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ABSTRACT This paper considers the problem of multiple dimensional parameter estimation of radar
signals using a linear nested vector sensor array. We propose a computationally efficient polarization-
angle-frequency estimation algorithm based on spatial-temporal nested sampling. Radar cross-sections
diversity in multiple coherent processing intervals is exploited to construct a virtual polarization-spatial-
temporal manifold with extended degrees of freedom. Then, a computational efficient method without
eigen-decomposition is derived to estimate Khatri-Rao signal subspace. Automatically paired polarization,
azimuth-elevation angles, and doppler frequency estimates are finally obtained by exploiting the idea of
the estimation of signal parameters via rotational invariance techniques algorithm. The effectiveness of the
proposed method is verified through numerical examples.

INDEX TERMS Angle and frequency estimation, polarization estimation, pulsed Doppler, nested sampling,
nested array, degree of freedom.

I. INTRODUCTION

THE problem of estimating multiple parameters (includ-
ing angles, frequencies and polarization) of targets

is very important in many application scenarios of radar
array processing. Accurate estimation of angle and fre-
quency parameters enables the better target localization and
tracking performance, and precise polarization information
extraction offers better target classification and recogni-
tion performance. During the past decade, many efficient
multidimensional parameter estimation methods have been
presented. These methods include azimuth-elevation angle
estimation methods [1]–[4], joint angle and frequency esti-
mation methods [5]–[9], and angle-polarization estimation
methods [10]–[15].

Most of the radar array processing methods consider that
the spatio-temporal data samples are taken uniformly with
Nyquist rate, and consequently, have limited degree of free-
dom in both space and time domain. Recently, it is shown
that measuring spatial data with nonuniform nested arrays can
offer enhanced spatial degree of freedom for angle estima-
tion [16]. Specially, spatial measurements with O(N ) nested
samples can provide O(N 2) degree of freedom, and there-
fore, enables the resolution of K signals with N < K

spatial samples. Data acquisition with spatially nested
sampling has been found in solving various radar signal
processing problems such as detection [17], localiza-
tion [18], [19], and jamming suppression [20].

For multiple dimensional parameter estimation, nested
sampling can be exploited in each dimension for use
of Khatri-Rao (K-R) subspace-based parameter estima-
tion methods with degree of freedom enhancement. For
example, [21] develops a two-dimensional angle estimation
method using L-shaped nested array; [22] considers nested
sampling in spatial and time delay domains for angle and
range estimation; and [23] proposes nested spatio-temporal
sampling for joint angle and doppler frequency estimation.
The algorithms in [21]–[23] achieve the the degree of free-
dom enhancement for parameter estimation, however, they
have some drawbacks that limit their practical applications.
Firstly, the estimation of two-dimensional angles requires
the use of planar array geometries, which is unsuitable for
some practical situations such as airborne application, where
the physical space available for antenna deployment is very
limited. Secondly, nested sampling enhances the degree of
freedom, but also increases the computational costs involved
in K-R subspace computation, and consequently, these
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methods are unsuitable for applications where the parameters
of targets should be estimated promptly.

Therefore, the purpose of this paper is to investigate
the multiple dimensional parameter estimation of radar
signals in a geometrically and computationally simple man-
ner. Motivated by the fact that linear vector antenna array
can be used to estimate two-dimensional angles [24], we pro-
pose a polarization-angle-frequency estimation algorithm
using a linear nested vector sensor array. Firstly, radar
cross-sections (RCSs) diversity in multiple coherent process-
ing intervals (CPIs) to is exploited to construct a virtual
polarization-spatial-temporal (PST) manifold with extended
degree of freedom. Then, a computational efficient method
without eigen-decomposition is derived to estimate K-R
signal subspace. Finally, automatically paired polarization,
2D angles and frequency estimates are obtained by using
the idea of the estimation of signal parameters via rotational
invariance techniques (ESPRIT) algorithm. Incidentally,
the use of nested sampling can offer improved identification
performance as well as parameter estimation perfor-
mance. Moreover, radars transmit pulses non-uniformly
can improve their performance for low probability of
intercept (LPI).
Notation: Throughout the paper, scalar quantities are

denoted by lowercase letters. Lowercase bold type faces
are used for vectors and uppercase letters for matrices.
Superscripts T , H and ∗ represent the transpose, conjugate
transpose and complex conjugate, respectively, ⊗, � and �
symbolize the Kronecker product, Khatri-Rao (column-wise
Kronecker) matrix product, and element-by-element multi-
plication, respectively, Im denotes the m×m identity matrix,
and en stands for a vector of all zeros except a 1 at the nth
position.

