
Received May 10, 2018, accepted June 26, 2018, date of publication July 3, 2018, date of current version July 25, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2852636

Underwater Source Localization Using TDOA and
FDOA Measurements With Unknown Propagation
Speed and Sensor Parameter Errors
BINGBING ZHANG 1, (Student Member, IEEE), YONGCHANG HU 2, (Member, IEEE),
HONGYI WANG1, AND ZHAOWEN ZHUANG1
1School of Electronic Science, National University of Defense Technology, Changsha 410073, China
2Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2624AL Delft, The Netherlands

Corresponding author: Bingbing Zhang (zbbzb@nudt.edu.cn)

This work was supported in part by the Hunan Science and Technology Project under Grant 2016JC2008, in part by the China Postdoctoral
Science Foundation under Grant 2016T90978, and in part by the National Nature Science Foundation of China under Grant 61604176.

ABSTRACT Underwater source localization problems are complicated and challenging: 1) the sound
propagation speed is often unknown and the unpredictable ocean current might lead to the uncertainties
of sensor parameters (i.e., position and velocity); 2) the underwater acoustic signal travels much slower
than the radio one in terrestrial environments, thus resulting into a significantly severe Doppler effect; and
3) energy-efficient techniques are urgently required and hence in favor of the designwith a low computational
complexity. Considering these issues, we propose a simple and efficient underwater source localization
approach based on the time difference of arrival and frequency difference of arrival measurements, which
copes with unknown propagation speed and sensor parameter errors. The proposed method mitigates the
impact of the Doppler effect for accurately inferring the source parameters (i.e., position and velocity). The
Cramér–Rao lower bounds (CRLBs) for this kind of localization are derived and, moreover, the analytical
study shows that our method can yield the performance that is very close to the CRLB, particularly under
small noise. The numerical results not only confirm the above conclusions but also show that our method
outperforms other competing approaches.

INDEX TERMS Underwater localization, algebraic solution, sound propagation speed uncertainty, sensor
node uncertainty, time difference of arrival (TDOA), frequency difference of arrival (FDOA).

I. INTRODUCTION
Location-awareness is an important and indispensable feature
for a variety of underwater scenarios, such as ocean resource
exploration, environment monitoring, disaster prevention and
underwater navigation [1]. Sensors and/or vehicles, which
include autonomous underwater vehicles (AUVs), underwa-
ter gliders, remotely operated underwater vehicles (ROVs)
and underwater buoys and etc., particularly value and hence
often require their location information to be associated with
the collected data or for navigation purpose. Moreover, for
enhancing the communication and networking performance,
the location information is also very useful for improving
techniques like topology control, routing and packet colli-
sion avoidance [2]. Therefore, underwater source localization
becomes a rather prevalent and popular topic in the recent
years. In this paper, any underwater device that transmits

acoustic signals can be viewed as a source, and the ulti-
mate goal of our work is accurately inferring the source
parameters (i.e. position and velocity) in realistic underwater
environments.

Obviously, the Global Positioning System (GPS) is infeasi-
ble for underwater scenarios due to the different transmission
medium. Though it can still provide some reference receivers
that are set afloat, e.g. buoys, with useful information like
positions and velocities. As for those underwater, we also
assume their positions and velocities are known a priori
to the localization phase. In a nutshell, all the reference
nodes, which will be referred to as sensor nodes (SNs)
later, are of necessary assistance to locating the underwater
source. For signalling, we adopt the acoustic signal, which
is widely used for underwater scenarios. This is because
the sound wave can propagate several kilometres and cover
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a large ocean area, whereas the radio-frequency signal decays
very fast in the water and can only spread within a short
distance. Commonly used measurements for source local-
ization include time-of-arrive (TOA) [3], time-difference-
of-arrival (TDOA) [4], angle-of-arrive (AOA) [5], received
signal strength (RSS) [6] and differential RSS (DRSS) [7].
Nevertheless, employing the AOA requires antenna array,
which is often too expensive or difficult in practice. Detecting
the energy of the received signal is rather hard due to the
unpredictable variations in underwater channel [8], hence
the RSS or DRSS measurement is still barely considered
for underwater source localization. The time measurements
(the TOA and the TDOA) are very favourable for under-
water source localization. Seeing that the use of the TOA
heavily relies on the clock synchronization between both
the source-SN and the SN-SN links while the requirements
for the TDOA is much less strict (only among the SNs),
we mainly consider the latter in our work for practical con-
venience. Another reason that we prefer the TDOA is that,
in some uncooperative scenarios, the signals radiated from
the source mostly do not carry the time stamp, thus making
the clock synchronization between the source and the SNs
even more difficult. In addition to the TDOA, we also exploit
another kind of measurement for localization. In realistic
underwater scenarios, even when nodes are not travelling,
they can barely keep static due to the unpredictable ocean
currents. Therefore, we have to consider the Doppler effect.
Fortunately, the Doppler shifts can be collected at signal
receivers, from which we can further obtain the frequency-
difference-of-arrival (FDOA) measurements [9]. Fusing the
TDOA and the FDOA not only is helpful for improving
localization performance but also provides the useful velocity
estimates [10]. In a nutshell, we base our proposed method on
the TDOA/FDOA measurement set in this paper.

The use of the measurement fusion will undoubtedly
lead to a severer non-linearity issue, resulting into a more
strenuous localization problem. In our work, what makes
it even worse is the harsh underwater environment. First,
the SN parameters (i.e. position and velocity) information
might be inaccurate. In real-life, the SNs are mounted on
the seabed, suspended in the water column or afloat on
the sea surface [11], as depicted in Fig. 1. All of them,
although the afloat ones can acquire their location infor-
mation from the GPS system, are always drifting around
with the unpredictable ocean currents that vary significantly
over time and space [12], thus making the obtained location
information not very accurate. Particularly, for those in deep
water, apart from the immense implementation cost, their
location knowledge might not even be guaranteed a priori.
Apparently, if we ignore the imprecision of SN parameters
information, the localization performance will severely dete-
riorate [13]. This strongly motivates us to take the SN param-
eter errors into account in this paper. Second, the fact that
the acoustic signalling is considered for underwater scenar-
ios implies a totally unpredictable sound propagation speed.
It has been shown that the sound speed profile (SSP) is subject

FIGURE 1. Underwater localization scenario.

to temperature, pressure, salinity and depth in underwater
environment [14], [15], which means the SSP is basically
impossibly known a priori. This has also been observed in
other underwater localization literature [16]–[19]. Note that
the travel time between a transmitter and a receiver can
always be converted into a slant range by multiplying an
effective sound speed. In our work, we cope with this issue by
viewing the unknown sound speed as an unknown nuisance
parameter that needs to be jointly estimated.

There are techniques from estimation theory that can
be applied to the localization problem, such as least
squares (LS) estimator, convex optimization and compressed
sensing (CS) [20], [21]. Specifically, existing methods for
source localization using the TDOA/FDOA measurements
can be divided into three categories: Taylor-series expan-
sion based [22], [23], semi-definite programming (SDP)
based [24]–[26] and LS based [10], [13], [27], [28]. The
first kind of methods use the Taylor-series expansion to lin-
earize the optimization problem in the vicinity of position
and velocity estimates that should be close to the actual
values. Note that selecting appropriate initialization values is
practically difficult but very important, otherwise we might
obtain a local solution. The SDP based techniques relax the
original non-convex problem onto a convex set such that
the new optimization problem can be efficiently solved [29].
However, for a good estimation accuracy, the relaxation needs
to be very tight, which is rather challenging, not to men-
tion the high computational complexity for solving the final
problem. Without any of those disadvantages, the LS based
methods are very favourable for solving localization prob-
lems. In [10], the famous two-step weighted LS (TS-WLS)
method was proposed, where the first step provides initial
position and velocity estimates, which will be fine-tuned later
in the second step. A robust version of TS-WLS method was
also reported in [13], where the SN position and velocity
uncertainties were taken into account. M. sun, et al. further
extended this kind of method in case of multiple disjoint
sources in [27]. A more recent improved TS-WLS solution
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was introduced in [28], where the second step is designed
with a better fine-tuning procedure.

