
Received May 4, 2018, accepted June 12, 2018, date of publication July 3, 2018, date of current version July 25, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2852619

Diacritizing Arabic Text Using a Single
Hidden Markov Model
MOHAMMAD S. KHORSHEED
Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, U.K.
National Center of Robotics and Intelligent Systems, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia

e-mail: mkhorshd@kacst.edu.sa

This work was supported by a Grant from King Abdulaziz City for Science and Technology in Saudi Arabia through the National Plan for
Science, Technology, and Innovation.

ABSTRACT The main obstacle in the development of a robust Arabic text-to-speech system is the ability
to place diacritics, that is, small marks above and below the raw text that indicate the correct pronunciation.
In this paper, we propose a system that can retrieve the diacritics that match a given Arabic text. First,
the system injects the raw text into an engine that is based on a single hiddenMarkov model. The engine then
generates an optimal path through its states. The system finally matches the state sequence with its equivalent
diacritics and sets them in place within the text. Experiential results on diverse data sets demonstrate the
robustness of the proposed system, even with samples that are novel to the system.

INDEX TERMS Computational and artificial intelligence, hidden Markov models, machine intelligence,
pattern analysis, text processing.

I. INTRODUCTION
The spelling characters in an Arabic word do not solely
determine the pronunciation of that word. This creates a
technological challenge when a designing a text-to-speech
system for Arabic [1]–[3]. Thus, the orthographic system
for Arabic places small marks above and below the main
strokes that are called diacritics. Diacritics are essential for
the correct pronunciation of a word and to determine its
meaning, accordingly. The accuracy of text diacritization
directly affects speech quality [4], [5]. Arabic script readers
are accustomed to inferring the meaning of undiacritized text.
However, some sentences may require even native Arabic
speakers to read them repeatedly before determining the cor-
rect meaning. Modern Arabic writing omits these diacritics,
which leads to considerable ambiguity among words that
have identical consonants but different meanings [6]. Some
researchers have measured the average ambiguities for a
token in Arabic as 19.2, which is more than eight times that
for most other languages [7]. Some words can have even a
higher number of analyses [8].

The sound system in Arabic consists of three main groups:
short vowels, nunation (tanween), and syllabification (shadda
and sukun) [9]. The first two groups include six basic diacrit-
ics that may also be combined with the diacritic shadda. The
diacritic sukun always appears alone. This results in 13 dia-
critics, as illustrated in Table 1. Consider the word in Table 2
which consists of the character sequence /d , /r and /s.

TABLE 1. Arabic diacritics.

There are five potential pronunciations, each with a different
meaning based on the set of diacritics that accompany the
letters.

Some researchers have developed systems to restore dia-
critics based on the morphological, syntactic, and semantic

36522
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-5312-6569


M. S. Khorsheed: Diacritizing Arabic Text Using a Single Hidden Markov Model

TABLE 2. Sample word with five sets of diacritics, and their translations
and transliterations.

rules of Arabic [10], [11]. These rules are systematic, but
complex [12], [13].Morphological rules decompose the undi-
acritized word into its morphological entities: the class of the
word, prefix, root, form, and suffix. Syntactic rules deter-
mine which diacritics accompany the last character of the
word. Semantic rules resolve ambiguous cases. Rule-based
diacritization is vocabulary independent; however, it is com-
plex, time-consuming, and difficult to regularly update the
rules or extend them to other Arabic dialects [14].

Another widespread approach is to use a machine learning
technique, such as a recurrent neural network, to build high-
level linguistic abstractions of text [15]. Other researchers
have implemented hidden Markov models (HMMs) at
the word level to obtain the right vowelization of words
based mainly on their context. The HMMs observe the
undiacritized text, and the output is a sequence of pos-
sible diacritized words [16]–[19]. Dynamic programming
has also been applied to efficiently restore the optimal
sequence of diacritics based on monogram [20], bigram [21],
trigram [22], or n-gram models [23]. The maximum entropy
framework is another statistical model that integrates dif-
ferent sources of knowledge to enhance the performance of
diacritization [24], [25].

Combining linguistic knowledge with stochastic tech-
niques has resulted in a hybrid system that determines the
most likely diacritics for a given undiacritized text, then
factorizes each Arabic word into all its possible morpho-
logical constituents, and finally shortlists the sequence of
morphemes that is the most likely diacritization [1], [26].