II. PROBLEM FORMULATION
The present problem focuses on the estimation of angle, fre-
quency and polarization parameters of multiple targets using
a pulsed Doppler radar system with L electromagnetic vector
sensors (EMVSs). We consider that each EMVS is composed
of three electric dipoles and three magnetic loops, both are
spatially colocated and orthogonal. Further, we assume that
the L EMVSs are of linear nested structure. An M -level
linear nested antenna array is a concatenation of M uniform
linear arrays (ULAs), each of which consists of Li antennas,
with antenna spacing di, such that

∑M
i=1 Li = L and di =∏i−1

j=1(Lj+ 1)d1, i = 2, · · · ,M . Such a geometrically simple
structure is well suited for airborne application, as illustrated
in Fig. 1, where the physical space available for antenna
deployment is very restricted.

FIGURE 1. Illustration of two-level linear nested EMVSs with L1 = L2 = 3.

A. TRANSMIT SIGNAL MODEL
For a target located at angle (θ, φ), the EMVS produces the
following 6× 2 response [25]

Q(θ, φ) =


cos θ cosφ − sinφ
cos θ sinφ cosφ
− sin θ 0
− sinφ − cos θ cosφ
cosφ − cos θ sinφ
0 sin θ

 (1)

where θ ∈ [0, π) denotes the elevation angle and φ ∈ [0, 2π )
represents the azimuth angle. The 2× 1 baseband unit-power
electrical field emitted signal can be expressed as

e(t) = QT (θ, φ)ws(t) = ζs(t) (2)

wherew is a 6×1 weights that controls the polarization of the
transmit signal and s(t) is the waveform of the transmit signal,
ζ = [ζH , ζV ]T , where ζH 6= 0 and ζV 6= 0, respectively,
represent the H - and V - components of the waveform [26].
Further, the signal transmitted in each CPI is assumed to
have temporal nested structure [23], i.e., it consists of a
concatenation ofM uniform pulses, where each is composed
of Ni pulses, with pulse interval ti, such that

∑M
i=1 Ni = N

and ti =
∏i−1

j=1(Nj + 1)t1, i = 2, · · · ,M . Fig. 2 illustrates a
two-stage nested temporal sampling with N1 = N2 = 3 for
acquiring N = 6 pulses.

FIGURE 2. Illustration of two-stage temporal nested sampling for N = 6
pulses with N1 = N2 = 3 in a CPI.

B. RECEIVE SIGNAL MODEL
Consider that there areK target signals in a desired range-bin,
arriving at the above described radar system. The 6×1 down-
converted and match-filtered receive signal vector for the pth
pulse, measured by the `th EMVS can be represented as

x`(p) =
K∑
k=1

ρk (p)Q(θk , φk )Skζa`(θk , φk )ej2π fkp + n`(p)

=

K∑
k=1

ρk (p)cka`(θk , φk )ej2π fkp + n`(p) (3)

where ρk (p) is the RCS-related coefficient of the kth target
at the pth pulse, Sk represents the 2 × 2 scattering matrix,
describing the polarization transforming property of the kth
target, a`(θk , φk ) = e−j

2π fc
c d` sin θk cosφk represents the spatial

response of the `th EMVS to the target at (θk , φk ), in which
d` denotes the position of the `th EMVS, and fc is the center
frequency of the band, n`(t) is the additive Gaussian noise
vector, which is assumed to be temporally and spatially white,
with zero mean and variances σ 2

n .
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In (3), dk = Skζ denotes the 2 × 1 receive polarization
vector of the kth target, and ck = Q(θk , φk )dk is the kth
target’s 6×1 EMVS response vector, which has the following
representation [25]

ck = Q(θk , φk )
[
sin γkejηk
cos γk

]

=


sin γk cos θk cosφkejηk − cos γk sinφk
sin γk cos θk sinφkejηk + cos γk cosφk

− sin γk sin θkejηk

− cos γk cos θk cosφk − sin γk sinφkejηk

− cos γk cos θk sinφk + sin γk cosφkejηk
cos γk sin θk

 (4)

where γk ∈ [0, π/2) and ηk ∈ [−π, π), respectively, refer
to the auxiliary polarization angle and the polarization phase
difference of the kth target. Note that the above EMVS
response ck can be expressed as ck = [eTk ,h

T
k ], where ek

and hk are two 3 × 1 vectors, which represent, respectively,
the electric field vector and the magnetic field vector.

