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ABSTRACT Indoor localization has garnered the attention of researchers over the past two decades due
to diverse and numerous applications. The existing works either provide room-level or latitude-longitude
prediction instead of a hybrid solution, catering only to specific application needs. This paper proposes a new
infrastructure-less, indoor localization system named HybLoc usingWi-Fi fingerprints. The system employs
Gaussian Mixture Model (GMM)-based soft clustering and Random Decision Forest (RDF) ensembles
for hybrid indoor localization i.e., both room-level and latitude-longitude prediction. GMM-based soft
clustering allows finding natural data subsets helping cascaded classifiers better learn underlying data
dynamics. The RDF ensembles enhance the capabilities of decision trees providing better generalization.
A publically available Wi-Fi fingerprints data set UJIIndoorLoc (multi-floor and multi-building) has been
used for experimental evaluation. The results describe the potential of HybLoc to provide the hybrid location
of user viz a viz the reported literature for both levels of prediction. For room estimation, HybLoc has demon-
strated mean 85% accuracy, 89% precision as compared with frequently used k Nearest Neighbors (kNN)
and Artificial Neural Network (ANN)-based approaches with 56% accuracy, 60% precision and 42%
accuracy, 48% precision, respectively, averaged over all buildings. We also compared HybLoc performance
with baseline Random Forest providing 79% accuracy and 82% precision which clearly demonstrates the
enhanced performance by HybLoc. In terms of latitude-longitude prediction, HybLoc, kNN, ANN, and
baseline Random Forest had 6.29 m, 8.1 m, 180.7 m, and 10.2 m mean error over complete data set. We also
present useful results on how number of samples and missing data replacement value affect the performance
of the system.

INDEX TERMS Big data applications, indoor localization, machine learning, random decision forest (RDF),
ensemble learning, soft clustering.

I. INTRODUCTION
Lots of efforts from academia as well as industry have been
put into indoor localization due to the prevalence of smart
devices demanding context aware applications. The most
important context is the location of a person. Humongous
Locations Based Services (LBS) such as healthcare, smart
transportation, accident prevention, and evacuation plans in
case of terrorist attacks etc., can all benefit from the accurate
location provided by an Indoor Positioning System (IPS).
In GPS-deprived indoor environments, localization has been
extensively explored using various sensory signals such as
Wi-Fi [1]–[3], Bluetooth [4], [5], Bluetooth Low Energy
(BLE) [6], RFID [7], [8], Ultra wide band signals [9],

and images [10] etc. These signals have been employed
based on Angle of Arrival (AOA) [11], [12], Time of Arrival
(TOA), Time Difference of Arrival (TDOA), Pedestrian Dead
Reckoning (PDR) [13], Propagation Model (PM), and finger-
printing approaches. Infrastructure-based and infrastructure-
less are the two broad categories in terms of sensory inputs
required by these indoor positioning systems. Wi-Fi being
infrastructure-less stands out in sensory signals due to pre-
existing large scale deployments, almost everywhere, barring
the need of additional hardware installations. Fingerprinting
based solutions are favored because techniques such as TOA
and AOA require specialized antennae along with strict time
synchronization [14]. PDR suffers from error propagation
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in successive location estimates. Furthermore, propagation
model based methods majorly rely on the estimated distances
from a Wi-Fi Access Point (AP) to a user for location esti-
mation using trilateration, degrading its performance in real
world scenarios. Hence in this paper, we propose an IPS using
fingerprints (FPs) of Wi-Fi signals.

A. CONTRIBUTIONS
1) Most of the existing works on indoor localization

report their results either for room-level prediction [7],
[15], [16] or in terms of latitude-longitude [17], [18] or
any other explicit coordinates. These two approaches
cannot be compared directly because even a prediction
error of one meter in terms of x, y coordinates can
localize the person either in the actual room or the one
adjacent to it. This misjudgment has non-trivial impli-
cations for applications with specific requirements
such as precise room-level accuracy. Consequently,
the literature on indoor localization is broadly cate-
gorized into two namely, room–level prediction and
latitude-longitude prediction (translated into meters).
We present a new IPS based on soft clustering and
ensemble of ensembles which provides location in
terms of both latitude-longitude and room-level pre-
diction, integrating major parallel streams of indoor
localization.

2) Partitioning of dataset in existing work has either
been done based on clustering Reference Points
(RPs) into disjoint groups rather than clustering
dataset samples [7], [19]–[22] or hard clustering of
dataset samples [23], [24]. Dataset samples partition-
ing into overlapping and/or non-overlapping subsets
has been performed based on mere AP visibility in
a sample reading [15], [25] which results in as many
data subsets as there are number of APs in the dataset
and the same number of trained classifiers. In such
a mechanism, the number of classifiers for all clus-
ters will linearly increase with growing number of
APs visible in a building resulting in many classifiers’
invocations per prediction. We propose a new dataset
samples partitioning approach where GMM based soft
clustering is employed, guided by Akaike Information
Criteria (AIC) and Bayesian Information Criteria (BIC)
to find natural groups in dataset samples. This approach
also allows the system designers to control the number
of trained classifiers as well as maximum number of
classifiers invoked per prediction.

3) The existing works on IPS mostly use their own propri-
etary datasets which are far smaller in size, number of
users responsible for data collection, device diversity,
and are usually not publically accessible. Effectively
such works are rendered unusable in order to reproduce
and/or compare results with other works. We present
results on UJIIndoorLoc, a publically available dataset
containing 21,048 Wi-Fi FPs of 520 APs marked with
ground truth, collected by 20 users, and 25 different

android devices ensuring validation of real world
scenarios. It contains FPs of 3 buildings of University
at Jaume I, Spain. Each building has 4 or more floors,
covering an area of almost 110,000m2. Our reported
results can be validated with various other existing
indoor localization systems that have utilized the same
dataset.

4) We report the impact of missing RSSI value replace-
ment in Wi-Fi samples and report interesting findings
on it.

5) We also report the effect of number of samples per room
utilized in training. Results are reported on unfiltered
and filtered datasets based on our proposal of room-
sample frequency based thresholding mechanism.

B. OUTLINE
The organization of the paper is as follows: Section II dis-
cusses related work focusing mainly on Wi-Fi based local-
ization approaches and IPS utilizing UJIIndoorLoc dataset.
In Section III, a summarized overview of the dataset is pro-
vided to let the reader know the experimental area details,
predictors, and ground truth labels of the samples. The pro-
posed localization system is described in Section IV, both in
terms of training and location prediction phases. In Section V,
the results of the proposed localization system (HybLoc) on
the dataset are provided in comparison with most widely used
kNN, ANN and baseline Random Forest based approaches
for indoor localization. Finally, conclusion is presented in
Section VI.

II. RELATED WORK
Numerous IPS have been presented in recent years. Concern-
ing our work, two aspects of indoor positioning are relevant,
indoor localization usingWi-Fi fingerprints and indoor local-
ization using UJIIndoorLoc dataset.

A. WORK BASED ON WI-FI LOCALIZATION
RADAR [26] from Microsoft R© research lab is the pioneer
work using Wi-Fi signals and radio propagation model on
indoor location estimation. It utilized Wi-Fi FPs collected
at the Wi-Fi Access Points (APs) of the laptop carried by
a user. Triangulation and k-nearest neighbors both were uti-
lized to approximate x, y coordinates of user, reporting 2-3m
median error. The experimental area was just a single floor of
43.5m × 22.5m (980m2) dimensions with only 3 APs result-
ing in 0.003 APs/m2. They reported results primarily in the
form of Cumulative Distribution Function (CDF) of the posi-
tioning error along with 25th, 50th, 75th, and 95th percentile
error in meters.

Kanaris et al. [27] utilized hybrid sensory input consisting
of visible light and radio signals. They proposed filtering of
dataset based on visible light communication (VLC) and then
modified kNN was used on that data subset for final location
estimation. Their results discussed performance both with
Wi-Fi only andWi-Fi with VLC indicating mean error reduc-
tion from 4.7m to 1.89m when VLC is used with 20% of the
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total dataset size for computing prediction. An area of 160m2

was covered by 6 APs (0.03 APs/m2). Their approach is not
completely infrastructure-less as they identify the region of
interest in the first step using VLC which requires special-
ized hardware. They presented results on merely 7 specific
test points. An average positioning error in meters was pre-
sented on each such test point. They compared their proposed
method against kNN based approach using Wi-Fi only.

Sun et al. [10] combinedWi-Fi signals with camera images
to optimize propagation model parameters, using trilateration
and Wi-Fi fingerprints. The crowdsourced Wi-Fi fingerprints
were utilized to adjust for localization errors in trilateration.
Furthermore, panoramic camera and room map were used to
detect human object on the observed image to find its pixel
location. The pixel locationwas thenmapped to the roommap
using ANN. Their results were in the form of x, y coordi-
nates with mean error of 3.15m in a corridor and a single
room. Their approach for crowdsourcing the data required
2-D code stickers for identification of place with the sub-
mitted user FPs. It also required installation of panoramic
cameras for location prediction. Their experimental area
of 51.6m × 20.4m (1052.64m2) had 7 APs translating into
0.007 APs/m2. They expressed their results in a specific
room and specific room + corridor in terms of mean posi-
tioning error in meters and cumulative probability within
both 1m and 2m. They mainly compared their results with
kNN method for indoor localization.