II. PROBLEM STATEMENT
In this study, we inject Arabic script into the diacritization
system as a sequence of ASCII codes of the text charac-
ters. This sequence represents the observation set for the
diacritization system that aims to restore the full diacritics
of the given script. Markov models are restrictive in the
diacritization process because they match each observation
to a distinct state within the model, whereas, in reality, each
state (diacritic) has a probabilistic function that generates
the possible observations (ASCII codes of the script letters).
In this section, we extend the implementation of the diacriti-
zation process using HMMs.

A. CONCEPTUAL UNDERSTANDING
Assume that a model is observing a set of random numbers
that represent the ASCII codes of undiacritized text. It then
attempts to generate an optimal output sequence that best
matches the diacritic set that accompanies that text. The set
of states/diacritics is hidden; however, it can be observed
through the stochastic processes that generate the observa-
tions/characters. At any instant of time, the model observes
the ASCII code of one character from an undiacritized text
line, and then steps to one of its states that represents the
equivalent diacritic.

FIGURE 1. Ergodic HMM with four states.

The proposed system is an ergodic HMM. In such a model,
a transition from one state to another, including itself, takes
place in a single step, as shown in Fig. 1. The model is
described at any time (t = 1, 2, · · · ,T ) as being in one of
the states S1, S2, · · · , SN , where N denotes the number of
states. At each time, the model either transitions to another
state or remains in its current state. This is interpreted as the
model transitioning from state qt at time t to state qt+1 at
time t + 1. The transition from one state to another occurs
according to a probability set that is associated with each
state. These activities may be described using the current state
and its predecessors:

P[qt = j|qt−1 = i, qt−2 = k, · · · , q2 = y, q1 = z] (1)

where t = 1, 2, · · · . The model under consideration only
looks at the immediate preceding state:

P[qt = j|qt−1 = i, qt−2 = k, · · · , q2 = y, q1 = z]

= P[qt = j|qt−1 = i] (2)

Moreover, only the processes that are independent of
time are considered. This leads to a set of state transition
probabilities:

aij = P[qt = Sj|qt−1 = Si] aij ≥ 0 (3)

The observation is a probabilistic function of the state. This
means that the states are not directly observable. The model
has 15 distinct states, that is N = 15. Table 3 lists the 13 pos-
sible diacritics, in addition to the start state (STR) and non-
diacritic sign state (NON ). The model always commences

VOLUME 6, 2018 36523



M. S. Khorsheed: Diacritizing Arabic Text Using a Single Hidden Markov Model

TABLE 3. Numbering and labeling the model states.

from the start state (STR) at i = 1. It then transitions from
one state (diacritic) either to another state (diacritic) or to
itself. The latter occurs when the same diacritic appears twice
consecutively within the same word. This scheme affects the
initial state probability π as follows:

πi =

{
1 i = 1
ε i 6= 1, ε ≈ 0

(4)

To calculate the state transition coefficients, we first need
to derive the corpus statistics that include the zero-order and
first-order diacritic transition probability:

P0(α)

=
No. of times diacritic α appears at the beginning

Total no. of lines in the corpus
(5)

P1(α→ β)

=
No. of transitions from diacritic α to diacritic β

No. of transitions from diacritic α
(6)

We mentioned previously that the model is ergodic, how-
ever because of the nature of the problem, there are two
constraints that apply to state transitions. The first constraint
prevents any state transition to STR because it only appears at
the beginning of the state sequence. Therefore, no transition
from any state, including STR, to STR is permitted. We assign
ε, where ε ≈ 0, to all state transition coefficients aij when
j = 1.
The second constraint is based on the syntactic rule

that nunation appears at the end of a word; hence, only a
space or the end of the line may occur. This forces the model,
when residing in any of the nunation states, MDF , MDD,
MDK , DSF , DSD, DSK , to transition only to NON , or when
i ∈ {8, 9, 10, 11, 12, 13} ⇒ j = 15. The state transition
probability is set to ε otherwise.
Apart from the previous two cases, the state transition

probability is calculated as

aij =

{
P0(j) i = 1, j 6= 1
P1(i, j) otherwise

(7)

There are M distinct observation symbols per state, where
M = 110, which correspond to the actual output of the system
being modeled. For Arabic text diacritization, the observa-
tion symbols are the ASCII codes of individual characters
that represent the undiacritized text. They are denoted by
V = v1, v2, · · · , vM . The probability of observing symbol
vk while the model is in state i at time t is referred to as the
observation symbol probability:

bj(k) = P[ot = vk |qt = i] 1 6 k 6 M (8)

When j = 1 this refers to the probability of a let-
ter appearing at the beginning of a character sequence:
b1(k) = Pinitial(vk ), where

Pinitial(vk )

=
No. of character sequences starting with the letter vk

Total no. of lines in the corpus
(9)

Not all the 110 observations are eligible to start a word,
and hence, a sentence or character sequence. Fig. 2 illustrates
some letters that cannot be at the initial position. For those
letters, b1(vk ) = ε, where ε ≈ 0.