Then, the entire 6L × 1 receive data vector of the EMVS
array can be expressed as

x(p) =
K∑
k=1

(ck ⊗ ak )ρk (p)ej2π fkp + n(p)

where ak = a(θk , φk ) = [a1(θk , φk ), · · · , aL(θk , φk )]T .
Furthermore, we assume that the targets are of Swerling I
type, so that they are fluctuating scan-by-scan, i.e., ρk (p) is
invariant during a CPI for collection of N pulses, and fades
independently from CPI to CPI. Hence, we can arrange the
collected data in a CPI-by-CPI format, with the data collected
in the mth CPI being expressed as

X(m) = BP(m)GT + N(m)

= (C � A)P(m)GT + N(m) (5)

where X(m) = [x(pm,1), x(pm,2), · · · , x(pm,N )] is an 6L ×
N data block, with x(pm,n) = [x1(pm,n), x2(tm,n), · · · ,
xL(pm,n)]T being an 6L× 1 data vector sampled at time pn of
the mth CPI, B = C � A = [c1 ⊗ a1, · · · , cK ⊗ aK ] denotes
the 6L × K polarization-spatial response matrix, with C =
[c1, · · · , ck ] and A = [a1, · · · , ak ], G = [g(f1), · · · , g(fK )]
denotes theN×K temporal responsematrix, in which g(fk ) =
[g1(fk ), · · · , gN (fk )]T , with gn(fk ) = ej2π fkpn and pn being the
nth pulse. N(m) = [n(pm,1), n(pm,2), · · · ,n(pm,N )] is the
6L × N noise matrix, with n(pm,n) = [n1(pm,n), n2(pm,n),
· · · , nL(pm,n)]T . P(m) = diag[ρ1(pm), · · · , ρK (pm)].

The objective of this paper is to determine the polariza-
tion, angle and frequency parameters (θk , φk , γk , ηk , fk ), k =
1, · · · ,K of theK targets.We provide a computationally sim-
ple solution to the above mentioned problem in Section III,
under the following assumptions.

i) The angle, polarization and frequency parameters
(θ1, φ1), · · · , (θK , φK ), f1, · · · , fk , and (γ1, η1), · · · ,
(γK , ηK ) are pairwise distinct.

ii) The value K is known or correctly estimated.

iii) The target RCS-related coefficients ρk (t), k =

1, · · · ,K are of Rayleigh fluctuating, i.e., they are
modeled as statistically independent, zero-mean com-
plex Gaussian random processes.

iv) The noise is zero-mean, complex Gaussian, spatially
uniformly white, and is statistically independent of all
coefficients ρk (t), k = 1, · · · ,K .

III. POLARIZATION, ANGLE AND
FREQUENCY ESTIMATION
A. VIRTUAL POLARIZATION-SPATIAL-TEMPORAL
MANIFOLD FORMULATION
We first divide the 6L × N data block X(m) into six L × N
data blocks, such that each L×N data block corresponds to a
single EMVS component. Then the L × N data block X i(m),
which corresponds to the ith components of the EMVS, can
be formed out of the X(m)

X i(m) = ADi(C)P(m)GT + N i(m) (6)

where Di{·} denotes the operator which takes the ith row of
the matrix in brackets and produces a diagonal matrix by
placing this row on the main diagonal. We next concatenate
the columns of X i(m) in an LN × 1 vector yi,m as

yi,m = vec (X i(m)) (7)

Obviously, yi,m has the form

yi,m = (G� A)Di(C)ρ(tm)+ vec(N i(m)) (8)

where ρ(tm) = [ρ1(tm), · · · ρK (tm)]T , (G� A) is the LN × K
spatial-temporal manifold. For all the Q data blocks, repeat-
ing the operator (7) and arranging the obtained vectors in
matrix form, we have

Y i = [yi,1, yi,2, · · · , yi,Q] = (G� A)Di(C)H + V i (9)

where H = [ρ(1), · · · ,ρ(Q)], V i = [vec(N i(1)), · · · ,
vec(N i(Q))]. By using the assumption iii) made in Section II,
the correlation matrix of ρ(tm) has the form as

Rρ = E[ρ(tm)ρH (tm)] = diag(σ 2
1 , · · · , σ

2
K ) (10)

The correlation matrix between data blocks Y i and Y1 is then
given by

Ri = E[Y iYH1 ]

= (G� A)Di(C)D1(C∗)Rρ(G� A)H + σ 2
n δi,1ILN (11)

where σ 2
n is the noise variance, and δi,j denotes the Dirac

delta function. Note that the noise terms in (11) are removable
by using any existing noise-estimation procedure. For conve-
nience, we regard Ri as its noise-free counterparts hereafter.
In fact, for the case where noise is taken into account, all the
derivations become only approximate.