Cooper et al. [28] made use of FPs using Wi-Fi combined
with Bluetooth Low Energy (BLE) radio signals. Modified
AdaBoost algorithm in conjunction with Decision Stumps
was applied for room-level location estimation. They trained
a classifier per room in One-vs-All notion. They presented
results with both Wi-Fi only and Wi-Fi + BLE in their
approach called Loco. They reported 94% accuracy using
Wi-Fi only. When Wi-Fi + BLE combined signals were
used, it increased to 96%. However, AdaBoost is a boosting
technique that cannot be parallelized for training as well
as predicting. The One-vs-All notion computation required
for every room also makes Loco’s response time dependent
on the building size and the number of rooms per building.
The response time of Loco worsens directly in proportion to
the number of rooms. Their experimental setup covered an
area of 1,900m2 with dense coverage of 159 APs, resulting
in 0.08APs/m2. They compared their results with Redpin [29]
in terms of accuracy for room level prediction, utilizing a
combination of GSM cell information, Bluetooth, and Wi-Fi
signals.

Li et al. [20], proposed affinity propagation clustering
combined with Particle Swarm Optimization based ANN for
each cluster. Data dimension reduction was performed using
Principle Component Analysis (PCA) before clustering. They
presented results in terms of x, y coordinates. They reported
mean error of 1.89m and 90% error of 2.9m on experimental
area of 45m × 25m (1,125m2) with 16 APs (0.014 APs/m2).

Song et al. [21], focused on elimination of redundant APs
for each reference point (RP), based on best discriminating

APs selection. They employed modified ReliefF with
Pearson’s correlation coefficient for APs elimination fol-
lowed by clustering on the filtered data. RP clustering was
based on threshold of minimum size of common subset of
best discriminating APs. Then a Hidden Naïve Bayes (HNB)
model was trained for each cluster. To estimate location,
cluster matching and respective HNBwas invoked to estimate
x, y coordinates. Mean error of 1.68m with 2.21 standard
deviation in positioning error was reported by the authors.
The experimental area of 800m2 was covered by 50 APs
(0.06 APs/m2).
Górak et al. [15] focused on two things; one, finding

important APs using Random Forest. Second, proposing a
scheme to determine malfunctioning APs during operation.
They evaluated their proposed system in normal and mal-
functioning APs scenarios. For floor detection, they reported
an error rate of 4% and 2 meters for horizontal detection,
instead of 30% and 7mwithout malfunctioning APs detection
mechanism. An area of 50m × 70m (3,500m2) was covered
for experiments with a total of 570 APs (0.16 APs/m2).
Górak et al. [25] proposed an IPS employing Random Forest
with a new take on dataset partitioning in the same exper-
imental set up. They generated subsets according to RSSI
signal visibility of each AP. All observations in their dataset
with non-missing values of an AP’s RSSI were included
in that AP’s subset, resulting in number of subsets equal
to number of APs. A Random Forest was trained for each
subset for x, y coordinates prediction and floor prediction,
reporting mean error of 3.1m and 0.04 (absolute floor num-
ber difference) respectively. They compared their proposed
approach with baseline Random Forest approach and with
multilayer perceptron indicating 5-9% improvement in mean
horizontal error, whereas floor detection accuracy remained
the same.

Belmonte-Fernández et al. [16], proposed an IPS based
on Wi-Fi fingerprinting for room-level localization, targeting
ambient assisted living (AAL) as an application area. Their
experiments focused on evaluating performance based on
combination of training and testing data under posture vari-
ations (standing/sitting), making a total of 4 combinations,
and utilized numerous classifiers and their proposed ensem-
ble classifier to present their results. They evaluated their
proposed system in 5 different apartments of various sizes
specifically 120m2 with 33 visible APs (0.27 APs/m2), 80m2

with 36 visible APs (0.45 APs/m2), 90m2 with 27 visible
APs (0.3 APs/m2), 80m2 with 43 visible APs (0.53 APs/m2),
and 62m2 with 23 visible APs (0.37 APs/m2). They used
accuracy as the only performance measure. They showed that
different classifiers were suitable for different combinations.
They reported however that the maximum accuracy of 76.7%,
averaged over all 5 scenarios, was achieved only by Random
Forest.

B. WORK BASED ON UJIINDOORLOC
The dataset covered an area of 110,000m2 with total 520
Wi-Fi APs visible during data collection from all
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buildings (0.004 APs/m2). Wietrzykowski et al. [23] used
visual space identification algorithm FAB-MAP for indoor
localization using Wi-Fi FPs. They presented results in
the form of x, y coordinates. They reported accuracy as
a measure of correct prediction of both Building ID and
floor ID combined i.e., both were identified correctly. They
reported error inmeters between actual and predicted location
with minimum 8.21m for only those samples for which
both building ID and floor ID were predicted correctly.
However, such performance measure evaluation leaves
out results on those samples’ positioning error for which
either building ID or floor ID was incorrectly predicted.
Furthermore, no comparisonwith any other existing approach
was reported.

Torres-Sospedra et al. [18] reported results on x, y
coordinates prediction along with floor and building pre-
diction. They provided two different datasets of magnetic
field (UJIIndoorLoc-Mag) andWi-Fi RSSI covering the same
area. Basic kNN was used for both magnetic and Wi-Fi
RSSI values. Mean positioning error for magnetic field based
discrete and continuous methods in the reported 11 test-
ing paths was 7.23m and 6.05m respectively. For Wi-Fi
dataset, mean error of 4.54m was presented with minimum
error of 4.27m. They reported results in terms of mean
positioning error in meters and response time in seconds.
Their main focus was on presenting a new dataset as the
primary contribution, therefore comparisons with existing
approaches were not drawn on their provided dataset.

Bozkurt et al. [30] used the dataset to investigate different
classifiers for various levels of predictions i.e. building, floor
and region level which is their definition of a new attribute
composed of a triplet consisting of Building ID, Floor ID,
and Space ID. For building level prediction, they com-
pared BayesNet, Sequential Minimal Optimization (SMO),
Artificial Neural Network (ANN), J48, and Naïve Bayes with
BayesNet providing best accuracy of 99.8%. For predicting
floor and region level, ANN was the winner with 89.9%
accuracy. They used accuracy and response time as the per-
formance evaluation measures.

Uddin and Islam [31] proposed the usage of extremely
randomized trees for x, y coordinates prediction. Their
reported Root Mean Squared Error (RMSE) of the pro-
posed approach was 12.21m for longitude and 10.12m
for latitude. For building and floor level prediction 100%
and 91.44% accuracy was attained. They evaluated build-
ing ID and floor ID prediction using accuracy/success rate,
and for latitude-longitude prediction they used RMSE and
normalized RMSE. Nowicki and Wietrzykowski [32] used
the RSSI values to hierarchically perform building and floor
identification using deep learning. They reported an accu-
racy of 91% for correct identification of building and floor
classification.

An overview of the existing work highlights the need for
a unified approach which caters for the needs of applications
requiring meter level location identification as well as room-
level prediction.

III. BRIEF DESCRIPTION OF UJIINDOORLOC DATASET
The dataset was presented by Torres-Sospedra et al. [33].
The dataset was collected at three buildings of University
Jaume I,Madrid, Spain. Each building contained four or more
floors and total covered area was 110,000m2. A total of 529
attributes in the provided 21,048 Wi-Fi FPs consist of
520 Wi-Fi AP RSSI values, Building ID, Floor ID, Space ID,
latitude, longitude, user ID who collected the data, device ID
describing the phone’s manufacturer along with model, and
date/time stamp. As it contains building, floor, and space
IDs along with latitude and longitude, it can be used for
both classification (building/floor/space prediction) and/or
regression (determining latitude-longitude values). Twenty
different users, using 25 different Android devices, created
this dataset. The dataset consists of 19,937 training samples
and 1,111 test samples.

The RSSI values of the APs varied from −104dBm (weak
signal ∼ far AP) to 0dBm (strong signal ∼ near AP). As all
APs are not visible at all locations, resulting dataset is sparse
with numerous missing values. These missing values are
labeled with value +100 in the original dataset.