FIGURE 2. Arabic letters not eligible to initiate a sentence.

Other than the initial letter, j 6= 1, the symbol probability,
bj(vk ), is calculated as follows:

PSj (vk )=
No. of times letter vk appears with diacritic Sj

Total no.of times diacritic Sj appears in the corpus
(10)

Specifying the two model parameters N andM , the obser-
vation symbols, and three sets of probability measures A, B
and π is essential to providing a complete specification of an
HMM. The model is denoted by λ = (A,B, π)

B. COMPUTING THE LETTER SEQUENCE LIKELIHOOD
The model generates the output sequence using the follow-
ing parameters: λ,M ,N , observation sequence, and state
sequence. The model always starts from the initial state:
q1 = 1 or STR at t = 1. While it resides at STR, the model
observes the first sample, which symbolizes the ASCII code
of the first character within the undiacritized text. The model
then transitions to q2, which represents the diacritic of the
first sample previously observed. Next, the model enters
an iterative loop in which it observes one sample from the
undiacritized text each iteration, and transitions to new state
qt+1 = j according to aij. The state label reflects the diacritic
of the character sample observed in the previous step. The
iterative process ends when there are no more observations,
that is, when it finishes diacritizing the entire text. Typically,
the character sequence ends with an end-of-line character.
This has a null observation.

The character sequence /d/r/s shown in Table 2 represents
the observation sequence of themodel, where each diacritized
sequence has a different likelihood probability. We inject this
pattern into our model as /d /r /s null. The model starts at
state STR, observes letter /d , transitions to q2, observes letter
/r , transitions to q3, observes letter /s, and finally transitions
to q4 and observes null. The probability of this observation

36524 VOLUME 6, 2018



M. S. Khorsheed: Diacritizing Arabic Text Using a Single Hidden Markov Model

sequence for a specific state sequence is

P(O|Q, λ) =
4∏
t=1

P(ot |qt , λ)

= b1(/d)× bq2 (/r)× bq3 (/s)× bq4 (null) (11)

and the probability of the state sequence is

P(Q|λ) = a1→q2 × aq2→q3 × aq3→q4 (12)

Therefore, the probability of the observations given the
model is

P(O|λ) =
∑
Q

P(O|Q, λ)P(Q|λ)

=

∑
q1q2q3q4

b1(/d)a1→q2 × bq2 (/r)aq2→q3

× bq3 (/s)aq3→q4 × bq4 (null) (13)

This allows the evaluation of the probability of the observa-
tion sequence; however, the direct evaluation of this sequence
would be exponential in T .
Consider the transliterated character sequences shown

in Table 2, where each sequence represents a potential out-
come of the model. We calculate the probabilities of the
observations /d /r /s null for various state sequences.

The first combination, /darasa, is the model outcome of
the state sequence STR,MFA,MFA,MFA. We calculate the
probability of the observation sequence given the first state
sequence as

P(/d/r/s null|STR MFA MFA MFA, λ)
= b1(/d)a1→MFA × bMFA(/r)aMFA→MFA

× bMFA(/s)aMFA→MFA × bMFA(null) (14)

We may substitute state labels for state numbers:

P(/d/r/s null|1, 2, 2, 2 , λ)
= b1(/d)a1→2 × b2(/r)a2→2 × b2(/s)a2→2 × b2(null)

(15)

The second sequence /dars is the model outcome of the
state sequence STR,MFA,MSU ,MSU . The likelihood prob-
ability given this state sequence is

P(/d/r/s null|STR MFA MSU MSU , λ)

= b1(/d)a1→MFA × bMFA(/r)aMFA→MSU

× bMSU (/s)aMSU→MSU × bMSU (null) (16)