By vectorizing Ri, we can get the following vector

ri = vec(Ri) =
[
(G� A)∗ � (G� A)

]
Di(C)β (12)
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where β = [c∗i,1σ
2
1 , · · · , c

∗
i,Kσ

2
K ]

T , with ci,k denoting the
(i, k)th entry of the matrix C. Defining the following permu-
tation matrix P

P = (IL ⊗ UN 2×L)(UN×L ⊗ INL) (13)

where UP×Q is a a PQ× PQ matrix, defined as

UP×Q =

P∑
i=1

Q∑
j=1

Eij ⊗ Fji (14)

where Eij is of size P× Q, with all zeros except a 1 at the
(i, j)th position, and Fji is of sizeQ× P, with all zeros except
a 1 at the (j, i)th position, we can obtain [23]

P
[
(G� A)∗ � (G� A)

]
=
[(
A∗ � A

)
�
(
G∗ � G

)]
(15)

Then, multiplying the matrix P to the vector ri, we can obtain
the row-exchanged version of ri as

r̃i = Pri =
[(
A∗ � A

)
�
(
G∗ � G

)]
Di(C)β (16)

Next, stacking r̃i for all i = 1, · · · , 6, we can get r̃ =
[r̃T1 , r̃

T
2 , · · · , r̃

T
6 ]
T . It can be easily verified that r̃ can be

expressed via Khatri-Rao matrix product format as

r̃ =
[
C �

(
A∗ � A

)
�
(
G∗ � G

)]
β (17)

Obviously, the vector r̃ can be considered as a new signal
vector with 6(LN )2×K manifold C�

(
A∗ � A

)
�
(
G∗ � G

)
andK×1 coefficientβ. Moreover,C�

(
A∗ � A

)
�
(
G∗ � G

)
is called as virtual polarization-spatial-temporal (PST) man-
ifold with equivalent polarization manifold C, spatial mani-
fold (A∗ � A) and temporal manifold (G∗ � G).
Using the difference coarray property of the two-level

nested array, each column of (A∗�A) contains 2L2(L1+1)−1
different elements. These elements can be viewed as spatial
response of a 2L2(L1 + 1) − 1-element uniform linear array
with antennas located from (1 − L2(L1 + 1))d1 to (L2(L1 +
1) − 1)d1. Similarly, each column of (G∗ � G) contains
2N2(N1 + 1) − 1 different elements. These elements can be
viewed as uniformly sampling of a set of monochromatic
signals from time (1− N2(N1 + 1))t1 to (N2(N1 + 1)− 1)t1.
By removing the repeated items inA∗�A andG∗�G, we can
form the following vector

r̄ =
(
C � Ā� Ḡ

)
β (18)

where Ā = [ā1, · · · , āK ], with āk = [e−j
2π fc
c (1−L̄)d1 sin θk ,

e−j
2π fc
c (2−L̄)d1 sin θk , · · · , e−j

2π fc
c (L̄−1)d1 sin θk ]T , is a (2L̄ − 1×

K ) Vandermonde matrix, with L̄ = L2(L1 + 1), and Ḡ =
[ḡ1, · · · , ḡK ], with ḡk = [ej2π fk (1−N̄ )t1 , ej2π fk (2−N̄ )t1 , · · · ,

ej2π fk (N̄−1)t1 ]T is a (2N̄ − 1× K ) Vandermonde matrix, with
N̄ = N2(N1 + 1). In equation (18),

(
C � Ā� Ḡ

)
behaves

like a PST manifold with degrees of freedom O
(
6(LN )2

)
.

This enhanced degrees of freedom enables to offer better
identifiability performance and higher parameter estimation
accuracy, as will shown in the subsequent sections.

Note that for fixed L, the spatial degrees-of-freedom can
be obtained is L2(L1 + 1). Therefore, a criterion for dividing
L into L1 and L2 is to choose L1 and L2 such that L2(L1+1) is
maximized. In this way, we choose L1 = L2 = L/2 for even
L or L2 = L1+ 1 = (L + 1)/2 for odd L. Analogously, N1 =

N2 = N/2 is chosen for even N or N2 = N1+1 = (N+1)/2.
for odd N .

B. DIRECT DATA AUGMENTATION FOR
PARAMETER IDENTIFICATION
In order to exploit the enhanced degrees of freedom for
parameter estimation from the vector r̄, direct data augmenta-
tion technique is adopted. To utilize the direct data augmen-
tation, we divide the manifold matrix Ā into L̄ overlapping
sub-matrices, where each is of size L̄×K . The ith sub-matrix
of Ā, which is denoted as Āi, is composed of the (L̄− i+1)th
to (2L̄ − i)th rows of Ā. Analogously, we divide the matrix Ḡ
into N̄ overlapping sub-matrices, where each has size N̄ ×K .
The `th sub-matrix of Ḡ, which is denoted as Ḡ`, is composed
of the (N̄ −`+1)th to (2N̄ −`)th rows of Ḡ. Then, the vector
r̄i,`, which is associated with Āi and Ḡ`, can be extracted from
r̄ and expressed as

r̄i,` = J i,`r̄ =
(
C � Āi � Ḡ`

)
β (19)

where J i,` is the selection matrix, defined as

J i,` = I6 ⊗ J̃ i ⊗ J̄` (20)

with

J̃ i = [OL̄,L̄−i, I L̄ ,OL̄,i−1] (21)