Nonetheless, all the aforementioned methods assume a
known sound propagation speed, which is very impractical
and unrealistic. Admittedly, there indeed exist some other
literature that consider an unknown sound speed. In [30],
the TS-WLS method was developed into a three-step algo-
rithm for jointly estimating the location and the unknown
speed, however the Doppler effect is ignored and only the
TDOA measurements are used therein. More importantly,
the authors assume the actual SN locations to be exactly
known a priori, which might not be suitable for underwater
scenarios. In [31], an SDP localization approach using the
TOA measurements was devised in the presence of both sen-
sor position and speed uncertainties. As already mentioned,
this method will certainly suffer from the clock synchro-
nization constraint and the high computational complexity.
An efficient algebraic localization technique was also pro-
posed coping with SN position and speed uncertainties [32],
though it is designed for multistatic sonar scenarios with a
totally different measurement model. In a nutshell, the study
for realistic underwater source localization is still in its
infancy. To the best of our knowledge, in current literature,
there does not exist any algebraic localization approach using
the TDOA/FDOAmeasurements and coping with SN param-
eters and sound propagation speed uncertainties.

Therefore, we would like to enrich the study of this field
by proposing a new efficient solution for realistic harsh
underwater environments. In this paper, we assume a totally
unknown sound propagation speed and erroneous SN param-
eters and, based on the TDOA/FDOA measurement set,
the introduced method can still jointly estimate the loca-
tion and velocity of a moving source with a notably good
performance. We also derive and study the corresponding
Cramér-Rao lower bound (CRLB). Numerical simulations
have also been conducted for evaluating the localization per-
formance of our proposed method.

The rest of this paper is organized as follows. Section II
presents the underwater localization problem in this paper.
Then, Section III derives and studies the CRLB for the consid-
ered localization problem. The impact of the unknown sound
propagation speed is particularly discussed. Next, our new
efficient underwater localization approach is introduced in
Section IV and we also analytically study the performance
of the proposed method in Section V. The numerical results
in Section VI not only support the previous conclusions
but also show that our method outperforms other competing
approaches. Finally, Section VII summarizes this paper.

Notation
The following notations are used in this paper. R3 indi-
cates an 3-dimensional real space; upper (lower) bold-face
letters stand for matrices (vectors); superscript T denotes
the transpose of a matrix (vector); (∗)o indicates the actual
value of (∗); sign (∗) denotes the signum function; The
operators �, ⊗ and ./ designate the element-wise product,

Kronecker product and element-wise division, respectively;
|| · || is the Euclidean distance norm and a (p : q) is a sub-
vector formed by the p-th to the q-th element of vector a;
[X]m,n represents the element on the mth row and nth col-
umn of the matrix X; 1 and 0 are vectors of 1 and 0;
I denotes the identity matrix (size indicated in the subscript
if necessary); P(x|xo,Qx) indicates the Gaussian distribution
with expectation xo and covariance matrix Qx; diag(∗) is the
diagonal matrix with the elements of ∗ on its diagonal and
Tr(∗) denotes the trace of a square matrix ∗; blkdiag(A,B) is
a matrix with A and B on its diagonal and all other elements
zero.

II. UNDERWATER LOCALIZATION PROBLEM
In this section, we formulate the underwater localization
problem used throughout this paper. First, we assume a
single moving source located at uo = [xo, yo, zo]T ∈ R3

with velocity u̇o = [ẋo, ẏo, żo]T and M SNs located
at soi =

[
xoi , y

o
i , z

o
i

]T
∈ R3 with velocities ṡoi =[

ẋoi , ẏ
o
i , ż

o
i

]T , i = 1, 2, . . . ,M in an underwater envi-
ronment, as depicted in Fig. 1. Stacking the actual
SN parameters, i.e., locations soi and velocities ṡoi , into a
single vector, we obtain the actual SN parameter vector
βββo ,

[
(so)T , (ṡo)T

]T , where so , [
(so1)

T , (so2)
T , . . . , (soM )T

]T
and ṡo ,

[
(ṡo1)

T , (ṡo2)
T , . . . , (ṡoM )T

]T . However, in practice,
the known SN parameters βββ are subject to errors and hence
we would like to refer βββ to the nominal values of βββo as

βββ = βββo +1βββ,

where the errors 1βββ ,
[
1sT ,1ṡT

]T are assumed to
be zero-mean Gaussian distributed with covariance matrix
Qβββ = E

[
1βββ1βββT

]
. Note that

1s = s− so =
[
1s1T ,1s2T , . . . ,1sMT

]T
and

1ṡ = ṡ− ṡo =
[
1ṡT1 ,1ṡT2 , . . . ,1ṡTM

]T
.

Then, denoting the distance between the source node and
the i-th SN as

roi =
∥∥uo − soi

∥∥ , (1)

we select the first SN to be the reference node and express the
TDOA measurement set as

ti1 =
1
co
roi1 + ni1, i = 2, 3, . . . ,M , (2)

where roi1 = roi − r
o
1 is the range difference, co indicates the

unknown sound propagation speed and ni1 is the zero-mean
Gaussian TDOA noise.

Next, taking the time derivative of (1) results into the range
rate as

ṙoi =

(
uo − soi

)T (u̇o − ṡoi
)

roi
, i = 1, 2, . . .M . (3)
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and the FDOA measurement set is obtained, after divided
with the signal carrier frequency, as

ṫi1 =
1
co
ṙoi1 + ṅi1, i = 2, 3, . . . ,M , (4)

where ṙoi1 = ṙoi − ṙo1 is the rate of the range difference and
ṅi1 is the zero-mean Gaussian FDOA noise.

Stacking the TDOA and FDOA measurements and fusing
them into a 2(M − 1)× 1 vector, we obtain

ααα ,
[
tT , ṫT

]T
,

where

t =
1
co
[
ro21, . . . , r

o
M1

]T
+[n21, . . . , nM1]T =

1
co
ro+n,

ṫ =
1
co
[
ṙo21, . . . , ṙ

o
M1

]T
+[ṅ21, . . . , ṅM1]T =

1
co
ṙo+ṅ. (5)

The measurement error vector is 1ααα ,
[
nT , ṅT

]T and
its covariance matrix is Qααα = E

[
1ααα1αααT

]
. Note that the

measurement noises 1ααα are assumed to be independent of
the SN parameter uncertainties 1βββ.
In summary, the ultimate goal of this paper is inferring the

location uo and velocity u̇o of the source from the collected
TDOA/FDOA measurements α in presence of the unknown
sound speed co and the inaccurate SN parameters β.

III. CRAMÉR-RAO LOWER BOUND
The CRLB reveals the best expected performance for an
unbiased estimator, which is very useful for studying the
considered optimization problem and evaluating the proposed
method. In this sectionïĳŇ we first derive the CRLB for
the estimator based on the TDOA/FDOA measurements in
presence of the unknown sound speed co and the inaccurate
SN parameters β, and then discuss the impact of an unknown
sound propagation speed on the localization accuracy.

A. HYBRID CRLB
Defining the parameter vectorφφφo ,

[
(θθθo)T , co, (βββo)T

]T with
θθθo ,

[
(uo)T , (u̇o)T

]T , where θθθo is a deterministic parameter,
co and βo are random parameters. The resulting bound is the
so-called Hybrid CRLB [33]–[35], which contains the classic
CRLB and the Bayesian bound for deterministic parame-
ters and random parameters, respectively. Recall that the
TDOA/FDOA measurements vector α and the SN parameter
vector β are Gaussian distributed as α ∼ N (αo,Qα) and
β ∼ N (βo,Qβ ), respectively. Since α is independent of β,
we can express the log-likelihood function for the joint prob-
ability density function of the measurements as

lnP(v;φφφo) = lnP(α|αo,Qα)+ lnP(β|βo,Qβ )

= C −
1
2

(
ααα − αααo

)TQααα−1 (ααα − αααo)
−

1
2

(
βββ − βββo

)TQβββ−1 (βββ − βββo) , (6)

where the measurement vector v ,
[
αααT ,βββT

]T
is param-

eterized by φφφo and C collects the other constant terms.