Equally,

P(/d/r/s null|1, 2, 14, 14 , λ)
= !b1(/d)a1→2×b2(/r)a2→14×b14(/s)a14→14×b14(null)

(17)

The third sequence /darrasa is the model outcome of the
state sequence STR,MFA,MFS,MFA:

P(/d/r/s null|STR MFA MFS MFA, λ)

= b1(/d)a1→MFA × bMFA(/r)aMFA→MFS

× bMFS (/s)aMFS→MFA × bMFA(null) (18)

or

P(/d/r/s null|1, 2, 5, 2 , λ)

= b1(/d)a1→2 × b2(/r)a2→5 × b5(/s)a5→2 × b2(null)

(19)

We calculate the fourth observation sequence /doresa given
the state sequence STR,MDA,MKA,MFA as

P(/d/r/s null|STR MDA MKA MFA, λ)

= b1(/d)a1→MDA × bMDA(/r)aMDA→MKA

× bMKA(/s)aMKA→MFA × bMFA(null) (20)

or using state numbers

P(/d/r/s null|1, 3, 4, 2 , λ)

= b1(/d)a1→3×b3(/r)a3→4×b4(/s)a4→2 × b2(null)

(21)

Finally, the likelihood probability of the observation
sequence /dorresa given the state sequence STR,MDA,MKS,
MFA is calculated as

P(/d/r/s null|STR MDA MKS MFA, λ)

= b1(/d)a1→MDA × bMDA(/r)aMDA→MKS

× bMKS (/s)aMKS→MFA × bMFA(null) (22)

Alternatively,

P(/d/r/s null|1, 3, 7, 2 , λ)

= b1(/d)a1→3 × b3(/r)a3→7 × b7(/s)a7→2 × b2(null)

(23)

C. RETRIEVE THE DIACRITICAL SEQUENCE
In this paper, we aim to build an HMM-based engine that
can retrieve a set of diacritics that best matches a given
undiacritized Arabic text. However, as the letter sequence
expands, the system could have unlimited state sequence
possibilities. Therefore, given the observation sequence O,
the objective is to attempt to uncover the hidden part of the
model, that is, determine the optimal state sequence that best
explains this observation sequence. The optimality criterion is
selected to maximize P(O|λ) over a complete state sequence.
The Viterbi algorithm is a formal technique to determine
this optimum path based on dynamic programming meth-
ods [27]. For natural language applications, such as Arabic
text diacritization, the number of observations is very large;
moreover, the state transition and observation symbol proba-
bilities are very small. This may cause the machine to run out
of precision and therefore generate unreliable computations.
To overcome this problem and expand the precision, we take
the logarithms of the model parameters at the beginning:

π̂i = log(πi) 1 6 i 6 N

âij = log(aij) 1 6 i, j 6 N

b̂i(ot ) = log(bi(ot )) 1 6 i 6 N , 1 6 t 6 T (24)

We assign the value ε, where ε ≈ 0, rather than zero to
π, a, and b to avoid an undefined number or negative infinity.

VOLUME 6, 2018 36525



M. S. Khorsheed: Diacritizing Arabic Text Using a Single Hidden Markov Model

TABLE 4. Samples from the three datasets.

The algorithm proceeds in four steps without any
multiplications:
• Initialization

δ1(i) = π̂i + b̂i(o1)

ϕ1(i) = 01 6 i 6 N (25)

Only π̂1 = 0 and the remaining initial state probabilities
equal log (ε). In this study, we assign ε = 10−100 →
log(ε) = −100. This favors only paths that start from
STR:

δ1(i) =

{
b̂1(o1) i = 1
b̂i(o1)− 100 i 6= 1

(26)

• Recursion: 1 6 i 6 N , 2 6 t 6 T

δt (i) = max
1≤j≤N

[δt−1(j)+ âji]+ b̂i(ot )

ϕt (i) = arg max
1≤j≤N

[δt−1(j)+ âji] (27)

• Termination:

P∗ = max
1≤j≤N

[δT (j)]

q∗T = arg max
1≤j≤N

[δT (j)] (28)

• Path backtracking: t = T − 1,T − 2, · · · , 3, 2, 1

q∗t = ϕt+1(q
∗

t+1) (29)

III. IMPLEMENTATION AND EVALUATION RESULTS
In this section, we present the implementation of the proposed
system to process Arabic corpora to diacritize raw text that is
injected as a sequence of observations. The proposed system
consists of a 15-state ergodic HMM. We developed a com-
plete software program based on the HMMengine. Using this
program, the user may either type an Arabic phrase that the
system then diacritizes, or simply import an Arabic text file
into the graphical user interface (GUI) window. This program
passes through three modules. The first module reads the text

FIGURE 3. Screenshots from the program developed as a GUI. (a) Input
raw text. (b) Fully diacritized text.

line and transfers it into a sequence of predefined observation
symbols. The second module generates the output sequence:
the diacritics. The final module arranges the output sequence
with the raw text by imposing the diacritics above and below
the equivalent characters. Fig. 3 shows two screenshots that
illustrate the input raw text and the final fully diacritized text.

