMA and OMA in terms of SE-EE tradeoff, and it also
shows great potential to improve the tradeoff between user
fairness and system efficiency. Moreover, since the perfor-
mance gain brought by four or more users sharing the same
subcarrier is very small, it is suggested to set the maximum
number of users sharing the same subcarrier as 3 in hybrid
MC-NOMA systems to reduce the decoding complexity of
receivers and restrict the error propagation while guarantee-
ing the SE-EE tradeoff performance.

APPENDIX A
PROOF OF PROPOSITION 1
To prove the time-sharing condition, we first consider the
continuous version of optimization problem (20), which is
given by

min
p(f )

G1 (p (f ) , λ, µ)=λw
Rmax−R (f )

Rmax
+µ (1−w)

P (f )
Pmax

,

(41a)

s.t. Pt (f ) ≤ PT, (41b)

pm (f ) ≥ 0, pn (f ) ≥ 0,∀m, n, (41c)

Rl (f ) ≥ Rmin, ∀l, (41d)

where

R (f )=
L∑

m=1

L∑
n=1

∫ fH

fL
ymn (f )

(
log2 (1+ pm (f ) hm (f ))

+ log2

(
1+

pn (f ) hn (f )
1+ pm (f ) hn (f )

)
df , (42)

Pt (f ) =
L∑

m=1

L∑
n=1

∫ fH

fL
ymn (f ) (pm (f )+ pn (f ))df , (43)

and

Rl (f ) =
L∑
n=1

∫ fH

fL
yln (f ) log2 (1+ pl (f ) hl (f ))df

+

L∑
m=1

∫ fH

fL
yml (f ) log2

(
1+

pl (f ) hl (f )
1+ pm (f ) hl (f )

)
df .

(44)

Note that [fL , fH ] is a colsed bounded interval corresponding
to the system bandwidth.

We first assume the channel gains hm (f ) and hn (f )
are constant functions of f for ∀m, n. Let p1 (f ) and
p2 (f ) be the optimal solutions to the spectrum optimiza-
tion problem (41) with power and minimum rate constraints{
P1T,R

1
min

}
and

{
P2T,R

2
min

}
. With the constant channel gain

assumption, since the same KKT condition must be satis-
fied, the optimal solutions p1 (f ) and p2 (f ) must also be
constant over f . Next, we need to construct a new power
allocation vector p3 (f ) such that it satisfies the constraints
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{
vP1T + (1− v)P

2
T, vR

1
min + (1− v)R

2
min

}
, and the objective

function achieves equal to or larger than vG1
(
x1,p1, λ, µ

)
+

(1− v)G1
(
x2,p2, λ, µ

)
for v ∈ [0, 1]. Such a p3 (f )

can be constructed by subdividing the frequency band into
two, v proportion of which has p3 (f ) = p1 (f ), and
(1− v) proportion of which has p3 (f ) = p2 (f ). Appar-
ently, with the constructed p3 (f ), the constraints P3t (f ) ≤
vP1T + (1− v)P

2
T and R3l (f ) ≥ vR1min + (1− v)R

2
min are

satisfied, and G1
(
p3 (f ) , λ, µ

)
= vG1

(
p1 (f ) , λ, µ

)
+

(1− v)G1
(
p2 (f ) , λ, µ

)
. Thus, for the case of constant chan-

nel gains, the time-sharing condition can be implemented
with frequency division.

Next, for the general case with continuous channel gains,
we can divide the total frequency into a set of infinitesimal
frequency bands. By continuity, the channel gains within each
band approaches a constant. Then, the above argument for
the case of constant channel gains can be applied in each
infinitesimal band. Therefore, the time-sharing condition is
satisfied for the entire frequency. Furthermore, for the dis-
cretized version of the optimization problem (20), it can
be straightforward concluded that the time-sharing condition
holds as the number of subcarriers K →∞. �

APPENDIX B
PROOF OF PROPOSITION 2
Substituting (2) into (32) and rearranging rk9k (lm),
m = 1, 2, . . . ,V , we have

r̄k9k (lm) = bk9k (lm) log2

 2q
k
9k
(lm)hklm

1+
m−1∑
j=1

2q
k
9k
(lj)hklm

+ ck9k (lm)

= bk9k (lm)

qk9k (lm)−log2
1+m−1∑

j=1

2q
k
9k
(lj)hklm


+ bk9k (lm) log2

(
hklm

)
+ ck9k (lm) . (45)

Apparently, rk9k (lm) is a concave function of qk because
of the convexity of the log-sum-exp function [38]. Observ-
ing (33), one can find that2

k
9k

(
qk
)
is actually the summation

of a set of convex terms of qk . Hence, it is straightforward to
conclude that 2

k
9k

(
qk
)
is a convex function of qk . �

APPENDIX C
PROOF OF PROPOSITION 3
Denote qkt as the optimal solution to 2

k
9k

(
qk
)
after the t-th

iteration of Algorithm 1 and set pkt = 2q
k
t . Then, we have the

following inequalities

2k
9k ,t

(
pkt
)
(a)
= 2

k
9k ,t

(
qkt
) (b)
≥ 2

k
9k ,t

(
qkt+1

) (c)
≥ 2k

9k ,t

(
pkt+1

)
,

(46)

where the equality (a) holds because bk9k (lm) and c
k
9k
(lm)

are computed at γ k9k (lm) = γ
k
9k
(lm) with m = 1, 2, . . . ,V

such that the bound is tight; the inequality (b) holds because
qt+1 is the global optimum solution to (33); the inequality
(c) is due to the fact that 2

k
9k ,t

(
qkt+1

)
is an upper-bound

of 2k
9k ,t

(
pkt+1

)
. As a result of (46), the objective function

2k
9k

(
pk
)
decreases after each iteration. Since 2k

9k

(
pk
)
is

lower-bounded, the proposed Algorithm 1 must converge.
If denoting pk∗ as the power allocation solution at con-

vergence of Algorithm 1, pk∗ must satisfy the KKT condi-
tions of (33). Problem (26) and (33) actually have different
objective functions of 2k

9k

(
pk
)
and 2

k
9k

(
qk
)
, respectively.

However, once Algorithm 1 converges, we have rk9k (lm) =

rk9k (lm), m = 1, 2, . . . ,V , and thus 2k
9k

(
pk
)
= 2

k
9k

(
qk
)
.

Therefore, pk∗ must also satisfy the KKT conditions
of (26). �
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