To obtain the CRLB, the Fisher information matrix (FIM) can
be computed as [36]

I(φφφo) = −E
[
∂2 lnP(v;φφφo)
∂φφφo∂(φφφo)T

]
. (7)

For the convenience of expression, we rewrite I(φφφo) in sub-
matrices as

I(φφφo) =

X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

, (8)

where from (6), we have

X11 = −E
[
∂2 ln p(v;φφφ)

∂θθθo∂(θθθo)T

]
=

(
∂αααo

∂θθθo

)T
Q−1ααα

(
∂αααo

∂θθθo

)

X12 = −E
[
∂2 ln p(v;φφφ)
∂θθθo∂co

]
=

(
∂αααo

∂θθθo

)T
Q−1ααα

(
∂αααo

∂co

)
X13 = −E

[
∂2 ln p(v;φφφ)
∂θθθo∂(βββo)T

]
=

(
∂αααo

∂θθθo

)T
Q−1ααα

(
∂αααo

∂βββo

)
X22 = −E

[
∂2 ln p(v;φφφ)
∂co∂co

]
=

(
∂αααo

∂co

)T
Q−1ααα

(
∂αααo

∂co

)
X23 = −E

[
∂2 ln p(v;φφφ)
∂co∂(βββo)T

]
=

(
∂αααo

∂co

)T
Q−1ααα

(
∂αααo

∂βββo

)
X33 =−E

[
∂2 ln p(v;φφφ)
∂βββo∂(βββo)T

]
=

(
∂αoαoαo

∂βββo

)T
Q−1ααα

(
∂αααo

∂βββo

)
+Q−1βββ .

(9)

Appendix A provides the further details for the partial deriva-
tives in (9). Finally, the CRLB for the interested unknown
parameters uo, u̇o and co are obtained as following:

CRLBuo =

√√√√ 3∑
k=1

[
I(φo)−1

]
k,k
,

CRLBu̇o =

√√√√ 6∑
k=4

[
I(φo)−1

]
k,k

and

CRLBco =
√[

I(φo)−1
]
7,7
.

B. THE IMPACT OF AN UNKNOWN SOUND PROPAGATION
SPEED ON LOCALIZATION ACCURACY
In this subsection, we would like to study the impact of the
sound propagation speed co on the localization performance.
When the SN parameters are subject to errors, we first con-
sider the following two cases.

CASE 1: CO IS UNKNOWN
According to the block matrix inversion formula [36], we can
formulate the inverse of the CRLB for the source parameter
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vector θθθo from (8) as

CRLB1(θθθo)−1 = X11 −
[
X12 X13

] [X22 X23
XT
23 X33

]−1 [XT
12

XT
13

]
(10)

Here, note that CRLB1(θθθo) reduces to X−111 when there is no
SN parameter error and a known sound propagation speed
co is considered. This implies that the trace of X−111 is the
lower bound for the mean squared error (MSE) of any
unbiased estimator for θθθo that uses the TDOA/FDOA mea-
surements, i.e, with all the necessary and exactly accurate
knowledge. On the other hand, we can readily observe that
the second term in (10) collects the impacts of the SN param-
eter errors and the unknown sound propagation speed on the
CRLB of θθθo, which are apparently not incurred in an additive
manner.

For the convenience of comparing with the counterpart of
Case 2 in the following, we reformulate (10) into a different
form

CRLB1(θθθo)−1

=

(
∂αααo

∂θθθo

)T
Q−11

(
∂αααo

∂θθθo

)
−

(
∂αααo

∂θθθo

)T
Q−11

(
∂αααo

∂βββo

)
0001

(
∂αααo

∂βββo

)T
Q−11

(
∂αααo

∂θθθo

)
, (11)

where

Q−11 = Q−1ααα

−Q−1ααα

(
∂αααo

∂co

)((
∂αααo

∂co

)T
Q−1ααα

(
∂αααo

∂co

))−1

×

(
∂αααo

∂co

)T
Q−1ααα , (12)

and

01 =

((
∂αααo

∂βββo

)T
Q−11

(
∂αααo

∂βββo

)
+Q−1βββ

)−1
. (13)

Please refer to Appendix B for the detailed derivations.

CASE 2: CO IS KNOWN
In this scenario, since co is known, there is no partial deriva-
tive over co. Similar to the steps described in Section III-A,
we can easily obtain the inverse of the CRLB for estimating
the source parameter vector θo in this case as

CRLB2(θo)−1 = X11 − X13X−133 X
T
13

=

(
∂αααo

∂θθθo

)T
Q−1ααα

(
∂αααo

∂θθθo

)
−

(
∂αααo

∂θθθo

)T
Q−1ααα

(
∂αααo

∂βββo

)
0002

(
∂αααo

∂βββo

)T
×Q−1ααα

(
∂αααo

∂θθθo

)
, (14)

where

02 =

((
∂αααo

∂βββo

)T
Q−1ααα

(
∂αααo

∂βββo

)
+Q−1βββ

)−1
.

DISCUSSIONS
Obviously, from (11) and (14), the covariance matrices Q1
andQααα differentiate the CRLBswith a known or unknown co,
and hence our breakthrough point lies in (12). Let us
denote Q−1/2ααα as the Cholesky decomposition of Q−1ααα , i.e.
Q−1ααα = Q−1/2ααα Q−1/2ααα . Then, the projection matrix of the

subspace spanned by the columns of
(
∂αααo

∂co

)T
Q−1/2ααα can be

written as

P1 = Q−1/2ααα

(
∂αααo

∂co

)((
∂αααo

∂co

)T
Q−1ααα

(
∂αααo

∂co

))−1

×

(
∂αααo

∂co

)T
Q−1/2ααα . (15)

Accordingly, the orthogonal projection matrix of P1 is
P⊥1 = I− P1. Then, (12) can readily be rewritten into

Q−11 = Q−1/2ααα P⊥1 Q
−1/2
ααα , (16)

where we observe that the unknown sound propagation speed
affects the measurement noise covariance matrix by pro-
jecting its square root inverse (Q−1/2ααα ) onto the orthogonal

subspace spanned by the columns of
(
∂αααo

∂co

)T
Q−1/2ααα . In a

nutshell, the impact of an unknown co manifests itself on the
covariance matrix in a projecting rather than additive manner.

Numerical Study
To be more explicit, we hereby show the impact of
an unknown co on the CRLB via the numerical study.
We evaluate the corresponding CRLBs in both cases under
different SN parameter error variances and measurement
noise variances, respectively. In the simulations, there are
10 SNs and their true position and velocities are tabulated
in Table 1. The source to be located is at [200,800,200]T

with instantaneous velocity u̇o = [−2, 1.5, 1]T m/s. The
noisy SN parameters are generated by adding the true
values zero-mean white Gaussian noise with covariance
matrix Qβββ = σ 2

s diag ([b, 0.5b]), where b = [1, 20,
10, 30, 20, 3, 2, 10, 1, 2] ⊗ 1T3 . The TDOA and FDOA mea-
surements are generated with covariance matrix Qα =
σ 2
d /c

o2blkdiag (R, 0.1R), where R is a (M − 1) × (M − 1)
matrix with unity on its diagonal and 0.5 in all other elements.

Fig. 2(a) illustrates the position and velocity estimation
accuracy (under both with and without sound propagation
speed knowledge) versus SN parameter error variance. The
measurement noise parameter σd is set to be 1 m. We observe
that the estimation accuracy of the case without sound prop-
agation speed knowledge is worse than the case with sound
propagation speed knowledge. For example, at the SN param-
eter error variance σ 2

s = 1, i.e. 10log(σ 2
s ) = 0, the position

performance gap between both cases is 1.07 dB and that for
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TABLE 1. True positions (in meters) and velocities
(in meters/second) of SNs.

FIGURE 2. Comparisons of CRLBs with and without sound propagation
speed knowledge: (a) CRLBs versus SN parameter error; (b) CRLBs versus
measurement noise.

the velocity is 0.96 dB. What’s more, when the SN parameter
error decreases, the performance gap between both cases
increases slightly. Fig. 2(b) shows the results versus measure-
ment noise variance. The SN parameter error σs is fixed to
be 1 m. The increases in CRLB is also observed assuming the
sound propagation speed as an unknown parameter. There-
fore, we conclude that the sound propagation speed should be

well considered to obtain a more accurate source parameter
estimates.