J̄` = [ON̄ ,N̄−`, I N̄ ,ON̄ ,`−1] (22)

Further, for all i = 1, · · · , L̄ and ` = 1, · · · , N̄ , we can
formulate a 6L̄N̄ × L̄N̄ matrix R̄ as

R̄ = [r̄1,1, r̄1,2, · · · , r̄1,N̄ , r̄2,1, · · · , r̄L̄,N̄ ] (23)

We prove in the following theorem that the matrix R̄ can be
applied to subspace-based algorithms for parameter estima-
tion.
Theorem 1: The matrix R̄ defined in (23) can be expressed

R̄ = (C � Ā1 � Ḡ1)S̄(Ā1 � Ḡ1)H (24)

where S̄ = diag(β) is a K × K diagonal matrix.
Proof: See Appendix I.

Obviously, the matrix R̄ has the same structure as the data
observed by PST manifold (C � Ā1 � Ḡ1) with L̄N̄ samples
S̄(Ā1�Ḡ1)H . The matrices Ā1 and Ḡ1 are both Vandermonde
matrices, and hence they are both unambiguous. Therefore,
the PSTmanifold (C�Ā1�Ḡ1) is unambiguous forK ≤ L̄N̄ .
In order for an polarization-angle-frequency subspace to
exist, both (C � Ā1 � Ḡ1) and (Ā1 � Ḡ1) are required to
be tall matrices, i.e., K < L̄N̄ . Therefore, applying subspace-
based algorithms on R̄ for parameter estimation, up to L̄N̄−1
source signals can be resolved.
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C. COMPUTATIONALLY EFFICIENT K-R SIGNAL
SUBSPACE ESTIMATION
With the above discussions, subspace-based algorithms can
be applied to R̄ for estimating polarization, angle and fre-
quency parameters. By using the relationship in (24) and
performing singular-value decomposition (SVD) to R̄, we can
find that the 6L̄N̄ × K K-R signal subspace matrix can
be obtained by choosing K left-singular vectors, which
are associated with the K largest singular values of R̄.
Unfortunately, direct estimation of signal subspace matrix
using SVD is computationally intensive, requiring approxi-
mately

(
O(L̄N̄ )6

)
multiplication operations. To alleviate the

computational burden of the SVD, we present a computa-
tionally efficient signal subspace estimation method in this
subsection.

Let D = (C � Ā1 � Ḡ1) and partition D into

D = [DT1 ,D
T
2 ]
T (25)

where D1 and D2 are, respectively the first K rows and the
remaining (6L̄N̄−K ) rows ofD. As analyzed in Section III-B,
for K ≤ L̄N̄ − 1, the matrix D1 is of full rank and is
invertible. Therefore, the K rows of D1 are linear indepen-
dent and the rows of D2 can be expressed as linear com-
binations of these K rows. Mathematically, there exists a
K × (6L̄N̄ −K ) linear operatorW between D1 and D2, such
that [27]

D2 = WHD1 (26)

From (26), we can get

DD−11 = Es =
[
IK
WH

]
(27)

SinceD−11 is nonsingular, it is easily seen that the columns of
D and Es span the same subspace, i.e., the signal subspace.
Therefore, a solution for the signal subspace estimation can
be obtained by estimating the linear operatorW .

In order to estimate the linear operatorW , we partition the
matrix R̄ into

R̄ = [R̄
T
1 , R̄

T
2 ]
T (28)

where R̄1 and R̄2 are, respectively the first K rows and the
remaining (6L̄N̄ −K ) rows of R̄. From (24) and (25), R̄1 and
R̄2 can be expressed as

R̄1 = D1S̄(Ā1 � Ḡ1)H (29)

R̄2 = D2S̄(Ā1 � Ḡ1)H (30)

Therefore, from (26), (29) and (30), the linear operatorW can
be estimated as

W = D−H1 DH2 =
(
R̄1R̄

H
1

)−1
R̄1R̄

H
2 (31)

With the estimation of W , we can form the estimation of
signal subspace matrix Es using (27).