A. THREE DATASETS
To assess the performance of the proposed system, we applied
the HMM-based engine to an Arabic text corpus. The corpus
consisted of three datasets. Table 4 shows one text sam-
ple from each dataset. Table 5 illustrates various statistics

36526 VOLUME 6, 2018



M. S. Khorsheed: Diacritizing Arabic Text Using a Single Hidden Markov Model

TABLE 5. Data analytics of the three datasets.

of those sets. The system did not accept numbers, sym-
bols, or special characters, only the Arabic alphabet.

The first dataset,DS1, was built at King Abdulaziz City for
Science and Technology [28]. It included 231 files of proof-
read Arabic text. Each of these files contained 100 or more
diacritized sentences, where each sentence had an average
of 10 words, with a total number of more than 255,455 words.
The dataset consisted of more than 2 million characters of
Arabic letters, spaces, and diacritics. During the course of
building this dataset, we focused on the diversity of the sub-
jects covered to avoid the diacritization process being biased
toward a particular subject.

The second dataset, DS2, included the fully diacritized
text from the Holy Quran, where each verse was considered
as a separate sentence. In this dataset, the average number
of words per sentence was higher than that in DS1, which
affected the diacritization process, as shown below. DS2
included approximately 476,000 characters, more than 50%
of which were Arabic letters, 38% were diacritics, and the
remainder were spaces.

The third dataset, DS3, consisted of 54,463 Arabic names,
each of which was considered as a separate sentence that
could include up to four parts: surname, father’s name, grand-
father’s name, and family name. The total number of words
in DS3 was around 141,000, with an average of 2.6 words
per sentence. This low figure, compared with the previ-
ous datasets, positively influenced the diacritization process,
as will be illustrated later.DS3 included 752,304 characters of
which 400,000 were Arabic letters, more than 265,000 were
diacritics, and the remainder were spaces.

B. EXPERIMENTS
We conducted several experiments with different configu-
rations. In the following, we present the performance and
characteristics of the most notable experiments. These exper-
iments reported two values: word error rate (WER) and dia-
critization error rate (DER). WER is the percentage of words
that have at least one faulty diacritic. DER is the percentage
of diacritics that were incorrectly restored.

We performed the first set of experiments using 10,000 sen-
tences from DS1 as training samples. The testing samples
were 30%, 60%, and 90% of the training samples. In all
these experiments, the DER varied between 27% and 28%,
as shown in Table 6. The variation among the three values
is not significant. We also observed similar results when we

TABLE 6. DER (%) for DS1 using different training and testing samples.

expanded the training samples to 20,000 sentences fromDS1.
The two groups of experiments resulted in a very poor WER
that reached 78%. This indicates that the diversity among
DS1 samples may have resulted in favoring a set of diacritics
that did not correctly match the context of the sentence. For
example, a set of characters may frequently occur in Arabic
text with a certain diacritic sequence. If the context dictates
that this character set must have a different diacritic sequence
to serve the meaning, then the likelihood probability of the
correct diacritic sequence is less than that of its equivalent
most-frequently wrong diacritic sequence. In this case, both
DER and WER increase.

TABLE 7. Comparing DER (%) among the three datasets.