The rationale for using this dataset is twofold: first, it read-
ily allows the reader to directly compare the results with
existing IPS using the same dataset instead of results on a
small, proprietary dataset. Second,most of the reportedworks
collect a dataset from a rather small area (usually a research
lab floor/ portion of departmental building) which does not
depict a real world scenario. This dataset is large enough to
let the IPS show its capability in true sense. Consider there
are a total of M APs detected in the complete dataset. The
dataset consists of totalR rows of the following format termed
as FPi. Each row in the dataset is a fingerprint FPi where
FPi = {x1, x2, x3, . . . ., xM , } and xj represents the received
signal strength from jthAP in the collected sample. As ground
truth, 3 labels are tagged with each such sample namely
Roomi, Lati and Longi representing Room ID, latitude and
longitude values respectively.

IV. HybLoc
Our proposed system targets indoor localization at building
level since either GPS or AP MAC address matching can
be easily used to narrow down to building level. The main
idea here is to split the dataset for a building using soft clus-
tering performed by Gaussian Mixture Model (GMM) into
overlapping and/or non-overlapping data subsets comprising
of similar observations. These subsets are then assigned to
different subsystems specifically customized to process the
respective data employing Random Decision Forest (RDF)
ensembles [34]. Many recent research contributions indicate
that combining clustering and classification ensembles can
yield a better and improved classifier as clustering can impose
useful constraints on the classification task [35]–[38]. This
was the motivation behind combining clustering and classi-
fier ensembles, where clustering is applied first to FP samples
to group similar observations together. Then classification
ensembles are grown for room-level prediction whereas
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FIGURE 1. Proposed IPS (HybLoc).

regression ensembles are used for latitude-longitude predic-
tion. Merely 3 hyper parameters comprising number of trees
to be grown (TreeNum), random number of predictors as the
basis of split (f), and the maximum number of splits (depth of
trees: SplitsMax) are needed to be tuned for training a RDF
ensemble. Therefore, Random Forest is suitable for rapid
and repeated training, required for practical and real world
deployment of localization systems. RDF ensemble was
selected because it is suitable both in terms of accuracy and
efficiency on large datasets, robust with respect to noise, can
handle missing values and generalizes well too. It uses boot-
strapping which results in reduced variance without raising
the bias because different partitions of training dataset with
replacement ensure that the decision trees are uncorrelated.
Being an ensemble learningmethod, it combines the strengths
of weak learners (Decision Trees) to enhance its generaliza-
tion capability. Moreover, its training and prediction both can
be parallelized for reduced time consumption. The fluctuation
of Wi-Fi fingerprints at the same RP due to persons/things
crossing by, weather conditions, even the occlusion caused by
person holding a Wi-Fi enabled device [9], [39] etc., does not
make it suitable for RP clustering. Moreover, the clustering
of data samples/Wi-Fi FPs is a better choice as it helps
distinguish different groups of FPs. One classifier trained per
cluster is better able to learn the data subset dynamics rather
than one classifier learning the whole dataset. Instead of
providing any fix notion and mechanism (number of clusters
fixed e.g. equal to number of APs), our approach allows

dictation of both inherent data dynamics as well as adminis-
trator control over finding suitable number of clusters within
the dataset. GMM considers the variances within the cluster
itself and allows soft clustering based on probability of a
sample belonging tomore than one cluster. The reason behind
employing GMM based soft clustering of dataset samples
instead of hard clustering of RPs or samples is that GMM
distribution and Wi-Fi propagation characteristics are very
close in nature except for the peak extremely near to AP
location [40], hence GMM is a very good candidate for Wi-Fi
RSSI samples clustering. The experimental results also vali-
date our approach. The holistic working of the system is pre-
sented in Fig. 1. Fig. 2, Fig. 3, and Fig. 4 describe the training
and prediction phases. The details of each phase are presented
as follows:

A. TRAINING
Training phase is also called off-line phase in which the
system is prepared using the training dataset. The follow-
ing steps summarized in Fig. 2 were carried out during
training:

1) Data Preprocessing
2) New Attribute Generation
3) N Data Subsets Generation
4) N RDF Ensemble Classification Training for Room

Prediction
5) N RDF Ensemble Regression Training for Latitude-

Longitude Prediction
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FIGURE 2. Training phase.

FIGURE 3. Location prediction phase for room prediction.

1) DATA PREPROCESSING
Data preprocessing usually includes filling in the missing
values and alteration of data representation. In the dataset,
the missing values of AP RSSI are represented with value
+100dBm. In majority of existing FP based IPS, the miss-
ing values are replaced with a value slightly smaller than
the weakest RSSI value in the dataset. We used missing
values +100dBm of the dataset. Moreover, we varied the
missing value from −105dBm to −110dBm (best perfor-
mance obtained at −110dBm) whose results are presented in
Section V.

FIGURE 4. Location prediction phase for coordinates prediction, one set
of ensembles depicted here for each latitude and longitude estimation.

2) NEW ATTRIBUTE GENERATION
Wewere interested in coordinates prediction as well as room-
label prediction. The data labeling for room label prediction
had three relevant fields namely Building ID (3 buildings),
Floor ID (4 floors in building 0, 1, and 5 floors in building 2),
and Space ID. These Floor IDs and Space IDs were redundant
in these buildings so the triplet of all three fields was required
to identify a particular room. We generated a new attribute
named Room ID used for room label training and prediction,
instead of this triplet combination, to uniquely identify a
particular room out of a total of 735 rooms in all 3 buildings.

3) N DATA SUBSETS GENERATION
Data subsets were obtained by applying soft clustering to
each building’s dataset samples using GMM. GMM assigns
label as well as cluster membership probabilities (P_m) to
each sample. Based on these probabilities soft clustering of
data is possible by threshold application. Several parameters
of GMM were adjusted to find suitable N soft clusters which
includes number of clusters (numeric value), covariance type
(diagonal or full), and covariance sharing (true or false).
The parameter tuning was performed in light of both Akaike
Information Criteria (AIC) and Bayesian Information Crite-
ria (BIC) being minimum along with the final performance
evaluation parameters obtained. AIC and BIC were com-
puted based on optimized log likelihood value (L), num-
ber of parameters (numParam), and number of observations
(numObs) in the dataset using (1) and (2).

AIC = −2(LOG(L))+ 2(numParam) (1)

BIC = −2(LOG(L))+ numParam ∗ LOG numObs (2)
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TABLE 1. Algorithm I: pseudocode of proposed algorithm for training.

The initial centroids of clusters were determined by using
k-means++ algorithm. Afterwards, the samples’ member-
ship to different clusters/subsets was determined on the
basis of minimum threshold (Tmin) compared with P_m.
The trained GMM and resulting data subsets were saved
for further use at Location Prediction stage. All the ground
truth fields were kept intact during this partitioning procedure
including Building ID, Floor ID, Space ID, latitude-longitude
values, and the new attribute, named Room ID. Concerning
Building 0, optimal performance of RDF ensembles for clas-
sification and regression was obtained at 2 clusters, full
covariance, and shared covariance set as true with minimum
threshold 0.4. For Building 1 and 2, it was 2 clusters, diago-
nal covariance, shared covariance set as true with minimum

TABLE 2. Algorithm II: pseudocode of proposed algorithm for location
prediction.

threshold 0.4 and 2 clusters, full covariance, shared covari-
ance as false with 0.3 minimum threshold.

4) N RDF ENSEMBLE CLASSIFICATION TRAINING FOR
ROOM PREDICTION
For each building, the generated data subsets from step 3were
used to train RDF ensembles for room-level prediction in
ratio of 70-30% stratified training and testing datasets. For
each RDF ensemble 300 trees, 25 random features, and
1,024 maximum splits per tree were found to be providing
optimal results. The training was performed using 10-fold
cross validation on 70% training subset with Room ID as
the ground truth label. It must be noted that for each build-
ing there were N data subsets and corresponding N RDF
ensembles trained per subset which were saved to be used
in prediction stage.

5) N RDF ENSEMBLE REGRESSION TRAINING FOR
LATITUDE-LONGITUDE PREDICTION
For each building, the very same data subsets were used to
train N RDF ensembles on 70% stratified training portion but
for latitude-longitude prediction based on regression instead
of classification. Separate RDF ensemble with 300 trees,
25 random features, and 1,024 maximum splits per tree,

VOLUME 6, 2018 38257



B. A. Akram et al.: HybLoc: Hybrid Indoor Wi-Fi Localization

TABLE 3. Algorithm III: pseudocode of RDF ensemble for training and
location prediction (room, coordinate level).

was trained for latitude and for longitude ground truth label,
later on the latitude-longitude results were combined using
Euclidean distance formula given in (3) for positioning error
(PosError) calculation in meters where pr and gt imply pre-
dicted and ground truth values respectively.

PosError =
√
(Latpr − Latgt )2 + (Longpr − Longgt )

2 (3)

B. LOCATION PREDICTION
Location prediction phase is the online phase in which the FP
sample from a user is captured and processed to estimate the
unknown location. It is pictorially represented in Fig. 3 and
Fig. 4, and consists of the following four steps:

1) Data Preprocessing
2) Soft Cluster Membership determination
3) Invocation of associated I RDF Ensemble for Room

Prediction
4) Invocation of associated I RDF Ensemble for Latitude-

Longitude Prediction

1) DATA PREPROCESSING
During location prediction, themissing values in the collected
Wi-Fi RSSI sample were replaced with the missing value
chosen in training phase. If missing values +100dBm were
used during training, then +100 will be placed in location
prediction phase too.