D. POLARIZATION, ANGLE AND FREQUENCY ESTIMATION
In this subsection, we provide a polarization, angle and fre-
quency estimation method based on the idea of ESPRIT
algorithm [30]. Define the following two section matrices

Jg1 = I6 ⊗ I L̄ ⊗ [I N̄−1,ON̄−1,1] (32)

Jg2 = I6 ⊗ I L̄ ⊗ [ON̄−1,1, I N̄−1] (33)

We prove in Appendix II that

E†
s1Es2 = D18

∗
t D
−1
1 (34)

where Es1 = Jg1Es and Es2 = Jg2Es.
Equation (34) establishes the relationship between the lin-

ear operator and the phase factors {ej2π fk t1 , k = 1, · · · ,K },
which constitute the diagonal elements of 8∗t . (34) also indi-
cates that the diagonal matrix 8∗t can be estimated from
the eigenvalues of E†

s1Es2 and the matrix D1 can be esti-
mated from the eigenvectors of E†

s1Es2. With the estimation
of 8∗t , the Doppler frequencies of the targets can be easily
calculated as

f̂k =
arg{[8∗t ]k,k}

2π t1
(35)

where arg{z} signifies the principal argument of the complex
number z.

t Using the relationship in (27), the 6L̄N̄×K PSTmanifold
can be estimated as D̂ = EsD1. This 6L̄N̄ × K PST man-
ifold can be divided into six L̄N̄ × K spatial-temporal (ST)
manifolds such that each ST manifold corresponds to a single
component of the EMVS. Denoting these six STmanifolds as
D̂e,1, D̂e,2, D̂e,3, D̂h,1, D̂h,2, and D̂h,3, the EMVS manifold C
can be estimated as

Ĉ = [M(D̂e,1)T ,M(D̂e,2)T ,M(D̂e,3)T ,

M(D̂h,1)T ,M(D̂h,2)T ,M(D̂h,3)T ]T (36)

where M(·) denotes the averaging operator that produces a
row vector containing the mean value of each column of the
matrix in brackets.

Referring back to ck in (4), note that the electric field vector
ek and the magnetic field vector hk are orthogonal to each
other and to the source signal’s Poynting vector pk , whose
components are the three direction cosines along the three
Cartesian coordinates, i.e.,

pk = ek × hk =

 uk
vk
wk

 =
 sin θk cos θk
sin θk sin θk

cos θk

 (37)

With the estimation of Ĉ, the direction cosine estimates
for the kth target can be obtained by computing the
vector cross product between the normalized êk and the
normalized ĥk  ûk

v̂k
ŵk

 = êk
||êk ||

×
ĥk
||ĥk ||

(38)
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TABLE 1. Comparison of computational overheads and complexities of the methods.

FIGURE 3. RMSE of frequency, angle and polarization estimates for the first target versus SNR. (f1, θ1, φ1, γ1, η1) =
(0.1,10◦,70◦, 15◦,−90◦), and (f2, θ2, φ2, γ2, η2) = (0.2,20◦,80◦, 45◦,90◦). Q = 1000, 500 independent trials are
conducted.

Therefore, the azimuth, elevation and polarization parameters
of the kth target can be estimated as

θ̂k = arcsin
(√

û2k + v̂
2
k

)
(39)

φ̂k = 6 (ûk + jv̂k ) (40)

γ̂k = arctan |d̂k,1/d̂k,2| (41)

η̂k = 6 dk,1 − 6 dk,2 (42)
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FIGURE 4. RMSE of frequency, angle and polarization estimates for the first target versus the number of CPIs.
(f1, θ1, φ1, γ1, η1) = (0.1,10◦,70◦, 15◦,−90◦), and (f2, θ2, φ2, γ2, η2) = (0.2,20◦,80◦, 45◦,90◦). SNR = 20 dB, 500
independent trials are conducted.

where

d̂k =
[
dk,1
dk,2

]
= Q†(θ̂k , φ̂k )ĉk (43)

Note that the estimated angle, polarization and frequency
parameters are automatically paired without any additional
processing.

E. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, we analyze the computational complexities
of the proposed method. Three competitive methods are con-
sidered for comparison. We use the label ‘‘Nested-Sampling:
Linear Operator’’ for the proposed method, which uses only
linear operator for signal subspace estimation. The method
labeled as ‘‘Nested-Sampling: Eigendecomposition’’ uses

eigenvalue decomposition for signal subspace estimation.
The methods labeled as ‘‘Uniformly-Sampling: ESPRIT’’
and ‘‘Uniformly-Sampling: Low Rank Decomposition’’ use
uniformly sampling for data acquisition, and then apply the
idea of ESPRIT and low rank decomposition for parameter
estimation. We consider the major computations (multipli-
cations) involved in the methods. For the proposed method,
the major computations involved are to estimate the cor-
relation matrix Ri in (11) and to estimate the linear oper-
ator W from (31). The resulting multiplications required
are in order of O((LN )2 Q + (L̄N̄ )2 K ). For the ‘‘Nested-
Sampling: Eigendecomposition’’ method, the major compu-
tations are to form the correlation matrix Ri and to perform
the eigendecomposition of R̄R̄