We conducted a second set of experiments on the three
datasets in which we used the entire dataset as training sam-
ples: 24,274 samples from DS1, 5,308 samples from DS2,
and 54,463 samples from DS3. For each dataset, we per-
formed three experiments: using one third of the dataset as
a testing set, using two thirds of the dataset, and finally,
using the full dataset. Table 7 presents the results of these
experiments. It shows consistent behavior across the three
datasets using various set sizes for testing. It also illustrates
a noticeable increase in DER for DS3 compared with the
other two datasets. This is mainly because of the dataset size
available for training, which enabled the system to capture
the dynamicity of the dataset. By contrast,DS2 had the lowest
DER because of the limited dataset size. Another reason for
this difference relates to the nature of the content of each
dataset. Whereas DS1 and DS2 included a diversity of topics,
DS3 consisted of Arabic names, which are more limited in
range.DS2 also demonstrated the lowest performance among
the three datasets in terms of WER: more than 80%. DS1
improved WER by 8% and DS3 improved WER by 33%.
The third set of experiments measured system performance

using testing samples that differed from the training samples.
Because of the limitation in dataset sizes, we could only
conduct this test on DS1. We performed two experiments:
• In the first experiment, we trained the engine
using 10,000 sentences. We then used 4,000, 8,000,
and 120,000 different sentences as a testing set. DER
was 27.07%, 27.22%, and 27.41%, respectively.

VOLUME 6, 2018 36527



M. S. Khorsheed: Diacritizing Arabic Text Using a Single Hidden Markov Model

TABLE 8. Performance summary for the four systems based on HMMs.

• In the second experiment, we trained the engine using
20,000 sentences. We then used 4,000 different sen-
tences as a testing set. DER was 26.91%.

We observed a slight difference between these results and
those listed in Table 6. Recall that the testing samples used
to deduce DER were different from the training samples,
whereas in Table 6, the testing samples used to deduce DER
were part of the training samples. Therefore, the randomly
selected new samples fromDS1 resulted in the same accuracy
compared with testing the engine with part of the training
samples.

C. COMPARISON WITH OTHER
HMM-BASED APPROACHES
In the literature review section, we surveyed a number of dia-
critic restoration systems. These systems vary between mor-
phological, syntactic, and semantic rules, neural networks,
dynamic programming and HMMs. In this section, we com-
pare the proposed system with four systems that are all based
on HMMs [17], [18], [20], [21]. These systems have almost
the same approach, in which they consider undiacritized
Arabic text as an observation sequence for HMMs, and the
hidden states are the fully diacritized word expressions. Each
system extrudes the optimal state sequence that represents
the fully diacritized Arabic text. During the testing phase,
these systems search through all the words that have a similar
non-voweled structure and select the diacritized word that has
the highest likelihood.

This approach can generate diacritic marks only for those
non-voweled words that already exist in the model. This
approach has two drawbacks: it is lexicon-based and there-
fore limited from a practical point of view. Second, each
non-voweled word has a number of distinct models that are
equivalent to all possible diacritic combinations. The two
drawbacks lead to the problem of whether, when adding
a new word or new combination of diacritics the model
has to undergo a complete training cycle to accommodate
the modification. Moreover, sentences that contain unlisted
words are excluded from the testing results. This highly
contributed to the implausibly low WER shown in Table 8.
Though Elshafei et al. [20] highlighted a DER of 5.43%,
the aforementioned four systems do not calculate DER using
the aforementioned definition because the basic unit of their
models is the word rather than the letter.

Another factor that affects overall performance is the num-
ber of diacritics the system can recognize. Whereas Gal [17]

used only three basic diacritics, Elshafei et al. [20], [21]
extended the diacritic set into eight, and El-Harby et al. [18]
used 11 diacritical marks to vowelize the Arabic text. Extend-
ing the diacritic set expands the practicality of the system
however; it complicates the implementation of HMMs.

The size of the testing set reflects the actuality of sys-
tem performance. Training the model with tens of thousands
of diacritized words and testing it with a few hundreds of
undiacritized words cannot demonstrate the robustness of the
system [18], [20].

IV. CONCLUSION
In this paper, we proposed a system to diacritize Arabic text.
The system was based on HMMs. The raw text was consid-
ered as a sequence of observations, where each observation
represented the ASCII code of the equivalent character of
the alphabet. The observation sequence was injected into
the HMM engine, which transitioned its states to deduce
the optimal path across the model. The optimal output state
sequence represented the set of diacritics that accompanied
the Arabic raw text. The performance of the proposed system
was assessed using an Arabic corpus that included three
distinct datasets.

The proposed system is novel in the sense that the basic
unit is the letter not the word, as in systems in the literature.
This provided more flexibility for our system to learn and
expand the vocabulary. We achieved a higher DER and WER
than other systems that inexcusably excluded unknownwords
when calculating DER and WER.