IV. PROPOSED UNDERWATER LOCALIZATION
APPROACH
In this section, we would like to introduce our solution to
the underwater localization problem formulated in Section II.
Again, note that the previous literature either consider a
known sound propagation speed [13], [37] or assume the
SN parameters to be exactly known [32], both of which
are practically very difficult to guarantee and hence rather
unrealistic.

In case of an unknown sound propagation speed and inac-
curate SN parameters, our proposed approach includes two
stages while dealing with the considered underwater local-
ization problem. The first stage linearizes the measurement
equations by introducing nuisance variables, where we can
obtain an initial solution. Then, the second stage exploits the
relationship between the source parameters and the nuisance
variables such that we can refine the solution obtained in the
first step. To be specific, we elaborate the aforementioned two
stages as follows.

A. FIRST STAGE
For the use of the TDOA and FDOA measurements, we have
to fuse these two kinds of measurements by linearizing their
equations such that we can obtain our linear data model and
then initially estimate the location uo and velocity u̇o of the
source.

1) TDOA MEASUREMENTS
After rewriting the range difference as roi1+r

o
1 = roi , squaring

both its sides and plugging (1) into the terms of ro1
2 and roi

2,
we obtain a set of TDOA equations as

roi1
2
+ 2roi1r

o
1 = soi

T soi − so1
T so1 − 2

(
soi − so1

)Tuo, (17)

for i = 2, 3, . . . ,M .
Then, we take the noise terms into account by substituting

roi1 = coti1 − coni1 and soi = si − 1si into (17), which leads
to

2coroi ni1 + 2
(
uo − si

)T
1si − 2

(
uo − s1

)T
1s1

≈ R1 − Ri + 2(si − s1)Tuo + 2ti1coro1 + t
2
i1c

o2, (18)

where Ri , sTi si and all the second order error terms are
relatively insignificant hence ignored. Here, note that the
term ro1 is still dependent on the true value so1. Thus, we apply
the first order Taylor approximation to ro1 around the noisy
sensor position s1 as

ro1 =
∥∥uo − so1

∥∥ ≈ r̂o1 + ρρρ
T
uo,s11s1, (19)

where r̂o1 , ‖uo − s1‖ is the distance between the source
node and the nominal known location of the first SN, and
ρρρa,b , a− b

/
‖a− b‖ represents the unit vector from b to a.

Substituting (19) into (18) and gathering all the noise terms
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into εt,i at the left side, we obtain

2coroi ni1 + 2
(
uo − si

)T
1si − 2dTi11s1

≈ R1 − Ri + 2(si − s1)Tuo + 2ti1η1 + t2i1η2,

⇒ εt,i ≈ R1 − Ri + 2(si − s1)Tuo + 2ti1η1 + t2i1η2, (20)

where η1 , cor̂o1 , η2 , co2 and di1 , uo − s1 + coti1ρρρuo,s1 .
Obviously, (20) is already a pseudo-linear equation w.r.t.
unknowns uo, η1 and η2, where η1 and η2 are the nuisance
variables that we introduced to facilitate the derivations.

2) FDOA MEASUREMENTS
Taking the time derivative of (17) results in a set of
FDOA equations as

roi1ṙ
o
i1 + r

o
i1ṙ

o
1 + ṙ

o
i1r

o
1

= ṡoi
T soi − ṡo1

T so1 −
(
ṡoi − ṡo1

)Tuo − (soi − so1
)T u̇o, (21)

for i = 2, 3, . . . ,M . Substituting roi1 = coti1 − coni1, ṙoi1 =
co ṫi1 − coṅi1, soi = si −1si and ṡoi = ṡi −1ṡi into (21) and
ignoring the second-order error terms, we obtain

coroi ṅi1 + c
oṙoi ni1 +

(
u̇o − ṡi

)T
1si −

(
u̇o − ṡ1

)T
1s1

+
(
uo − si

)T
1ṡi −

(
uo − s1

)T
1ṡ1

≈ Ṙ1 − Ṙi + (ṡi − ṡ1)Tuo + (si − s1)T u̇o

+ co2ti1 ṫi1 + coti1ṙo1 + ṫi1c
oro1 , (22)

where Ṙi , ṡTi si. In addition to ro1 , ṙ
o
1 depends on the

true values so1 and ṡo1. Similarly, we apply the Taylor series
approximation around s1 and we have

ṙo1 ≈ ˆ̇r
o
1 + λλλ

T
uo,s11s1 + ρρρTuo,s11ṡ1, (23)

where ˆ̇ro1 , (uo − s1)T (u̇o − ṡ1)
/
r̂o1 and λλλuo,s1 , u̇o−ṡ1

r̂o1
2 −

ˆ̇ro1
r̂o1
ρρρuo,s1 . Then, we plug (23) into (22) and again collect the

noise terms into εṫ,i at the left side, leading to our linear
equation for the FDOA measurements as

coroi ṅi1 + c
oṙoi ni1 +

(
u̇o − ṡi

)T
1si

− ḋTi11s1 +
(
uo − si

)T
1ṡi − di1T1ṡ1

≈ Ṙ1 − Ṙi + (ṡi − ṡ1)Tuo + (si − s1)T u̇o

+ ṫi1η1 + ti1 ṫi1η2 + ti1η̇1,

⇒ εṫ,i ≈ Ṙ1 − Ṙi + (ṡi − ṡ1)Tuo + (si − s1)T u̇o

+ ṫi1η1 + ti1 ṫi1η2 + ti1η̇1, (24)

where η̇1 , co ˆ̇ro1 and ḋi1 , u̇o− ṡ1+coti1λλλuo,s1+c
o ṫi1ρρρuo,s1 .

Finally, (24) also becomes linear w.r.t. unknowns uo, u̇o, η1,
η2 and η̇1, where η̇1 is another introduced nuisance parameter.

3) MEASUREMENT FUSION AND DATA MODELS
Let us collect the source parameters and the three
nuisance parameters into a single parameter vector as
ϕϕϕo1 , [uo, u̇o, η1, η2, η̇1]T , on which we can base to fomulate
our linear data model.

For the TDOA measurements, stacking (20) for
i = 2, 3, . . . ,M into vectors results our linear data model
with ϕϕϕo1 as

εεεt = ht −Gtϕϕϕ
o
1, (25)

where

ht ,


R1 − R2
R1 − R3

...

R1 − RM

,

Gt , −


2(s2 − s1)T 0 2t21 t221 0
2(s3 − s1)T 0 2t31 t231 0

...
...

...
...

...

2(sM − s1)T 0 2tM1 t2M1 0

.
The noise vector εεεt is defined as

εεεt ,
[
B 0(M−1)×(M−1)

]
1ααα +

[
D 0(M−1)×3M

]
1βββ, (26)

where B = diag
(
2
[
coro2 , c

oro3 , · · · , c
oroM

])
and D is an

(M − 1)× 3M matrix whose (i− 1)th row, i = 2, 3, . . . ,M ,
is 2

[
−dTi1 01×3(i−2) (uo − si)T 01×3(M−i)

]
.

For the FDOA measurements, similarly stacking (24) for
i = 2, 3, . . . ,M into vectors, we obtain our linear data model
with ϕϕϕo1 as

εεεṫ = hṫ −Gṫϕϕϕ
o
1, (27)

where

hṫ , 2


Ṙ1 − Ṙ2
Ṙ1 − Ṙ3

...

Ṙ1 − ṘM

,
Gṫ

, −2


(ṡ2 − ṡ1)T (s2 − s1)T ṫ21 t21 ṫ21 t21
(ṡ3 − ṡ1)T (s3 − s1)T ṫ31 t31 ṫ31 t31

...
...

...
...

...

(ṡM − ṡ1)T (sM − s1)T ṫM1 tM1 ṫM1 tM1

.

The noise vector εεεṫ is defined as

εεεṫ =
[
Ḃ B

]
1ααα +

[
Ḋ D

]
1βββ, (28)

where Ḃ , diag
(
2
[
coṙo2 , c

oṙo3 , · · · , c
oṙoM

])
and Ḋ is an

(M − 1)× 3M matrix whose (i− 1)th row, i = 2, 3, . . . ,M ,
is 2

[
−ḋTi1 01×3(i−2) (u̇o − ṡi)T 01×3(M−i)

]
.