H
. The computations required
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FIGURE 5. Histogram plots for the parameter estimation. (f1, · · · , f6) = (−0.35,−0.25, 0.1,0.2,0.3,0.4),
(θ1, · · · , θ6) = (20◦,30◦, 40◦,50◦,60◦,70◦), (φ1, · · · , φ6) = (30◦, 40◦,50◦,60◦,70◦,80◦), (γ1, · · · , γ6) =
(5◦, 15◦,30◦,45◦,60◦,75◦), (η1, · · · , η6) = (−90◦, −45◦,30◦,45◦,60◦,90◦). SNR = 20 dB, Q = 1000, 500
independent trials are conducted.

are in order of O((LN )2 Q + (L̄N̄ )3). For the ‘‘Uniformly-
Sampling: ESPRIT’’ method, the major computations are to
construct the matrix Ri and to perform its eigendecomposi-
tion. The multiplications needed are in order ofO((LN )2 Q+
(LN )3). For the ‘‘Uniformly-Sampling: Low Rank Decom-
position’’ method, the major computations are to perform
several iterations for low rank decomposition. The multipli-
cations involved for each iteration are in order of O(3K 3

+

2(6LQ+NQ+ 6LN )K 2
+ (6LQ+NQ+ 6LN + 18LNQ)K ).

For easy reference, the major computational overheads and
complexities are summarized in Table 1.

IV. SIMULATION RESULTS
Simulation results are provided to compare the perfor-
mance of the proposed parameter estimation method with

‘‘Nested-Sampling: Eigendecomposition’’, ‘‘Uniformly-
Sampling: ESPRIT’’ and ‘‘Uniformly-Sampling: Low Rank
Decomposition’’ methods. We consider the ESPRIT and low
rank decomposition methods in that they do not require
multidimensional spectral searching over parameter space
and can provide closed-form solution of parameter estimates.
For the nested sampling, two stage of nesting in both spatial
and temporal domains are considered, with L1 = N1 = 3,
L2 = N2 = 2. For uniformly sampling, a uniformly linear
array with 5 antennas and 5 uniformly transmitted pulses
are used. Hence, the total number of spatial-temporal data
samples is the same for all the four methods. The CPI con-
sidered is Q = 1000 for all the methods. The additive noise
is assumed to be spatial white complex Gaussian, and the
signal-to-noise ratio (SNR) is defined relative to each signal.
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FIGURE 6. Computational costs of the methods versus the number of
CPIs. L = N = 6, K = 2.

The result in each of the examples to be considered below is
obtained from 500 independent Monte-Carlo trials.

In the first example, we consider a scenario of two targets
with the following parameters to be estimated: (f1, θ1, φ1,
γ1, η1) = (0.1, 10◦, 70◦, 15◦,−90◦), and (f2, θ2, φ2,
γ2, η2) = (0.2, 20◦, 80◦, 45◦, 90◦). The Doppler frequen-
cies are normalized with respect to the carrier frequency.
Fig. 3 shows the root mean squared errors (RMSEs) of the
parameter estimates of the first target as a function of SNR
varying from 0 dB to 40 dB. From the figure, we see that
the nested-sampling based methods have performance better
than those of the uniformly-sampling basedmethods, in terms
of lower estimation RMSEs. In addition, we can find that
the performance of ‘‘Nested-Sampling: Linear Operator’’ and
‘‘Nested-Sampling: Eigendecomposition’’ are approximately
the same, since their RMSE curves nearly overlap.

In the second example, we compare the performance of the
methods versus the number of CPIs. The simulation condi-
tions are the same as those in the first example, except that the
SNR is fixed at 20 dB, and the number of CPIs is varied from
50 to 5000. Fig. 4 plots the RMSEs of parameter estimates of
the methods. We can see from the figure that the results are
similar to those shown in Fig. 3, with ‘‘Nested-Sampling: Lin-
ear Operator’’ and ‘‘Nested-Sampling: Eigendecomposition’’
exhibiting performance better than those of ‘‘Uniformly-
Sampling: ESPRIT’’ and ‘‘Uniformly-Sampling: Low Rank
Decomposition’’.