REFERENCES
[1] A. M. Azmi and R. S. Almajed, ‘‘A survey of automatic Arabic diacritiza-

tion techniques,’’ Natural Lang. Eng., vol. 21, no. 3, pp. 477–495, 2013.
[2] S. Ananthakrishnan, S. Narayanan, and S. Bangalore, ‘‘Automatic diacriti-

zation of arabic transcripts for automatic speech recognition,’’ in Proc. 4th
Int. Conf. Natural Lang. Process., Kanpur, India, 2005, pp. 1–8.

[3] M. Elshafie, H. Almuhtaseb, andM. Alghamdi, ‘‘Techniques for high qual-
ity Arabic speech synthesis,’’ Inf. Sci., vol. 140, pp. 255–267, Feb. 2002.

[4] I. Rebai and Y. BenAyed, ‘‘Text-to-speech synthesis system with Arabic
diacritic recognition system,’’ Comput. Speech Lang., vol. 34, no. 1,
pp. 43–60, 2015.

[5] Y. A. Alotaibi, A. H. Meftah, and S.-A. Selouani, ‘‘Diacritization, auto-
matic segmentation and labeling for Levantine Arabic speech,’’ in Proc.
IEEE Digit. Signal Process. Signal Process. Educ. Meeting (DSP/SPE),
Napa, CA, USA, Aug. 2013, pp. 7–11.

[6] A. Zouaghi, L. Merhbene, and M. Zrigui, ‘‘Combination of information
retrieval methods with LESK algorithm for Arabic word sense disambigua-
tion,’’ Artif. Intell. Rev., vol. 38, no. 4, pp. 257–269, 2011.

[7] A. Farghaly and K. Shaalan, ‘‘Arabic natural language processing: Chal-
lenges and solutions,’’ ACM Trans. Asian Lang. Inf. Process., vol. 8, no. 4,
pp. 1–22, 2009.

36528 VOLUME 6, 2018



M. S. Khorsheed: Diacritizing Arabic Text Using a Single Hidden Markov Model

[8] M. Maamouri and A. Bies, ‘‘The Penn Arabic treebank,’’ in Proc. Arabic
Comput. Linguistics, Stanford, CA, USA, 2010, pp. 1–42.

[9] A. O. Bahanshal and H. S. Al-Khalifa, ‘‘A first approach to the evalua-
tion of Arabic diacritization systems,’’ in Proc. 7th Int. Conf. Digit. Inf.
Manage. (ICDIM), Macau, China, Aug. 2012, pp. 155–158.

[10] T. El-Sadany and M. Hashish, ‘‘Semi-automatic vowelization of Arabic
verbs,’’ in Proc. 10th Nat. Comput. Conf., Jeddah, Saudi Arabia, 1988,
pp. 725–732.

[11] Y. A. El-Imam, ‘‘Phonetization of Arabic: rules and algorithms,’’ Comput.
Speech Lang., vol. 18, no. 4, pp. 339–373, 2003.

[12] M. Attia, ‘‘A large-scale computational processor of the Arabic morphol-
ogy, and applications,’’ M.S thesis, Faculty Eng., Cairo Univ., Giza, Egypt,
2000.

[13] M. Attia, ‘‘Handling Arabic morphological and syntactic ambiguity within
the LFG framework with a view to machine translation,’’ Ph.D. disser-
tation, School Lang., Linguistics Culture, Univ. Manchester, Manchester,
U.K., 2008.

[14] M. Badrashiny, ‘‘Automatic diacritizer for Arabic texts,’’ M.S. thesis,
Faculty Eng., Cairo Univ., Giza, Egypt, 2009.

[15] G. Abandah, A. Graves, B. Al-Shagoor, A. Arabiyat, F. Jamour, and
M.Al-Taee, ‘‘Automatic diacritization of Arabic text using recurrent neural
networks,’’ in Proc. 13th Int. Conf. Document Anal. Recognit., Nancy,
France, vol. 18, 2015, pp. 183–197.

[16] A. Ibraheem. A Concept Paper on a New Language Model for
Automatic Diacritic Restoration. Accessed: Dec. 6, 2016. [Online].
Available: http://ifecisrg.org/sites/default/files/articles/diacritic%20graph
%20arabic20.pdf

[17] Y. Gal, ‘‘AnHMMapproach to vowel restoration inArabic andHebrew,’’ in
Proc. ACLWorkshop Comput. Approaches Semitic Lang., 2002, pp. 27–33.