2) SOFT CLUSTER MEMBERSHIP DETERMINATION
The stored pre-trained GMM from training phase, step 3 was
used to determine the membership probabilities (P_m) of the
sample at hand.

TABLE 4. Building 0 room level prediction results.

3) INVOCATION OF ASSOCIATED I RDF ENSEMBLES FOR
ROOM PREDICTION
The same minimum threshold (Tmin) value applied in training
phase was used to determine the membership to different
clusters/subsets. The membership (P_m) to different N clus-
ters was further used to invoke I (clusters whose membership
satisfies the condition: P_m >= Tmin) out of N pretrained
RDF classification ensembles for room estimation. The final
room/class label was based on majority vote from all invoked
ensembles. In case of a tie in majority voting, the final
decision was made by selecting the prediction produced by
clusters/subsets with higher cluster membership probability
(P_m) obtained in the step 2 of location prediction phase.

4) INVOCATION OF ASSOCIATED I RDF ENSEMBLE FOR
LATITUDE-LONGITUDE PREDICTION
Following the same pattern used for room prediction, min-
imum threshold value (Tmin) applied on soft cluster mem-
bership (P_m) was used to select relevant regression RDF
ensembles. Separate set of RDF ensembles was invoked for
latitude and longitude value estimation (I out of N regression
ensembles for latitude prediction and I out of N regression
ensembles for longitude prediction). The final prediction of
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TABLE 5. Building 0 room level training and response time.

latitude and longitude was generated by taking mean of all
latitude values and mean of all longitude values respectively.

Training and location prediction phases of the pro-
posed method (HybLoc) are formally described in form of
Algorithm I and Algorithm II in Table. 1 and Table. 2
respectively.

Training and location prediction phases of Random Deci-
sion Forest ensemble are formally described in form of
Algorithm III in Table. 3

Equation (4) describes a 2-dimensional Gaussian distribu-
tion where µ is the mean and 6 is the covariance matrix.
A Gaussian Mixture Model having N number of overlapping
Gaussian distributions is represented by (5) and (6).

N (x |µ,6) =
1

2π
√
|6|

exp{−
1

2
(x− µ)T 6−1(x− µ)}

(4)

P (x) =
∑N

k=1
πk N

(
x |µk,6k

)
(5)∑N

k=1
πk = 1 (6)

Mixing coefficient is represented by πk and expresses each
mixing element’s weight. Where the summation of all the

TABLE 6. Building 1 room level prediction results.

mixing coefficients is equal to 1. The contour of the 2-D
Gaussian distribution is determined by the individual Gaus-
sian distribution average, covariance and mixing matrices.
Provided, the linearly-mixed weighted coefficients of each
distribution average and covariance are tuned employing a
sufficient number of Gaussian distributions, any arbitrary,
continuous density function may be approximated.

C. HybLoc TIME COMPLEXITY OF TRAINING AND
PREDICTION
Training and prediction time complexity of HybLoc can be
derived in the following manner.

1) TIME COMPLEXITY OF TRAINING
The time complexity of training an unpruned Decision Tree
(DT) is expressed in (7).

O(M × Rlog(R)) (7)

Where
M = number of predictors,
R = number of observations/samples
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TABLE 7. Building 1 room level training and response time.

As RDF ensemble is comprised of many DTs and it uses
only a small number f out of total number of predictors M .
One DT complexity in RDF is represented by (8) and the
complexity of TreeNum by (9)

O(f × Rlog(R)) (8)

O(TreeNum × f × Rlog(R)) (9)

where
TreeNum = number of trees in RDF ensemble,
f = random features selected for tree best split
We are also controlling the depth of the trees grown using

Splitmax . Hence training complexity of one RDF ensemble
becomes (10).

O(TreeNum × f × R× Splitmax) (10)

N such RDF ensembles are grown for room prediction, lati-
tude prediction and longitude prediction. Hence for each such
N RDF ensembles, the training time complexity is repre-
sented by (11).

O(TreeNum × f × R× Splitmax × N) (11)

The training time complexity of GMM is expressed by (12).

O(R× K × D3) (12)

TABLE 8. Building 2 room level prediction results.

Where
R = number of observations/samples,
K = number of components,
D = number of dimensions
Hence as per our proposed algorithm, the training time

complexity of HybLoc is governed by (13).

O(R× K × D3)+ O(TreeNum × f × R

×Splitmax × N ×m) (13)

Where m = number of cascaded blocks of ensembles, which
is 3 in our case, one for room classification and two for
latitude, longitude regression.

2) TIME COMPLEXITY OF PREDICTION
The time complexity of one DT and one RDF ensemble for
prediction are shown by (14) and (15) respectively.

O(Rlog(R)) (14)

O(TreeNum × Rlog(R)) (15)

If Splitmax is used to control depth of trees, then time com-
plexity of prediction by one RDF ensemble is represented
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TABLE 9. Building 2 room level training and response time.

FIGURE 5. Performance measures, accuracy, precision and recall
averaged over all 3 buildings in the dataset.

by (16) as follows.

O(TreeNum × R× Splitmax) (16)

I out of N such RDF ensembles are invoked for each room
prediction, latitude prediction and longitude prediction. All
N such ensembles can be triggered at maximum. Hence for
each such N RDF ensembles, the prediction time complexity

FIGURE 6. Performance measures, training time and response time
averaged over all 3 buildings in the dataset.

can be expressed by (17).

O(TreeNum × R× Splitmax × N) (17)

The prediction time complexity of GMM is expressed
by (18).

O(K × D3) (18)

Hence as per our proposed algorithm, the prediction time
complexity of HybLoc is governed by (19).

O(K×D3)+ O(TreeNum × R× Splitmax × N ×m) (19)

V. EXPERIMENTAL EVALUATION
This section describes the experiments conducted to
evaluate the performance of HybLoc in terms of both room-
level and latitude-longitude prediction. The results for room-
level estimation are presented in terms of accuracy, precision,
recall, time required for training and time required for test-
ing. Majorly latitude-longitude related results are reported
in literature using mean positioning error [41] or Cumula-
tive Distribution Function (CDF) [42]. Positioning error is
expressed in the form of estimated Euclidean distance com-
pared with ground truth Euclidean distance. We present min-
imum Euclidean distance, maximum, mean, mode, standard
deviation as well as CDF of the positioning errors obtained
over the datasets for latitude-longitude prediction. The results
are presented based on building level as previously discussed
in Section IV, GPS can be used to narrow down the search
to building level easily. The complete dataset includes data
for 3 buildings. We first separated the dataset building-wise.
Then each building’s dataset was partitioned into 70-30%
stratified sections used for 10-fold validation during train-
ing and 30% unseen data was reserved for separate testing
purposes. It was observed during detailed inspection of the
dataset that some rooms had very few samples recorded.
We filtered the data based on minimum samples per room
kept at 19 (rooms with less than 19 samples were discarded
from the dataset termed as ‘filtered data’) to investigate
the impact of such low samples in these rooms. Also the
default value existing in dataset for missing RSSI values
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TABLE 10. Building 0 latitude-longitude level positioning error in meter.

was +100dBm, we found during experiments that with our
proposed approach the performance improved with missing
values replaced with negative value smaller than the smallest
value, best found to be at−110dBm. The rationale behind this

TABLE 11. Building 1 latitude-longitude level positioning error in meter.
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TABLE 11. (Continued.) Building 1 latitude-longitude level positioning
error in meter.

approach is simple and logical. The smaller the RSSI value
the weaker the signal, hence replacing missing values with
+100dBm meant the signal was strongest whereas there was
absolutely no signal captured, which caused confusion for the
classifier. Hence, the results are presented in 4 folds:

1. First, the results are presented on complete build-
ings’ data with existing missing value in the dataset
+100 dBm: UnfltrdMV100

2. Second, the results are presented on complete build-
ings’ data with missing value kept as −110dBm:
UnfltrdMVn110

3. Third, the results are presented on filtered data of build-
ings with missing value +100 dBm: FltrdMV100

4. Fourth, the results are presented on filtered data of
buildings with missing value−110dBm: FltrdMVn110

First the results are presented for room-level prediction for
each building separately, followed by the averaged overall
performance. Then the latitude-longitude prediction results
are expressed in the same manner. The results obtained by
HybLoc are compared with k Nearest Neighbors (kNN) and
Artificial Neural Network (ANN), the most frequently used
approaches for indoor localization. Also the performance
of HybLoc is compared with Random Forest (same val-
ues of parameters) directly applied without GMM clustering
on building level dataset referred as Base Random Forest
(Base-RF) for fair comparison of advantage that HybLoc
presents over straight forward application of Random Forest.