In the third example, we show that the proposed method
is able to identify more targets than spatial or tem-
poral samples. We assume six targets with the follow-
ing parameters (f1, · · · , f6) = (−0.35, −0.25, 0.1 0.2,
0.21, 0.4), (θ1, · · · , θ6) = (20◦, 21◦, 40◦, 50◦, 60◦, 70◦),
(φ1, · · · , φ6) = (30◦, 40◦, 50◦, 60◦, 61◦, 80◦), (γ1, · · · ,
γ6) = (5◦, 15◦, 30◦, 45◦, 74◦, 75◦), (η1, · · · , η6) = (−90◦,
−45◦, 45◦, 60◦, 61◦, 90◦). The SNR is set as 20 dB. Fig. 5
shows the histogram plots for the target parameter estimation.
We can observe from the figure that the proposed method
can offer accurate parameter estimates when the number of
targets is greater than that of the spatial or temporal samples.
Incidentally, it can also work well for the cases that some of

the targets have very close angle, frequency or polarization
parameters.

In the last example, we compare the computational costs
required by the proposed method those required by the other
three methods. Fig. 6 shows the multiplications needed all the
four methods as a function of the number of CPIs. The num-
ber of spatial-temporal samples are L = N = 6, the number
target is set as K = 2. It is seen from the figure that the
proposed method is computationally less complex than the
‘‘Nested-Sampling: Eigendecomposition’’ and ‘‘Uniformly-
Sampling: Low Rank Decomposition’’. In addition, the
computational costs of the proposedmethod and ‘‘Uniformly-
Sampling: ESPRIT’’ are comparable.

V. CONCLUSIONS
A computationally simple joint angle, polarization and fre-
quency estimation method for pulse doppler radar systems
using a linear electromagnetic vector antenna array has
been proposed in this paper. Nonuniform spatial-temporal
nested sampling is used for data acquisition. RCS diver-
sity is exploited to construct a virtual PST manifold for
degrees of freedom enhancement. K-R signal subspace is
estimated without performing eigenvalue decomposition.
Multiple dimensional target parameters are obtained without
pairing computations. Incidentally, with some computational
modifications, the proposed method can also be applied to
other type of EMVS array, such as dipole/loop pair and
dipole/loop triads. For example, if dipole triads are used,
the target angle and polarization parameters should be esti-
mated by solving a set of nonlinear equations [11], but not
from the vector cross product (38).

APPENDIX I
PROOF OF THEOREM 1
It is easily to verified that the matrices Āi and Ḡ` are related
with Ā1 and Ḡ1 as

Āi = Ā18
i−1
s (44)

where

8s = diag
[
ej

2π fc
c d1 sin θ1 , · · · , ej

2π fc
c d1 sin θK

]
(45)

and

Ḡ` = Ḡ18
`−1
t (46)

where

8t = diag
[
e−j2π f1t1 , · · · , e−j2π fK t1

]
(47)

The vector r̄i,` can be calculated as

r̄i,` =
(
C � Ā1 � Ḡ1

)
8i−1
s 8`−1t β (48)

Since

8i−1
s 8`−1t β = S̄

(
φi−1
s � φ

`−1
t

)
(49)

where

S̄ = diag(β) (50)
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φi−1
s =

[
ej

2π fc
c (i−1)d1 sin θ1 , · · · , ej

2π fc
c (i−1)d1 sin θK

]T
(51)

φ`−1t =

[
e−j2π (`−1)f1t1 , · · · , e−j2π (`−1)fK t1

]T
(52)

we have

R̄ =
(
C � Ā1 � Ḡ1

)
S̄

×

[
1, 1 � φt , 1 � φ2

t , · · · ,φs � 1, · · · ,φL̄
s � φ

N̄
t

]
(53)

After some computations, we can obtain that[
1, 1 � φt , 1 � φ2

t , · · · ,φs � 1, · · · ,φL̄
s � φ

N̄
t

]
=
(
Ā1 � Ḡ1

)H
(54)

Therefore, the relationship (24) is established.

APPENDIX II
PROOF OF EQUATIONS (34)
Let Dg1 = Jg1D and Dg2 = Jg2D, we can obtain

Dg1 = C � Ā1 � Ḡ1,1 (55)

Dg2 = C � Ā1 � Ḡ1,2 (56)

where Ḡ1,1 and Ḡ1,2 are, respectively, the first N̄ − 1 and the
last N̄ − 1 rows of Ḡ1. It is easily to get

Ḡ1,2 = Ḡ1,18
∗
t (57)

Therefore, we have

Dg2 = Dg18∗t (58)

Based on the idea of ESPRIT, we can get

Es1 = Jg1Es = Dg1D−1 (59)

Es2 = Jg2Es = Dg2D−1 = Dg18∗t D
−1 (60)

Equations (59) and (60) together yield the relationship (34).
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