Finally, we can easily fuse this two kinds of measurements
by combining (25) and (27) as

εεε1 = h1 −G1ϕϕϕ
o
1, (29)

where εεε1 ,
[
εεεTt εεε

T
ṫ

]T
, h1 ,

[
hTt hTṫ

]T
and

G1 ,
[
GT
t GT

ṫ

]T
.
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4) INITIAL SOLUTION
Minimizing the weighted square norm of εεε1 yields the
WLS solution

ϕϕϕ1 =
(
GT

1W1G1

)−1
GT

1W1h1, (30)

where W1 is the weighting matrix defined as W1 =

E
(
εεε1εεε

T
1

)−1. From (26) and (28), we have

εεε1 = B11ααα + D11βββ, (31)

where

B1 =

[
B 0(M−1)×(M−1)
Ḃ B

]
, D1 =

[
D 0(M−1)×3M
Ḋ D

]
.

Hence, W1 can be approximately calculated as

W1 =

(
B1QαααBT1 + D1QβββDT

1

)−1
, (32)

where the assumption of the independent relationship
between the measurement noise 1ααα and the SN’s position
uncertainty 1βββ is used. We also would like to point out that
D1 contains the noisy measurements. However, the noise is
ignored when taking the expectation by assuming the noise is
of small value.

We shall evaluate the covariance matrix of the estimate ϕϕϕ1
by first representing the estimation error as

1ϕϕϕ1 = ϕϕϕ1 − ϕϕϕ
o
1 =

(
GT

1W1G1

)−1
GT

1W1
(
h1 −G1ϕϕϕ

o
1

)
=

(
GT

1W1G1

)−1
GT

1W1εεε1. (33)

When the noise in G1 is small enough to be ignored,
the covariance matrix of ϕϕϕ1 can be approximated by

cov (ϕϕϕ1) =
(
GT

1W1G1

)−1
. (34)

In fact, there exist two practical issues while comput-
ing (30). First, the knowledge of the error covariance matrices
Qα and Qβ . In practical, they are usually obtained by pre-
calibration. The statistical characteristics of the errors can be
extracted from the field measurements. Second, the calcula-
tion of the weighting matrix W1 requires the true values of
the parameter to be estimated. To cope with this,W1 = Q−1ααα
is first used to calculate (30), then substituting the initial
estimate into (32) to obtain an improved version ofW1 which
is sequentially applied to obtain a better estimate of ϕϕϕ1.
As a result, there exists an iteration between the updating
of W1 and ϕϕϕ1. However, as observed in our implementation,
iterating the solution computation only one time is sufficient
to yield an accurate result. Additional iteration does not affect
the solution accuracy significantly.
Unfortunately, in some cases, the measurement error

covariance matrices Qααα and Qβ might be unavailable due to
the pre-calibration cost. Thus, we cannot use W1 = Q−1ααα to
calculate (30). In this situation, we actually have two choices
to cope with the weighting matrix W1:
1) At the beginning,W1 = I is first used to calculate (30),

then replacing Qααα and Qβ with the identity matrix and

computing W1 from (32) to poduce a better solution.
Since B1 andD1 are used in updatingW1, the structure
information of W1 is retained although we have no
information about the error covariance matrices. As a
result, the localization performance degradation can be
alleviated.

2) Using W1 = I to calculate (30) directly and the
W1 updating procedure is omitted. In this manner,
the WLS estimation in the first stage is reduced to
the LS estimation. More importantly, besides the error
covariance information, the structure information of the
weighting matrix W1 is also ignored. Thus, this kind
of handingW1 would introduce larger estimation error
compared with the one described in 1).

The impact of the treatments of the weighting matrix W1
with/without error covariance matrices on the performance
of the proposed solution will be compared and discussed in
the simulation section.

B. SECOND STAGE
In this stage, we shall refine the estimate obtained in the first
stage by exploiting the relationship between the parameters
in ϕϕϕo1. When the measurement noise and sensor uncertainty
are small enough to be ignored, the estimate ϕϕϕ1 is unbiased
according to the WLS theroy [36]. Hence, ϕϕϕ1 can be con-
sidered as a random vector with mean ϕϕϕo1 and covariance
matrix cov (ϕϕϕ1). The second-order error terms are ignored in
the following derivation.
The first three elements in ϕϕϕ1, thus can be expressed as

ϕϕϕ1 (1 : 3) = uo + 1ϕϕϕ1 (1 : 3). Subtracting both sides by s1,
we have

(ϕϕϕ1 (1 : 3)− s1)� (ϕϕϕ1 (1 : 3)− s1)

≈
(
uo − s1

)
�
(
uo − s1

)
+ 2

(
uo − s1

)
�1ϕϕϕ1 (1 : 3).

(35)

The fourth to the sixth element in ϕϕϕ1 denote the velocity
estimates of the source. Combing with the position estimates,
we have

(ϕϕϕ1 (1 : 3)− s1)� (ϕϕϕ1 (4 : 6)− ṡ1)

≈
(
uo − s1

)
�
(
u̇o − ṡ1

)
+
(
u̇o − ṡ1

)
�1ϕϕϕ1 (1 : 3)

+
(
uo − s1

)
�1ϕϕϕ1 (4 : 6). (36)

Expressing the seventh element in ϕϕϕ1 as ϕϕϕ1 (7) = cor̂o1 +
1ϕϕϕ1 (7), after squaring both sides and using ϕϕϕ1 (8) ≈ co2

yields

ϕϕϕ1(7)
2
≈ ϕϕϕ1 (8)

∥∥uo − s1
∥∥2 + 2cor̂o11ϕϕϕ1 (7). (37)

Multiplying ϕϕϕ1 (7) and ϕϕϕ1 (9) gives

ϕϕϕ1 (7)ϕϕϕ1 (9) =
(
cor̂o1 +1ϕϕϕ1 (7)

) (
co ˆ̇ro1 +1ϕϕϕ1 (9)

)
≈ ϕϕϕ1 (8)

(
uo − s1

)T (u̇o − ṡ1
)

+ co ˆ̇ro11ϕϕϕ1 (7)+ c
or̂o11ϕϕϕ1 (9). (38)
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From (35) to (38), we construct the following matrix
equation

εεε2 = h2 −G2ϕϕϕ
o
2, (39)

where

ϕϕϕo2 =

 (uo − s1)� (uo − s1)
(uo − s1)� (u̇o − ṡ1)

co2

,

h2 =


(ϕϕϕ1(1 : 3)− s1)� (ϕϕϕ1(1 : 3)− s1)
(ϕϕϕ1(1 : 3)− s1)� (ϕϕϕ1(4 : 6)− ṡ1)

ϕϕϕ1(7)
2

ϕϕϕ1(7)ϕϕϕ1(9)
ϕϕϕ1(8)

,

G2 =


I3×3 03×3 03×1
03×3 I3×3 03×1

ϕϕϕ1(8)11×3 01×3 0
01×3 ϕϕϕ1(8)11×3 0
01×3 01×3 1

.
On the left side of (39), the noise vector εεε2 is defined as

εεε2 = B21ϕϕϕ1, (40)

where

B2 =

 2diag([uo − s1]) 03×3 03×3
diag([u̇o − ṡ1]) diag([uo − s1]) 03×3

03×3 03×3 D2

,
D2 =

 2cor̂o1 0 0
co ˆ̇ro1 0 cor̂o1
0 1 0

.
We would like to remark that the noise vector in (40)

is only related with the estimation error resulted from the
first stage. This is because of the premeditated applying
of Taylor approximation to ro1 and ṙo1 , which is expressed
in (19) and (23), respectively. As a result, εεε2 is independent
of the SN parameter uncertainties1βββ. It is different from the
second-stage error vector derived in [13], in which the error
vector depends on both the first stage estimation error and the
SN parameter uncertainties. It has also been observed in [27]
that the localization performance is improved by expanding
ro1 and ṙo1 in the first stage. Furthermore, the simplified struc-
ture of εεε2 gives a concise expression of its covariance matrix
as

cov(εεε2) = E
(
εεε2εεε

T
2

)
= B2

(
GT

1W1G1

)−1
BT2 , (41)

where (34) is used.
The WLS solution to (39) is given by

ϕϕϕ2 =
(
GT

2W2G2

)−1
GT

2W2h2, (42)

whereW2 is the weighting matrix defined as

W2 = (cov(εεε2))−1 = B−T2

(
GT

1W1G1

)
B−12 . (43)