A. ROOM LEVEL PREDICTION RESULTS
The room level results are expressed for each building indi-
vidually by HybLoc, kNN, Base-RF and ANN. Moreover,
mean performance evaluation measures for all buildings are
presented. The results expressed for kNN were obtained
by taking mean of performance measures by 6 different

FIGURE 7. Positioning error in meters averaged over all 3 buildings in the
dataset.

configurations of kNN related to number of k and distance
measure used. The results for ANN were computed for
2-Layer, 3-Layer and 4-Layer networks utilizing Scaled
Conjugate Gradient (SCG) and Resilient Back Propagation
(RBP) training algorithms averaged over 3 different config-
urations for each combination i.e. the results presented for
2-Layer network with SCG training algorithm are the mean
of 3 different configurations having various number of neu-
rons per hidden layer specifically (100, 200, 500 aver-
aged for 2-Layer, 50-50, 100-100, 500-500 for 3-Layer, and
50-50-50, 100-100-100, 500-500-500 for 4-Layer). Results
on Building 0 are presented in Table. 4. It must be noted
that all these results are based on system’s performance on
30% stratified unseen data kept for testing. The training time
includes both GMM clustering time plus time consumed by
N RDF ensembles training. Whereas, response time is the
summation of GMM clustering time and I pre-trained RDF
ensembles’ time consumed for each sample on average.

It is evident from Table. 4 that HybLoc performs well in
comparison with kNN based approach for room-level pre-
diction. The maximum accuracy achieved for building 0 was
83%. The sheer impact caused by missing value replacement
is also evident from it, as on UnfltrdMV100 the accuracy was
73% which rose to 82% with missing value −110 dBm used
in the same dataset. Also it can be seen that having more sam-
ples for each location (room) helps the system learn better as
comparing performance of HybLoc and kNN both performed
better in FltrdMV100 than UnfltrdMV100 where accuracy
increased from 0.73 to 0.75 for HybLoc but remained same
for kNN. The reason for this can be related to only a few dis-
carded rooms in the filtered dataset (26 out of 256 room were
filtered based on threshold). All networks of ANN also fol-
lowed the similar trend performing better with MVn110 than
with MV100 and with filtered dataset than unfiltered one.
SCG training algorithm was found to be more suitable than
RBP with very little outlier cases. However, the overall accu-
racy obtained by ANN was far lower than HybLoc. HybLoc
also clearly wins over Base-RF validating the effectiveness of
our proposed approach in all four scenarios.
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FIGURE 8. CDF of HybLoc for Building 0 10 fold-cross validated 70% training performance along with results on 30% test data.

FIGURE 9. CDF of HybLoc for building 1 cross validated 70% training performance along with results on 30% test data.

Results on Building 0 related to training and testing time
are presented in Table. 5 in seconds.

Table. 5 sheds light on training time and response time
for all compared approaches. kNN does not need any train-
ing as being an instance based machine learning approach,
it stores all the samples and for prediction searches the whole
dataset and k nearest neighbors are included in the majority
vote for the final prediction. It is interesting to note that
response time of kNN almost remained same for all 4 cases.
For HybLoc, it was not the case. For filtered vs unfiltered
dataset, it consumed lesser time in training for filtered dataset

obviously due to comparatively smaller number of samples.
Even more interesting is the impact of filtering data as well
as missing value impact. In both cases, the response time was
reduced by 10 times with−110 dBm instead of 100 dBm and
with filtered dataset instead of unfiltered one. ANN showed
minimum response time of the scale of E-05 seconds which
remained consistent for all 4 scenarios. It should be noted
that training time varied highly for different configurations
of ANN. Sometimes SCG consumed more time for training
than RBF and vice versa. Training time is also not directly
related to number of neurons or number of layers as a
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FIGURE 10. CDF of HybLoc for building 2 cross validated 70% training performance along with results on 30% test data.

FIGURE 11. CDF of HybLoc vs kNN, Base-RF, and ANN (SCG) on building 0 stratified 30% unseen test data.

4-Layer ANN can take lesser time (ANN, 4-L, RBP, Unfltrd-
MVn110, 67.40 seconds) to converge than a 2-Layer network
(ANN, 2-L, RBP, UnfltrdMVn110, 105.27 seconds) as indi-
cated in Table 4 depending on several ANN parameters which
govern the rate of convergence. Results on Building 1 are
presented in Table. 6.

The similar trend is observed on Building 1, where on
filtered dataset, the performance measures were slightly
improved in comparison with their unfiltered counterparts for
all approaches with both missing values in terms of accu-
racy, precision and recall. Particularly precision and recall
were improved for all versions of filtered datasets except for
ANN (RBP). In all four cases, HybLoc showed significantly

better performance than all other IPS. For both Unfltrd and
Fltrd datasets, missing value−110 dBm resulted in improved
accuracy for SCG and decreased accuracy for RBP. Filtration
of data with both missing values resulted in overall perfor-
mance enhancement in case of training algorithm SCG as
well as RBP. Training and response time for building 1 are
presented in Table. 7.

Training time on building 1 remained almost unchanged
with missing value variation. In case of filtered dataset, there
was a slight reduction in training time mostly because of
number of samples reduction in the filtered dataset. The
response time by kNN for building 1 was similar to build-
ing 0 i.e. the response time remained practically the same,
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FIGURE 12. CDF of HybLoc vs kNN, Base-RF, and ANN (SCG) on building 1 stratified 30% unseen test data.

FIGURE 13. CDF of HybLoc vs kNN, Base-RF, and ANN (SCG) on building 2 stratified 30% unseen test data.

but the trend shown by HybLoc was exactly the opposite
from the one shown for building 0. Earlier response time
reduction of 10 times was observed with both missing value
−110dBm used as well as filtered dataset case. However, for
building 1 response time increased 10 times in case ofmissing
value −110dBm instead of +100dBm and also increased
100 times with filtered dataset in comparison with unfiltered
dataset counterpart. In case of building 1, 30 rooms out
of 162 were filtered based on sample density. The overall
number of samples for building 0 and specially building
2 are far greater than number of samples for building 1 after

data filtration. The ANN response time (again on scale
of E-05 seconds) was the fastest and remained consistent
with the outcomes from building 0. The training time was
reduced on Fltrd dataset because of lesser number of samples.
Missing value impact on training time did not follow any
specific pattern, at times decreasing with MVn110 and some-
times increasing. Base-RF response time remained persis-
tent on scale of E-03 seconds however the response time of
HybLoc fluctuates depending on how many RDF ensembles
are invoked at run time based on soft cluster membership
determination.
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TABLE 12. Building 2 latitude-longitude level positioning error in meter.

Performance evaluation measure and training-response
time for building 2 are presented in Table. 8 and 9
respectively.

For building 2 data, from Table. 8, it can be seen that
the accuracy of HybLoc improved from 79% to 84% along

TABLE 13. HybLoc training-testing, latitde-longitude level percentile error
in meter on Building 0.

TABLE 14. HybLoc training-testing, latitde-longitude level percentile error
in meter on Building 1.

with significant improvement in precision and recall in case
of missing value changed to −110dBm. The same effect
was observed with filtered dataset with both missing values
−110dBm as well as +100dBm where accuracy changed
from 79% to 84%. Over again HybLoc performed much
better than kNN, Base-RF, and ANN based approach in all
four cases, except for FltrdMV100 case, where the accuracy
of both Base-RF and HybLoc was 0.79.

Training and response times for building 2 data from
Table. 9, indicate that training time for HybLoc was
slightly decreased with missing value −110dBm instead of
+100dBm and also with filtered dataset and −110 dBm
value, this training time reduction was observed. For
building 2, HybLoc remained 10 times faster than Base-RF.
kNN and ANN based approaches showed again similar
response times of E-04 and E-05 seconds respectively.
Although their response times are lesser than HybLoc’s
response time but HybLoc had a response time of E-03
seconds with significantly higher accuracy, precision and
recall than kNN, ANN and Base-RF. Also response time
variation of E-01 to E-03 seconds cannot be detected by any
human utilizing the IPS. After detailing the results for each
building individually, Fig. 5 and Fig. 6 depict pictorially the
averaged overall trend of the performance measures for the
complete dataset encompassing all buildings.

The overall mean performance measures also tally with
the trends observed previously, as shown in Fig. 5 HybLoc
showed overall significantly better performance than kNN,
ANN and Base-RF in all four cases. When missing value
+100dBm was replaced with −110dBm in unfiltered as
well as filtered datasets, all IPS performed comparatively
better except for ANN. The reason behind is that the training
and tuning of ANN is not straightforward. There are many
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TABLE 15. HybLoc training-testing, latitde-longitude level percentile error
in meter on Building 2.