[18] A. A. El-Harby, M. A. El-Shehawey, and R. El-Barogy, ‘‘A statistical
approach for Qur’an vowel restoration,’’ J. Artif. Intell. Mach. Learn.,
vol. 8, no. 3, pp. 9–16, 2008.

[19] M. S. Khorsheed, ‘‘A HMM-based system to diacritize Arabic text,’’
J. Softw. Eng. Appl., vol. 5, pp. 124–127, Dec. 2012.

[20] M. Elshafei, H. Al-Muhtaseb, and M. Alghamdi, ‘‘Statistical methods for
automatic diacritization of Arabic text,’’ in Proc. 18th Nat. Comput. Conf.,
Riyadh, Saudi Arbia, 2006, pp. 301–306.

[21] M. Elshafei, H. Al-Muhtaseb, and M. Alghamdi, ‘‘Machine generation
of Arabic diacritical marks,’’ in Proc. Int. Conf. Mach. Learn., Models,
Technol. Appl., Las Vegas, NV, USA, 2006, pp. 128–133.

[22] R. Nelken and S. M. Shieber, ‘‘Arabic diacritization using weighted finite-
state transducers,’’ in Proc. ACL Workshop Comput. Approaches Semitic
Lang., 2005, pp. 79–86.

[23] Y. Hifny, ‘‘Higher order n-gram language models for Arabic diacritics
restoration,’’ in Proc. 12th Conf. Lang. Eng. (ESOLEC), Cairo, Egypt,
2012, pp. 1–5.

[24] I. Zitouni, J. Sorensen, and R. Sarikaya, ‘‘Maximum entropy based restora-
tion of Arabic diacritics,’’ in Proc. 21st Int. Conf. Comput. Linguistics 44th
Annu. Meeting ACL, Sydney, NSW, Australia, 2006, pp. 577–584.

[25] I. Zitouni and R. Sarikaya, ‘‘Arabic diacritic restoration approach based
on maximum entropy models,’’ Comput. Speech Lang., vol. 23, no. 3,
pp. 257–276, 2009.

[26] M. Rashwan, M. Al-Badrashiny, M. Attia, S. Abdou, and A. Rafea,
‘‘A stochastic Arabic diacritizer based on a hybrid of factorized and
unfactorized textual features,’’ IEEE Trans. Audio, Speech, Lang. Process.,
vol. 19, no. 1, pp. 166–175, Jan. 2011.

[27] G. D. Forney, Jr., ‘‘The Viterbi algorithm,’’ Proc. IEEE, vol. JPROC-61,
no. 3, pp. 268–278, Mar. 1973.

[28] M. Alghamdi et al., ‘‘Automatic Arabic text diacritizer,’’ King Abdulaziz
City Sci. Technol., Riyadh, Saudi Arabia, Tech. Rep. CI.25.02, 2006.

MOHAMMAD S. KHORSHEED received the
B.S. and M.S. degrees in computer engineering
from King Saud University, Riyadh, Saudi Ara-
bia, in 1989 and 1994, respectively, and the Ph.D.
degree from the Computer Laboratory, Univer-
sity of Cambridge, U.K., in 2000, with a focus
on recognizing cursive text in historical Arabic
manuscripts.

In addition to his research activities, he led the
establishment of a number of national programs

in Saudi Arabia in technology incubation, university–industry research col-
laboration, and intellectual property management. In his secondment to
General Electric, he was appointed as the Innovation Officer in Saudi Arabia.
He established the GE Innovation Center, Dhahran Techno Valley, which was
the first center in the Middle East, North Africa, and Turkey regions.

He has over 35 patents issued from USA, European, Japanese, Chinese,
and Saudi patent offices. His research activities span image and text pro-
cessing, data mining, 2-D and 3-D barcode recognition, pattern recognition,
Arabic document processing, and optical character recognition.

VOLUME 6, 2018 36529


	INTRODUCTION
	PROBLEM STATEMENT
	CONCEPTUAL UNDERSTANDING
	COMPUTING THE LETTER SEQUENCE LIKELIHOOD
	RETRIEVE THE DIACRITICAL SEQUENCE

	IMPLEMENTATION AND EVALUATION RESULTS
	THREE DATASETS
	EXPERIMENTS
	COMPARISON WITH OTHER HMM-BASED APPROACHES

	CONCLUSION
	REFERENCES
	Biographies
	MOHAMMAD S. KHORSHEED