Subtracting both sides of (42) by the true value ϕϕϕo2 gives the
estimation error of the second stage

1ϕϕϕ2 = ϕϕϕ2 − ϕϕϕ
o
2 =

(
GT

2W2G2

)−1
GT

2W2
(
h2 −G2ϕϕϕ

o
2

)
=

(
GT

2W2G2

)−1
GT

2W2εεε2. (44)

Then, the covariance matrix of the solutionϕϕϕ2 can be approx-
imated by

cov(ϕϕϕ2) =
(
GT

2W2G2

)−1
. (45)

Finally, the source position and velocity, and the sound
propagation speed estimates are given by

u = 5
√
ϕϕϕ2 (1 : 3)+ s1,

u̇ = ϕϕϕ2 (4 : 6).
/
(u− s1)+ ṡ1,

c =
√
ϕϕϕ2 (7), (46)

where 555 = diag
([
sign (ϕϕϕ1 (1 : 3)− s1)

])
is used to avoid

the sign ambiguity caused by the square root operation.
Note that the weighting matrix W2 is dependent on uo, u̇o

and co through B2. Similar to the calculation of W1, W2 can
also be updated in an iterative fashion. The true values inW2
are first approximated by the values inϕϕϕ1 and then updated by
the values in (46). Also, we find that iterating one or two times
leads to an good solution that meets the CRLB performance.

We summarize the prototype of our proposed estimator
in Algorithm 1.

Algorithm 1 The Proposed Estimator
Input: SN parameters, TDOA and FDOAmeasurements and
error covariance matrices.
First stage processing:
1: Initialization:W1 = Q−1ααα .
2: For l = 1 to Niter (Niter is the number of iterations)
3: computing ϕ1 from (30);
4: substituting the estimates from ϕ1 in (32) to updateW1;

5: end For
Second stage processing:
6: Computing cov

(
ϕ1
)
using (34).

7: Using ϕ1 to calculate B2 and obtaining W2 using (43).
8: For l = 1 to Niter
9: computing ϕ2 from (42);
10: applying (46) to generate the estimates;
11: substituting the estimates from (46) inB2 and updating
W2 using (43) accordingly;
12: end For

Output: the source position and velocity, and the sound
propagation speed estimates.

V. PERFORMANCE ANALYSIS
In this section, the performance of the proposed two stage
algorithm shall be evaluated. We compare the theoretical
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covariance matrix of the solution given by (46) with the
CRLB derived in Section (III). Note that the following anal-
ysis is valid under the small noise condition. Hence, it shows
the asymptotically performance of the proposed algorithm.

We define the parameter vector ξo =
[(
θθθo
)T
, co
]T

and its
estimate ξ is given by (46). According to the definition of ϕo2
below (39) and taking the differential gives

1ξ = ξ − ξo =
[
1uT 1u̇T 1c

]T
= B−13 1ϕϕϕ2, (47)

where

B3 =

 2diag (uo − s1) 03×3 03×1
diag (u̇o − ṡ1) diag (uo − s1) 03×1

01×3 01×3 2co

. (48)

The bias of the solution estimate is given by taking expec-
tation of (47). Under the small noise assumption, 1ξ is lin-
early related to

[
1αααT ,1βββT

]T
through (31), (33), (40), (44)

and (47). Since
[
1αααT ,1βββT

]T
is zero mean, 1ξ is also

zero mean, which implies that the estimate is unbiased. The
covariance matrix of ξ can be expressed as

cov (ξ) = E
(
1ξ1ξT

)
= B−13 cov (ϕϕϕ2)B

−T
3 . (49)

After substituting (45), (43) and (32) and applying the matrix
inversion Lemma [36], (49) can be written as

cov(ξ)−1 = GT
3Q
−1
ααα G3

−GT
3Q
−1
ααα G4

(
Q−1βββ +G

T
4Q
−1
ααα G4

)−1
GT

4Q
−1
ααα G3,

(50)

where G3 = B−11 G1B−12 G2B3 and G4 = B−11 D1. According
to (7), the CRLB inverse of ξo is given by

CRLB(ξo)−1 =
[
X11 X12
XT
12 X22

]
−

[
X13
X23

]
X−133

[
XT
13 XT

23

]
.

(51)

Comparing (50) with (51) shows that they are of the same
functional form. After substituting (9) into (7), to arrive at
cov(ξ)−1 ≈ CRLB

(
ξξξo
)−1, we find that we just need to prove

that
1) G3 ≈ ±

[
∂αααo

/
∂θθθo ∂αααo

/
∂co

]
,

2) G4 ≈ ±∂ααα
o
/
∂βββo.

To facilitate the proof derivation, we shall establish the
following three additional conditions besides the small noise
condition (i)
1) ro1 � roi , i = 2, . . . ,M ,
2) ṙoi

/
roi ≈ 0, i = 1, . . . ,M ,

3) ti1
/
roi ≈ 0, i = 1, . . . ,M .

The first condition indicates that the SN nearest the source
should be chosen as the reference node. The second condition
states that the moving velocity relative to the range is close
to 0. The third condition requires that the signal propagation
time relative to range approximates 0. In the underwater envi-
ronment, objects usuallymove slowly (several meters per sec-
ond) and the sound propagation speed is about 1500 m/s.

Therefore, conditions (ii) and (iii) are valid for a localization
area with radius upto several kilometers. Note that the con-
ditions (i) and (iii) are different from the conditions in [13],
thus it is necessary to rederive the proof process. Appendix C
shows that the equations G3 ≈

[
∂αααo

/
∂θθθo ∂αααo

/
∂co

]
and

G4 ≈ ∂ααα
o
/
∂βββo are approximately hold under the conditions

established. Consequently, we conclude that the estimation
accuracy provided by (46) attains the CRLB under small
Gaussian noise and the conditions (i-iii).

To end this section, we would like to make some remarks
on the condition (i). In order to satisfy this condition for a
fixed roi , i 6= 1, it is better to make ro1 as small as possible.
However, when ro1 is close to 0, the vector (uo − s1) is close
to 0 as well. This destroys the nonsingularity of the matrixB2,
which renders the calculation of the weighting matrix of
the second stage to be intractable. Hence, in practice, we pre-
fer to choose a moderate value of roj from the ranges roi ,
i = 1, . . . ,M that satisfying 0 < roj < roi , i 6= j to be the
reference range ro1 .

VI. SIMULATION RESULTS
In this section, the performance of the proposed method is
evaluated through Monte Carlo simulations and compared
with the CRLB and three analogous existingmethods, i.e., the
three-step solution [30], the WLS solution [27] and the
SDP solution [25]. Note that none of the localization mod-
els in these works is identical to ours. We choose these
three existing methods due to their comparability and nov-
elty. In each simulation trail, without otherwise specified,
the true sound propagation speed co is randomly drawn from
the range [1400, 1600] m/s. The other simulation settings
are same as the one specified in Section III-B. The mean
square error (MSE) is used to evaluate the estimation perfor-
mance of parameter ξ . The MSE is computed as MSE(ξ ) =∑N

i=1

∥∥∥ξ i − ξo∥∥∥2/N , where ξ i is the estimate of ξo at ensem-
ble i. Note that we present all theMSE results in decibels (dB)
with reference level 1 m2 or 1 m2/s2. The results are shown
with the values taken logarithm of base 10. The reason for
using dB instead of m2 or m2/s2 as the unit is that the former
can show the results in a large scale and make the curve more
smooth. The number of ensemble runs N is 1000.