TABLE 16. Building 0 test dataset latitude-longitude level percentile error
in meter.

generic guidelines for its design but no particular rules for
a huge number of algorithmic parameters. Although we
chose some common configurations averaged over 3 com-
binations as described earlier but the resulting performance
measures were highly fluctuating hence affecting the overall
mean. If we draw comparisons focusing filtered vs unfiltered
dataset, then on filtered dataset all IPS performed better than
unfiltered data which indicates that suitable missing value
as well as sufficiently large number of samples collected
per location play a significant role in overall performance of
any IPS.

Fig. 6 sheds light on training and response times averaged
over all buildings in the dataset. Log10 of training time (in sec-
onds) was taken twice to make the value sufficiently smaller
to be suitable for pictorial depiction along with response
time which is simply given in seconds. Training time for
kNN is Nil, the mean training time for HybLoc showed
consistent drop starting from unfiltered with MV100, unfil-
tered with MVn110, filtered with MV100 and filtered with
MVn110 respectively. This change is visible in graph as the
time dropped from 0.30 to 0.25 seconds (log10 taken twice).
The response time slightly dropped for unfiltered dataset with
MV100 to MVn110. However, the response time was quite
large forMVn110 thanMV100 for filtered dataset. Themajor
factor which increased both averaged training and response

TABLE 17. Building 1 test dataset latitude-longitude level percentile error
in meter.

TABLE 18. Building 2 test dataset latitude-longitude level percentile error
in meter.

times for HybLoc was due to the performance in building 1.
This building had 163 rooms in it but the overall number of
samples per room were not high, mostly looming slightly
over the minimum threshold of samples. Fewer number of
samples per location in building 1 resulted in more complex
converged model of the IPS HybLoc, resulting in increased
training as well response time. Training time for Base-RF and
ANN remained almost sameMV100 andMVn110. However,
it reduced a little for Fltrd datasets with both missing values.
Response time for both Base-RF and ANN was minimal
which remained consistent for all 4 combinations.

B. LATITUDE-LONGITUDE PREDICTION RESULTS
The results for latitude-longitude prediction were obtained
through the same pipeline of GMM based soft clustering and
I out of N RDF ensembles invocation based on minimum
threshold for cluster membership determination. The major
difference here was the use of regression ensembles instead
of classification. For kNN, the implementation was modified
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to produce the mean of the matched k nearest neighbors’
latitude values as well as longitude values for generating
the final output of latitude and longitude respectively.
Base-RF results were generated with direct application of
Random Forest per building dataset with exactly same
parameters used for HybLoc i.e. 300 trees, 25 random fea-
tures, and 1,024 maximum splits per tree, one such ensem-
ble was trained for each latitude and longitude prediction.
The 2, 3, and 4-Layer ANN were trained with same con-
figuration for both for latitude and longitude with training
algorithm SCG and RBP. The resultant latitude and longi-
tude values were then used as predicted position which was
compared with ground truth latitude-longitude values pair
to compute Euclidean distance based positioning error. The
following results for all 3 individual buildings were generated
using the same aforementioned strategy. It must be noted
that the results presented in this section were computed with
unseen 30% stratified test dataset for each building. The
performance measures for building 0 are shown in Table. 10.

It can be seen from Table. 10, that for regression/ latitude-
longitude prediction missing value −110dBm was found
to be providing better performance in comparison with
+100dBm for HybLoc and other IPS. For missing value
+100dBm, comparingUnfltrd and Fltrd dataset, performance
of HybLoc degraded but for MVn110 comparing the same,
its performance was slightly improved considering the mean
error reduced from 5.42m to 5.13m. Results for building 1 and
2 are expressed in Table. 11 and 12 respectively.

For building 1, the impact of MVn110 and filtration of
dataset is clearly visible from Table. 11 in form of overall per-
formance improvement. Pairwise unfiltered and filtered all
four cases, as well as for missing value changed to−110dBm
in both cases is in accordance with findings from room-level
results that data filtration as well as−110dBm missing value
improved the system performance.

The results on building 2 depicted in Table. 12, shows
performance in case of missing value changed from +100 to
−110 dBm but if Unfltrd and Fltrd cases are compared pair-
wise then a trivial performance degradation is observed rather
than any improvement. The averaged positioning error over
complete dataset is provided in Fig. 7 for quick visual com-
parison. It can be deduced that both missing value replace-

ment of −110dBm instead of +100dBm and data filtration
were found useful for room-level prediction performance
enhancement. However, for latitude-longitude level predic-
tion usage of −110dBm missing value instead of +100dBm
was found useful but data filtration did not bring as significant
performance improvement as in its room-level prediction
counterpart.

The minimum error obtained by HybLoc, kNN, Base-RF,
and ANN for UnfltrdMV100, UnfltrdMVn110, FltrdMV100
and FltrdMVn110 were (0.16, 0.26, 3.17, 32.9), (0.06,
0.26, 3.07, 81.64), (0.22, 0.30, 3.23, 17.7), and (0.08, 0.26,
3.12, 80.99) m respectively. These results on positioning error
in meters do provide some useful insight but the true picture
becomes clear with help of CDF which provides a holistic
view of the performance of IPS for all tested samples. On all
buildings, the ANN configurations with training algorithm
RBP provided far worse results than SCG. It remained valid
for all 2-Layer, 3-Layer and 4-Layer ANN configurations.
Hence the CDF of ANN with RBP used as training algorithm
are provided as supplementary material for the interested
reader but are not included in Fig. 11-13.

First, the results are reported building-wise on both training
and testing data indicating that in case of small dataset 10-fold
cross validation can also provide meaningful insights on the
performance of data. Secondly, the performance of HybLoc
is compared with kNN, Base-RF (to validate HybLoc advan-
tage over straight forward application of Random Forest),
and ANN, the most popular machine learning techniques
frequently used for indoor localization.

In Fig. 8, 10-fold cross validated (10-CV) results on train-
ing data as well as results on 30% unseen test data are pro-
vided for aforementioned four cases from Section V. Eighty
percent of the training set 10-CV results showed position-
ing error under 8.3 m for UnfltrdMV100 whereas for same
results on test data indicate that 80% of the tested samples
generated positioning error under 9.6m. The same training
and test data kept Unfltrd but withMV=−110dBmproduced
less than or up to 6.7m error in 80% of the training data
and for testing data, it was 7.7m. For Fltrd dataset with
MV=100dBm, 80% of the training data and testing data
produced positioning error of 8.8m and 9.9m respectively.
The best performance was shown by Fltrd datasets with MV

TABLE 19. Performance comparison with related work on same dataset.
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−110dBm with 80% of the samples showing error bounded
by 6.3m for training and 7.3m for testing data.

The results for building 0 are summarized in Table. 13 for
10-CV 70% training data and unseen 30% test data in
terms of 25th, 50th, 75th, and 95th percentile of positioning
error.

The CDF for building 1 is shown in Fig. 9 with training
and testing data results on all four cases of missing value and
dataset filtration.

The summarized results reporting 25, 50, 75, and 95 per-
cent of the samples’ bounded error in meters is presented
in Table. 14.

Following the same pattern, the CDF for building 2 includ-
ing results on training and testing data are expressed
in Fig. 10. The summary of results in terms of 25th, 50th, 75th,
and 95th percentile is presented in Table. 15.

The overall trend from all three buildings positioning error
shows that 10-fold CV results and results obtained on unseen
test data are quite close with approximately 1 to 2 m differ-
ence in every case individually. Moreover, the use of appro-
priate missing value can be a major factor to influence the
IPS performance, missing value −110dBm was found to be
consistently better than +100dBm throughout for all three
buildings. Sufficiently large number of samples per location
of interest was also helpful for the IPS to distinguish different
places more efficiently as evident by filtered dataset’s perfor-
mance being better than its unfiltered counterpart in majority
of all four cases.

The results are presented now in terms of CDFs of the
HybLoc and compared IPS for building 0, building 1, and
building 2 in Fig. 11, Fig.12, and Fig. 13 respectively.

The results detailed in Fig.11 are for building 0, 30%
stratified unseen data, on which performance of HybLoc
and other IPS are compared. The results for kNN presented
were averaged over 6 different configurations whereas ANN
(SCG) and ANN (RBP) results were computed using 3 dif-
ferent configurations for each 2, 3 and 4-Layer networks
whose mean values are reported. The summarized results for
building 0 are expressed in Table. 16.

On building 0 test data, the 25th percentile remained almost
the same for Unfltrd and Fltrd pairwise parts, overall HybLoc
performing better than other approaches and missing value
−110dBm being better than 100. However, for 50th percentile
onwards, Fltrd datasets produced better than results than their
pairwise Unfltrd counterparts.

For building 1, the performance of HybLoc for missing
value −110 was better than 100 in both Unfltrd and Fltrd
cases. The performance for both Unfltrd and Fltrd data using
same missing value was almost same as seen in Fig. 12 indi-
cated by very close CDFs. The summarized positioning error
on building 1 is presented in Table. 17.

For building 1, the same trend is observed for 25th,
50th, 75th, and 95th percentile with missing value −110dBm
producing far less positioning errors for both Unfltrd and
Fltrd datasets. Moreover, HybLoc clearly outperformed other
approaches.

Results for building 2 are shown in Fig.13 along with
percentile positioning error summary in Table. 18.

On building 2 data, again HybLoc and kNN remained a
close match in 25th percentile case with visible performance
improvement from 50th percentile onwards.

The summarized performance comparison of HybLoc with
related work on same dataset is presented in Table 19.

It is evident from Table 19 that majority of the work
utilizing UJIIndoorLoc dataset either report results for room-
level prediction or latitude-longitude prediction. HybLoc not
only provides results for both, but the performance in terms
of accuracy, minimum error, and mean error is better than
all related work except [30] where the accuracy is 85% by
both IPS. However, it should be noted that HybLoc pro-
vides detailed performance measures than merely accuracy
on complete data of all buildings and [30] provided accuracy
results on only few selected regions instead of whole dataset.
HybLoc provided accuracy of 85% on all 3 buildings data
rather than a small number of regions/rooms.

VI. CONCLUSION
In this work, we proposed a new hybrid indoorWi-Fi localiza-
tion system based on RandomDecision Forest ensembles uti-
lizingGMMsoft clustering for dataset partitioning. Ensemble
methods combine strength of many weak learners to improve
the overall accuracy as well as generalization capability
which is very important in real world Wi-Fi fingerprinting
based indoor location prediction. Our system extended the
idea of combining weak learners to generate ensemble of
ensembles. Data partitioning based on soft clustering enables
the inclusion of relevant samples in training of RDF ensem-
bles, at the same time dividing the dataset to enable numerous
classifiers and regression models learn the partitioned dataset
structure rather enforcing a single one to learn the complete
diverse dataset. The localization results were presented on
both room-level as well as latitude-longitude level prediction
to allow comparison of two major localization streams in
the literature. We used a publically available, large Wi-Fi
fingerprints database UJIIndoorLoc instead of a proprietary
small lab/floor level dataset, allowing the reader to directly
comparemany existing works in theWi-Fi based localization.
We further extended the experiments to explore and identify
the impact of missing value replacement in the Wi-Fi finger-
prints along with impact of sufficiently large number of fin-
gerprint samples per location for performance improvement.
The experiments demonstrated that the proposed system is
featured with high localization accuracy with response time
suitable for real-world practical applications requiring either
room-level or coordinate level location estimation.

ACKNOWLEDGMENT
The authors would like to acknowledge the technical and
administrative support of Dr. Usman Ghani Khan and
Dr. Hafiz Shahzad Asif, Department of Computer Science
and Engineering, University of Engineering and Technology,
Lahore, Pakistan, for this work.

38270 VOLUME 6, 2018



B. A. Akram et al.: HybLoc: Hybrid Indoor Wi-Fi Localization

REFERENCES
[1] R. Berkvens, H. Peremans, and M. Weyn, ‘‘Conditional entropy and loca-

tion error in indoor localization using probabilistic Wi-Fi fingerprinting,’’
Sensors, vol. 16, no. 10, pp. 1–21, 2016.

[2] X. Wang, L. Gao, and S. Mao, ‘‘BiLoc: Bi-modal deep learning for
indoor localization with commodity 5 GHz WiFi,’’ IEEE Access, vol. 5,
pp. 4209–4220, 2017.

[3] H. Shin, Y. Chon, Y. Kim, and H. Cha, ‘‘MRI: Model-based radio inter-
polation for indoor war-walking,’’ IEEE Trans. Mobile Comput., vol. 14,
no. 6, pp. 1231–1244, Jun. 2015.

[4] S. Li, Y. Lou, and B. Liu, ‘‘Bluetooth aided mobile phone localization:
A nonlinear neural circuit approach,’’ ACM Trans. Embedded Comput.
Syst., vol. 13, no. 4, p. 78, 2014.

[5] J. T. Biehl, A. J. Lee, G. Filby, and M. Cooper, ‘‘You’re where? Prove it!:
Towards trusted indoor location estimation of mobile devices,’’ in Proc.
ACM Int. Joint. Conf. Pervasive Ubiquitous Comput., 2015, pp. 909–919.

[6] C. Xiao, D. Yang, Z. Chen, and G. Tan, ‘‘3-D BLE indoor localization
based on denoising autoencoder,’’ IEEE Access, vol. 5, pp. 12751–12760,
2017.

[7] L. Calderoni, M. Ferrara, A. Franco, and D. Maio, ‘‘Indoor localization in
a hospital environment using random forest classifiers,’’ Expert Syst. Appl.,
vol. 42, no. 1, pp. 125–134, 2015.

[8] A. Aguilar-Garcia, S. Fortes, E. Colin, and R. Barco, ‘‘Enhancing RFID
indoor localizationwith cellular technologies,’’EURASIP J.Wireless Com-
mun. Netw., vol. 2015, no. 1, p. 219, Dec. 2015.

[9] J. Luo and H. Gao, ‘‘Deep belief networks for fingerprinting indoor
localization using ultrawideband technology,’’ Int. J. Distrib. Sens. Netw.,
vol. 12, no. 1, p. 5840916, 2016.

[10] Y. Sun, W. Meng, C. Li, N. Zhao, K. Zhao, and N. Zhang, ‘‘Human local-
ization using multi-source heterogeneous data in indoor environments,’’
IEEE Access, vol. 5, pp. 812–822, 2017.

[11] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, ‘‘SpotFi: Decimeter
level localization using WiFi,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 4, pp. 269–282, 2015.

[12] X. Wang, X. Wang, and S. Mao, ‘‘CiFi: Deep convolutional neural net-
works for indoor localization with 5 GHz Wi-Fi,’’ in Proc. IEEE Int. Conf.
Commun., May 2017, pp. 1–6.

[13] W. Kang and Y. Han, ‘‘SmartPDR: Smartphone-based pedestrian dead
reckoning for indoor localization,’’ IEEE Sensors J., vol. 15, no. 5,
pp. 2906–2916, May 2015.

[14] P. Cremonese, D. Gallucci, M. Papandrea, S. Vanini, and S. Giordano,
‘‘PROMO: Continuous localized and profiled multimedia content distri-
bution,’’ in Proc. 3rd Workshop Mobile Video Del., 2010, pp. 21–26.

[15] R. Górak and M. Luckner, ‘‘Malfunction immune Wi–Fi localisation
method,’’ in Computational Collective Intelligence. Cham, Switzerland:
Springer, 2015, pp. 328–337.

[16] Ó. Belmonte-Fernández, A. Puertas-Cabedo, J. Torres-Sospedra,
R. Montoliu-Colás, and S. Trilles-Oliver, ‘‘An indoor positioning
system based on wearables for ambient-assisted living,’’ Sensors, vol. 17,
no. 1, pp. 1–22, 2017.

[17] A. H. Salamah, M. Tamazin, M. A. Sharkas, and M. Khedr, ‘‘An enhanced
WiFi indoor localization system based on machine learning,’’ in Proc. Int.
Conf. Indoor Position. Indoor Navigat., Oct. 2016, pp. 1–8.

[18] J. Torres-Sospedra, R. Montoliu, G. M. Mendoza-Silva, O. Belmonte,
D. Rambla, and J. Huerta, ‘‘Providing databases for different indoor posi-
tioning technologies: Pros and cons of magnetic field and Wi-Fi based
positioning,’’ Mobile Inf. Syst., vol. 2016, Apr. 2016, Art. no. 6092618,
doi: 10.1155/2016/6092618.

[19] M. Zhou, Y. Wei, Z. Tian, X. Yang, and L. Li, ‘‘Achieving cost-efficient
indoor fingerprint localization on WLAN platform: A hypothetical test
approach,’’ IEEE Access, vol. 5, pp. 15865–15874, 2017.

[20] N. Li, J. Chen, Y. Yuan, X. Tian, Y. Han, and M. Xia, ‘‘A Wi-Fi indoor
localization strategy using particle swarm optimization based artificial
neural networks,’’ Int. J. Distrib. Sensor Netw., vol. 12, no. 3, p. 33, 2016.

[21] C. Song, J. Wang, and G. Yuan, ‘‘Hidden naive Bayes indoor fingerprinting
localization based on best-discriminating AP selection,’’ ISPRS Int. J. Geo-
Inf., vol. 5, no. 10, p. 189, 2016.

[22] G. Ding, Z. Tan, J. Zhang, and L. Zhang, ‘‘Fingerprinting localization
based on affinity propagation clustering and artificial neural networks,’’
in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2013,
pp. 2317–2322.

[23] J. Wietrzykowski, M. Nowicki, and P. Skrzypczyński, ‘‘Adopting the
FAB-MAP algorithm for indoor localization with WiFi fingerprints,’’ in
Proc. Int. Conf. Automat., vol. 550, Mar. 2017, pp. 585–594.