A. IMPACT OF THE MEASUREMENT NOISE
Fig. 3 illustrates the performance of the proposed method
as the measurement noise variance increases. The SN uncer-
tainty σs is fixed to be 1 m. Note that the three-step solution
can not perform velocity estimation while the WLS solu-
tion and SDP solution can not perform sound propagation
speed estimation. In order to emphasize the impact of sound
propagation speed error on the localization accuracy, we use
co+20m/s as the propagation speed estimate ofWLS solution
and SDP solution. From Fig. 3, the following observations
can be made:

1. The proposed method achieves the CRLB accuracy and
performs better than other methods for source position,

36654 VOLUME 6, 2018



B. Zhang et al.: Underwater Source Localization Using TDOA and FDOA Measurements

FIGURE 3. Impact of the measurement noise on MSE performance of the
considered algorithms: (a) source position; (b) source velocity; (c) sound
propagation speed.

velocity and sound propagation speed estimates. The
superiority of the proposed method over other methods
is more significantly for smaller noise conditions.

2. The other methods perform comparable to the proposed
method at high noise level. This is mainly because of that

the performance bound derived here includes three kinds
of unknown parameters, i.e. source position, velocity
and sound propagation speed. However, the other meth-
ods only consider two kinds of unknown parameters,
source position and velocity or source position and
sound propagation speed. Thus, the CRLB derived here
is not suitable for the other methods. In other words,
as the noise variance increases, the CRLB accounting
for more unknowns increases more faster. Nevertheless,
our proposed method is still able to reach the CRLB and
this corroborates the theoretical analysis in Section V.

3. The gap between the three-stepmethod and the proposed
method is mainly because the three-step method incor-
porates no FDOAmeasurements and takes no SNparam-
eter uncertainties into account. The need to estimate
the sound propagation speed is demonstrated by the
significant performance gain of the proposed method
compared to that of the WLS and SDP solution.

4. Interestingly, we note that the WLS solution provides
an excellent velocity estimation which is merely slightly
inferior to the proposed method. However, this phe-
nomenon is not observed in the SDP solution. We col-
lect the points of the WLS and proposed solution from
Fig. 3(b) into Table 2 to illustrate the difference clearly.
This is because that the SDP method uses the SDR
procedure which drops the rank-1 constraint. As a result,
the SDP method holds a worse performance particularly
for small measurement noise condition.

TABLE 2. MSEs of velocity for the WLS and proposed solution versus σ2
d .

B. IMPACT OF THE SN PARAMETER ERROR
Fig. 4 shows the results at different levels of SN parameter
error σs when σd is set to be 1 m and other simulation
parameters remain unchanged. The following observations
can be made:
1. As expected, the performance of the proposed method

attains the CRLB for all to be estimated parameters.
While the three-step approach also follows the trend
of CRLB, it starts to sperate from the CRLB for higher
SN parameter error. This is a consequence of ignoring
the SN parameter uncertainty in deriving the three-step
solution.

2. In Fig. 4(a), comparing the proposedmethod and the one
that does not account for the sound propagation speed
error when σ 2

s ≤ −5 dB, the new method achieves an
reduction in the source position MSE more than 10 dB.

3. Again, it is observed from Fig. 4(b) that the WLS solu-
tion is very close to the CRLB and significantly out-
performs the SDP solution for the velocity estimation.
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FIGURE 4. Impact of the SN parameter errors on MSE performance of the
considered algorithms: (a) source position; (b) source velocity; (c) sound
propagation speed.

We also collect the points of the WLS and proposed
solution from Fig. 4(b) into Table 3 to illustrate the
difference clearly. The reason behind this is the same as
in Fig. 3.

4. Moreover, we would like to point out that the val-
ues of velocity used in simulation are much smaller

TABLE 3. MSEs of velocity for the WLS and proposed solution versus σ2
s .

than the position value. This scale difference explains
why the WLS velocity MSE performance shows to
be ‘‘much better’’ than that of its position comparing
Fig. 4(a) and Fig. 4(b).

C. IMPACT OF INACCURATE SOUND PROPAGATION SPEED
In this simulation, we aim to study the impact of inaccurate
sound propagation speed on the considered algorithms. The
SN parameter error and the measurement noise variance are
set to be 0 dB and −5 dB respectively. The nominal sound
speed is set as co = 1490 m/s and the actual sound speed
is c = co + 1c m/s, where 1c ∈ [−70, 70] m/s. Note
that the range of 1c adopted here is based on a widely used
model that bounds propagation speed underwater between
1420 m/s and 1560 m/s [16]. As it can be seen from Fig. 5,
with an increase of the sound speed error (both in posi-
tive or negative direction), the performances of the algorithms
which have no regard for the sound speed variation get worse.
However, it has no effect on the three-step method and our
proposed method. This illustrates the importance of taking
the inaccurate sound speed into account while designing
the underwater localization algorithms. We note that MSE
performance of the WLS method is better than that of our
proposed method and even the CRLB when there is no sound
speed error, i.e. 1c = 0 m/s. This is mainly due to the
fact that the main strength of our proposed method is to deal
with the localization situationwhere sound propagation speed
is unknown, and the CRLB derived here incorporates three
kinds of unknown parameters, i.e. source position, velocity
and sound propagation speed. Therefore, this CRLB is not

FIGURE 5. Impact of the inaccurate sound propagation speed on MSE
performance of the considered algorithms, where 1c is the error to the
nominal sound speed.
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suitable for the WLS method which assumes that the signal
propagation speed is perfectly known. Nevertheless, the root
MSE performance gap between the WLS method and our
proposed one is less than 1 m (0.29 m in Fig. 5) at the point
1c = 0 m/s, which can be safely ignored.

D. COMPARISON OF THE TREATMENTS OF THE
WEIGHTING MATRIX W1
In real life, the error covariance matrices Qα and Qβ can
be obtained by pre-calibration. However, they might also
be unavailable due to the pre-calibration cost or other rea-
sons. For each case, we suggest corresponding treatment of
the weighting matrix W1 in Section IV-A. In this subsec-
tion, we conduct simulations to study the impacts of these
treatments on the localization performance of our proposed
solution. From Fig. 6, the following observations can be
made:
1. As predicted, the performance of the proposed solu-

tion degrades without the error covariance information
especially at the small noise region. To explain this,
the second stage of the proposed method is performed
based on its first stage solution. Under a small noise,
the first stage can be very accurate with the aid from the
error covariance information, thus the approximations
used in the second stage are comparatively reasonable.
Therefore, more accurate estimation is achieved. How-
ever, if the error covariance information is unavailable in
the first stage, the weighting matrix is not optimal in the
WLS sense, which leads to a worse first stage solution
and consequently introduces lager approximation errors
in the second stage processing. Nevertheless, we would
like to point out that the performance degradation
of our proposed method without the error covariance
information is acceptable. As observed from Fig. 6,
the largest performance gap happened at σ 2

d = −5 dB,
the root MSEs of the proposed method with and with-
out error covariance information is 2.66 m and 4.1 m,

FIGURE 6. Comparison of the treatments of the weighting matrix W1 for
the proposed solution.

respectively. The difference in root RMSE is 1.44 m
which can be tolerated by most underwater
applications.

2. Even without the knowledge of the error covariance
information, exploiting the weighting matrix structure
information (i.e. the matrices B1 and D1 in (32).) pro-
vides an improved estimation performance over the one
that ignoring the structure information. The benefit of
using the structure information increases as themeasure-
ment noise increases. To explain this, we need to recall
that the ignoring of the second order noise term and
the Taylor approximation used in our proposed solution
might become inaccurate under a large measurement
noise, thus making our method not as effective as it is
under a small measurement noise. Under this circum-
stance, an inaccurate weighting matrix can also exac-
erbate the impact of a large measurement noise, which
makes the performance of our proposed method worse.
The using of structure information undoubtedly com-
pensates the inaccurate weighting matrix and provides
the benefit observed in Fig. 6.

To conclude the impact of unknown error covariance
matrices on our proposed method, we claim that the perfor-
mance degrades without the error covariance information but
within an acceptable level, i.e. several meters. What’s more,
the structure information of the weighting matrix should be
considered to alleviate this degradation.