[24] M. Bernas and B. Płaczek, ‘‘Fully connected neural networks ensemble
with signal strength clustering for indoor localization in wireless sensor
networks,’’ Int. J. Distrib. Sensor Netw., vol. 11, no. 12, p. 403242, 2015.

[25] R. Górak and M. Luckner, ‘‘Modified random forest algorithm for Wi–Fi
indoor localization system,’’ in Proc. Int. Conf. Comput. Collective Intell.
Cham, Switzerland: Springer, 2016, pp. 147–157.

[26] P. Bahl and V. N. Padmanabhan, ‘‘RADAR: An in-building RF-based user
location and tracking system,’’ in Proc. IEEE Conf. Comput. Commun.,
19th Annu. Joint Conf. IEEE Comput. Commun. Soc. (INFOCOM), vol. 2,
Mar. 2000, pp. 775–784.

[27] L. Kanaris, A. Kokkinis, A. Liotta, and S. Stavrou, ‘‘Combining smart
lighting and radio fingerprinting for improved indoor localization,’’ in
Proc. IEEE 14th Int. Conf. Netw., Sens. Control. (ICNSC), May 2017,
pp. 447–452.

[28] M. Cooper, J. Biehl, G. Filby, and S. Kratz, ‘‘LoCo: Boosting for indoor
location classification combiningWi-Fi and BLE,’’ Pers. Ubiquitous Com-
put., vol. 20, no. 1, pp. 83–96, 2016.

[29] P. Bolliger, ‘‘Redpin—Adaptive, zero-configuration indoor localization
through user collaboration,’’ in Proc. 1st ACM Int. WorkshopMobile Entity
Localization Tracking GPS-Less Environ. (MELT), vol. 8, 2008, pp. 55–60.

[30] S. Bozkurt, G. Elibol, S. Gunal, and U. Yayan, ‘‘A comparative study on
machine learning algorithms for indoor positioning,’’ in Proc. Int. Symp.
Innov. Intell. Syst. Appl., Sep. 2015, pp. 1–8.

[31] M. T. Uddin and M. M. Islam, ‘‘Extremely randomized trees for Wi-Fi
fingerprint-based indoor positioning,’’ in Proc. 18th Int. Conf. Comput. Inf.
Technol. (ICCIT), Dec. 2015, pp. 105–110.

[32] M. Nowicki and J. Wietrzykowski, ‘‘Low-effort place recognition with
WiFi fingerprints using deep learning,’’Adv. Intell. Syst. Comput., vol. 550,
pp. 575–584, Mar. 2017.

[33] J. Torres-Sospedra et al., ‘‘UJIIndoorLoc: A newmulti-building and multi-
floor database for WLAN fingerprint-based indoor localization prob-
lems,’’ in Proc. Int. Conf. Indoor Positioning Indoor Navigat., Oct. 2014,
pp. 261–270.

[34] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[35] C. Sansone, J. Kittler, and F. Roli, Eds., Multiple Classifier Systems:
10th International Workshop, MCS 2011, Naples, Italy, June 15-17, 2011.
Proceedings, vol. 6713. Springer, 2011.

[36] T. Chakraborty, ‘‘EC3: Combining clustering and classification for ensem-
ble learning,’’ in Proc. IEEE Int. Conf. Data Mining (ICDM), Nov. 2017,
pp. 781–786.

[37] X. Ma, P. Luo, F. Zhuang, Q. He, Z. Shi, and Z. Shen, ‘‘Combining super-
vised and unsupervised models via unconstrained probabilistic embed-
ding,’’ in Proc. 22nd Int. Joint Conf. Artif. Intell., 2011, pp. 1396–1401.

[38] J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han, ‘‘A graph-based consensus
maximization approach for combining multiple supervised and unsuper-
vised models,’’ IEEE Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 15–28,
Jan. 2013.

[39] P. S. Nagpal and R. Rashidzadeh, ‘‘Indoor positioning using magnetic
compass and accelerometer of smartphones,’’ inProc. Int. Conf. Sel. Topics
Mobile Wireless Netw., Aug. 2013, pp. 140–145.

[40] K. Kaji and N. Kawaguchi, ‘‘Design and implementation of WiFi indoor
localization based on Gaussian mixture model and particle filter,’’ in Proc.
Int. Conf. Indoor Positioning Indoor Navigat., Nov. 2012, pp. 1–9.

[41] L. Luoh, ‘‘ZigBee-based intelligent indoor positioning system soft com-
puting,’’ Soft Comput., vol. 18, no. 3, pp. 443–456, 2014.

[42] Z. Zheng et al., ‘‘BigLoc: A two-stage positioning method for large indoor
space,’’ Int. J. Distrib. Sens. Netw., vol. 12, no. 6, p. 1289013, 2016.

BEENISH A. AKRAM was born in Lahore,
Pakistan, in 1984. She received the B.Sc. degree
(Hons.) in computer engineering and the M.Sc.
degree in computer science from the University
of Engineering and Technology (UET) at Lahore,
Lahore, in 2006 and 2010, respectively, where she
is currently pursuing the Ph.D. degree in computer
science.

From 2006 to 2007, she was a Software Design
Engineer with MicroTech Industries (Pvt.) Ltd.,

Lahore. From 2007 to 2012, she was a Lecturer with UET Lahore. Since
2012, she has been an Assistant Professor with the Department of Com-
puter Science and Engineering, UET Lahore. Her research interests include
machine learning, IoT, and indoor localization and embedded systems.

VOLUME 6, 2018 38271



B. A. Akram et al.: HybLoc: Hybrid Indoor Wi-Fi Localization

ALI H. AKBAR received the bachelor’s degree
(Hons.) in telecommunications from NUST,
Pakistan, in 1997, the M.S. degree from UNSW
Australia in 1999, and the Ph.D. degree from Ajou
University in 2008. He is currently an Associate
Professor with the University of Engineering and
Technology at Lahore, Lahore, Pakistan. His top-
ics of interest include wireless networks, such as
MANETs and sensor network, M2M networks,
and distributed systems. He was a consultant with

the Al-Khawarizmi Institute of Computer Science for government organiza-
tions, such as Lahore Transport Company and RESCUE 1122.

Dr. Akbar was declared as a star laureate by South Asia Publications
for the year of 2003. In 1998, he received the merit scholarship for the
M.S. degree.

OMAIR SHAFIQ received the Ph.D. degree in
computer science from the University of Calgary,
Calgary, AB, Canada. He is currently an Assis-
tant Professor with Carleton University, Ottawa,
ON, Canada. His research interests include data
modeling, big data analytics, services computing,
machine learning, and cloud computing. He has
been an Assistant Professor with the School of
Information Technology, Carleton University. He
has published over 60 peer-reviewed publications

in journals, book chapters, conferences, and workshops, served in technical
program committee of over 30 conferences and workshops, and co-organized
over eight conference and workshops.

Dr. Shafiq was a recipient of the Departmental Research Award from the
University of Calgary in 2009 and 2010, the Alberta-Innovates Technology
Futures Scholarships for the master’s and Ph.D. studies in 2010 and 2011,
the Teaching Excellence Award from the University of Calgary in 2011,
the NSERC Vanier CGS Scholarship in 2012, the J.B. Hyne Research
Innovation Award from the University of Calgary in 2012, the NSERC Post-
Doctoral Fellowship Award, and the Mitacs Elevate Postdoctoral Fellowship
Award Competition in 2015–2016.

38272 VOLUME 6, 2018


	INTRODUCTION
	CONTRIBUTIONS
	OUTLINE

	RELATED WORK
	WORK BASED ON WI-FI LOCALIZATION
	WORK BASED ON UJIINDOORLOC

	BRIEF DESCRIPTION OF UJIINDOORLOC DATASET
	HybLoc
	TRAINING
	DATA PREPROCESSING
	NEW ATTRIBUTE GENERATION
	N DATA SUBSETS GENERATION
	N RDF ENSEMBLE CLASSIFICATION TRAINING FOR ROOM PREDICTION
	N RDF ENSEMBLE REGRESSION TRAINING FOR LATITUDE-LONGITUDE PREDICTION

	LOCATION PREDICTION
	DATA PREPROCESSING
	SOFT CLUSTER MEMBERSHIP DETERMINATION
	INVOCATION OF ASSOCIATED I RDF ENSEMBLES FOR ROOM PREDICTION
	INVOCATION OF ASSOCIATED I RDF ENSEMBLE FOR LATITUDE-LONGITUDE PREDICTION

	HybLoc TIME COMPLEXITY OF TRAINING AND PREDICTION
	TIME COMPLEXITY OF TRAINING
	TIME COMPLEXITY OF PREDICTION


	EXPERIMENTAL EVALUATION
	ROOM LEVEL PREDICTION RESULTS
	LATITUDE-LONGITUDE PREDICTION RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	BEENISH A. AKRAM
	ALI H. AKBAR
	OMAIR SHAFIQ