E. COMPLEXITY ANALYSIS
Regarding the computational complexity of the different
methods, we provide both analysis and simulation results.
We assume that the complexity of a matrix multiplica-
tion operation (one n× m matrix and one m× p matrix) is
O(nmp), and that of a matrix inversion operation (one n × n
matrix) is O(n3). The computation overhead of the proposed
solution includes two parts, i.e. the first stage calculation
and the second stage calculation. However, it is noteworthy
that the scale of the second stage calculation is much less
than that of the first stage. As a result, we only focus on the
computation complexity of the first stage. It is easy to drive
that the complexity of computing (30) isO(M2). The updating
of the weighting matrix W1 in (32) requires a computation
load ofO(M3). Thus, the complexity of the proposed solution
can be approximated as O(M3). As for the three-step solu-
tion, its complexity is O(M3). Comparing with the proposed
method, a reduction of computation cost is expected due to
the absence of FDOA measurements. Similarly, the com-
plexity of the WLS solution can be expressed as O(M3).
The worst-case complexity of solving the SDP solution is
O((u3 + u2v2 + uv3)v0.5) [38], where u is the number of
equality constrains, and v is the problem size. In the compared
SDP solution, u = 4 and v = 9. The complexity of computing
the weighting matrix in [25] is roughly O(M ). The number
of iterations is bounded by O(

√
Mln(1/ξ )), where ξ is the

iteration tolerance. Therefore, the total complexity of the SDP
solution is O(

√
Mln(1/ξ )(u3 + u2v2 + uv3)v0.5 +M ).

VOLUME 6, 2018 36657



B. Zhang et al.: Underwater Source Localization Using TDOA and FDOA Measurements

TABLE 4. Average CPU computational time per estimation for different
algorithms.

We give a comparison of the average CPU compu-
tational time per estimation in Table 4. The algorithms
are implemented in MATLAB R2013a on a lenovo T440
(Processor 4 GHz Intel Core i5, Memory 4GB). We can
see that the Three-step method requires the least CPU time
among all the considered algorithms while the SDP method
requires the most CPU time due to its iteration manner. The
required computation overheads of the WLS method and the
proposed method are comparable. Comparing with the three-
step method, our proposed algorithm is able to provide the
velocity estimate and more accurate position estimate with a
lightly increased computational load.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have proposed an algebraic solution for esti-
mating a moving source’s position and velocity using TDOA
and FDOAmeasurements in underwater environment. Due to
the harsh underwater environment, we assume the measured
SN parameters are not accurate and subject to a Gaussian
distributed error. Moreover, the sound propagation speed is
also assumed to be unknown, and we estimate it together with
the unknown source parameters. The proposed solution intro-
duces nuisance variables to obtain a set of pseudo-linear equa-
tions in the first stage and improves the estimation accuracy
in the second stage by exploiting the nonlinear relationship
among nuisance variables. We have derived the CRLB for
the localization problem and it shows that the unknown sound
propagation speed affects the measurement noise covariance
matrix by an orthogonal projection of its square root inverse.
The performance of the proposed method is shown in theory
and by simulations to reach the CRLB accuracy for the source
position, velocity and sound propagation speed estimates at
moderate noise level before the thresholding effect occurs.

The study in this correspondence only illustrates the per-
formance of the proposed method by simulations due to the
experimental equipment limitations. In the future, we plan to
implement it in underwater testbeds and explore its applica-
tion in real oceanic environment. Another possible extension
of the current work is to consider the link-wise sound propa-
gation speed in the localization scenario.

APPENDIX A
PARTIAL DERIVATIVES IN (9)

By definition, we have αααo =
[
1
co (r

o)T , 1
co (ṙ

o)T
]T

and its
derivative with respect to (w.r.t.) the parameter vector φφφo can

be calculated by

∂αααo

∂φφφo
=

[
∂αααo

∂θθθo
∂αααo
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∂βββo

]

=


∂
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/
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∂
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where
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Based on (1), (3) and (5), the partial derivatives in (52) can
be calculated as follows:
1) ∂(r

o/co)
∂uo is a (M − 1)× 3 matrix, and its (i− 1)-th row is

∂
(
roi1
/
co
)

∂uo
=

1
co

[
ρρρTuo,soi

− ρρρTuo,so1

]
, i = 2, 3, . . . ,M ,

(53)

where ρρρa,b , a− b
/
‖a− b‖ denotes the unit vector from b

to a.
2) ∂(r

o/co)
∂u̇o is an (M − 1)× 3 zero matrix.

3) ∂(ṙ
o/co)
∂uo is an (M − 1)× 3 matrix, and its (i− 1)-th row
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∂
(
ṙoi1
/
co
)

∂uo
=

1
co

([(
u̇o − ṡoi

)T
roi

−

(
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)2

]

−
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(
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)2
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, i = 2, 3, . . . ,M .

(54)

4) ∂(ṙ
o/co)
∂u̇o is an (M − 1)× 3 matrix, and its (i− 1)-th row
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∂
(
ṙoi1
/
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)

∂u̇o
=

1
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[
ρρρTuo,soi

−ρρρTuo,so1

]
, i = 2, 3, . . . ,M . (55)

From (53), we observe that ∂(ṙ
o/co)
∂u̇o =

∂(ro/co)
∂uo .

5) ∂(r
o/co)
∂co is an (M − 1)× 1 matrix, and its (i− 1)-th row

is

∂
(
roi1
/
co
)

∂co
= −

roi1
(co)2

, i = 2, 3, . . . ,M . (56)

6) ∂(ṙ
o/co)
∂co is an (M − 1)× 1 matrix, and its (i− 1)-th row
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∂
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ṙoi1
/
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)
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= −

ṙoi1
(co)2

, i = 2, 3, . . . ,M . (57)
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7) ∂(r
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∂ ṡo is an (M − 1)× 3M zero matrix.

9) ∂(ṙ
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10) ∂(ṙo/co)
∂ ṡo is an (M − 1) × 3M matrix and is equal

to ∂(ro/co)
∂so .

APPENDIX B
THE DERIVATION OF (11)
According to the matrix inversion formula [36], we
have[

X22 X23

XT
23 X33

]−1

=

[
X−122 +X

−1
22 X2301 XT23X

−1
22 −X−122 X2301

−01 XT23X
−1
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,

where 01 is defined in (13). Then, we can easily rewrite (10)
into

CRLB1(θθθo)−1

= X11 − X12X−122 X
T
12

+

(
X13 − X12X−122 X23

)
01

(
X13 − X12X−122 X23

)T
. (60)

Substituting (9) into X11 − X12X−122 X
T
12, we obtain

X11 − X12X−122 X
T
12 =

(
∂αααo

∂θθθo

)T
Q−11

(
∂αααo
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where Q−11 is defined in (12). Similarly, we also have

X13 − X12X−122 X23 =

(
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)T
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(
∂αααo

∂βββo

)
. (62)

Finally, with (61) and (62), (60) reduces to (11).

APPENDIX C
CALCULATION OF G3 AND G4
The calculation begins by defining A (i : j;m : n) as the sub-
matrix formed by the ith to the jth rows and the mth to the
nth columns of the matrix A. using the definitions of B1,

G1, B2, G2 and B3 and after some straightforward algebraic
manipulations, we can express G3 as
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Similarly, G4 can be expressed as

G4 (i− 1; 1 : 3M)

=
1
co

[
−dTi1
roi

01×3(i−2)
(uo − si)T

roi
01×3(M−i)

]
,

i = 2, . . . ,M , (69)

G4 (1 : M − 1; 3M + 1 : 6M)

= 0(M−1)×3M , (70)

G4 (i+M − 2; 1 : 3M)

=
1
co

[
dTi1ṙ
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Note that ϕϕϕ1 (8) is the estimate of η2 (co2) given by the first
stage. Under small noise condition, we have the approxima-
tion ϕ1 (8) ≈ co2, which indicates that the first stage solution
is close to the true value. Directly making the approximations
on the expressions (63)-(72) under the small Gaussian noise
assumption and conditions (i-iii) gives

G3 ≈
[
∂αααo

/
∂θθθo ∂αααo

/
∂co

]
,

G4 ≈ −∂ααα
o/∂βββo.
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We conclude that the proposed solution can attain the
CRLB accuracy approximately when the assumed conditions
are satisfied.
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