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ABSTRACT Generalized minor component analysis (GMCA) is of great use in modern signal processing.
The GMCA algorithms can be simplified to extract the minor generalized eigenvector of the autocorrelation
input matrices pencil. In contrast to batching methods, the Hebbian-rule-based algorithm can extract the
minor generalized eigenvector online. Few Hebbian-rule-based GMCA algorithms have been reported in
the literature, and most of them are not self-stabilizing. Thus, a novel algorithm for GMCA, which is
advantageous in terms of good convergence speed, self-stabilizing property, and multiple generalized minor
component extraction in sequence, is proposed in this paper. A theoretical analysis verifies these properties
via matrix theory and the deterministic discrete-timemethod. Numerical simulations are conducted to further
demonstrate the advantages of the proposed algorithm.

INDEX TERMS Generalized minor component analysis, deterministic discrete time method,
Hebbian-rule-based algorithms, self-stabilizing property.

I. INTRODUCTION
IN signal processing, among the eigenvectors of the auto-
correlation matrix distilled from the source signal, the minor
component (MC) is the one that corresponds to the small-
est eigenvalue of the matrix. Similarly, among the eigen-
vectors of the autocorrelation matrix pencil, which is the
autocorrelation matrix of two signals, the generalized minor
component (GMC) [1] is the one that corresponds to the
smallest generalized eigenvalue of the matrix pencil. The
GMC contains the common information of the noise sub-
space in the two source signals. The techniques to extract
the MCs and GMCs are called minor component analysis
(MCA) and generalized minor component analysis (GMCA),
respectively. These powerful techniques have been widely
applied in many areas, including total least squares (TLS) [2],
moving target indication [3], clutter cancellation [4], and
frequency estimation [5] for MCA and dimension reduc-
tion [6], machine learning [7], spectral estimation [8], and
adaptive beam forming [9] for GMCA. These applications
have common features. First, the number of signals is large.
Second, in some applications, the MC must be estimated in
real time because the noise subspace is time variant [10].
Third, in some applications, the calculation method must be

simple due to limited computational resources. Therefore,
due to these requirements, some former techniques, such as
the batching method [11], [12], are not suitable.

Therefore, fast and real-time MCA/GMCA approaches
based on Hebbian rules have been proposed [13]–[19].
Among MCA algorithms, the Oja-Xu algorithm [13]
and AMEX algorithm [14] can track the non-stationary
distributed minor component of the signals. Moreover,
the OJAm algorithm [15], Kong algorithm [16], and Peng
algorithm can not only achieve the above functions, but also
are self-stabilizing. In a self-stabilizing algorithm, the state
vector can be guaranteed to converge to a normalized MC.

To the best of our knowledge, few studies of GMCA
algorithms exist. An online GMCA algorithm was proposed
by Ye et al. [17] from the perspective of linear discriminant
analysis, but the convergence analysis is overly dependent on
ordinary differential equation to consistently maintain good
speed. BecausemanyMCA algorithms derived from different
perspectives have been reported, it is valuable to determine
whether the current MCA algorithms can be extended to
solve GMCA problems. Two algorithms for GMCA based
on the power method [18] and the modified Oja-Xu MCA
algorithm [19] have been proposed by Nguyen et al. [20].
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What is more, frontier research associated with the parallel
extraction of GMCA has been explored in terms of the algo-
rithm and its convergence analysis properly [21]. Although
these algorithms have good convergence properties, most of
them cannot extract multiple GMCs in sequence and are
not self-stabilizing. In addition, the lower the computational
complexity is, the better the applicability of the algorithm to
real applications.

Therefore, we research these issues in this paper. A novel
learning algorithm is proposed to solve GMCA problems.
Furthermore, the algorithm is extended to extract multiple
minor components in sequence. Then, a theoretical analysis
illustrates that the algorithm is self-stabilizing. The conver-
gence conditions of the proposed algorithm for both GMC
and multiple GMCs are explored through the DDT method.
The simulation results illustrate that the proposed algorithm
is advantageous in terms of estimation accuracy and conver-
gence speed.

The rest of this paper is organized as follows. Section II
provides some notation and preliminary knowledge.
Section III presents the proposed algorithm. Then, we analyze
the self-stability and the convergence for both single GMC
and multiple GMCs in Sections IV, V and VI. Numerical
examples in Section VII demonstrate the performance of the
proposed algorithms. Section VIII concludes the work.

II. GUIDELINES FOR MANUSCRIPT PREPARATION
A. NOTATION
Bold-face capital and lowercase letters represent matrices and
vectors, respectively. The transpose of a matrix or a column
vector is noted by superscript (•)T , and the inverse of a
non-singular matrix is donated by superscript (•)−1. Some
notational symbols are listed as follows.

x An M -dimensional sequence
y An N -dimensional sequence
x(k) The k th column vector sampled in x
y(k) The k th column vector sampled in y
R Autocorrelation matrix
I Identity matrix
η Learning rate
α Forgetting factor
E Expected operator
N The dimensionality of the input sequence

B. FORMULATIONS RELATED TO GMCA
The goal of generalized eigen component decomposition is
to search the vector v and an invariant λ as follows,

Ryv = λRxv (1)

where Rx = E[xxT ] and Ry = E[yyT ] are the autocorrelation
matrices of two input sources x ∈ Rn×M and y ∈ Rn×M ,
respectively. In addition, x ∈ Rn×M and y ∈ Rn×M are
stochastic progress vectors with means of zero. Without loss
of generality, the vector v and invariant λ in (1) illustrate

the generalized eigenvectors and eigenvalues of the matrix
pencil (Ry,Rx).
In addition to the basic concept, a definition related to the

algorithm is listed as follows.
Definition 1 [21]: Given an arbitrary vector w with dimen-

sions n × 1 and an arbitrary matrix M with dimensions
n × n, the norm of the vector on matrix M can be defined
as ‖w‖M =

√
wTMw.

According to the matrix analysis [11],

Ryvi = λiRxvi (2)

vTi Rxvj = δij(i, j = 1, 2, · · · , n) (3)

where λi denotes the ith generalized eigenvalue that satisfies
λ1 > λ2 > · · · > λn, corresponding to the generalized eigen-
vector vi. In addition, δij is the Kronecker delta. Generalized
eigen component decomposition can be simplified into eigen
component decomposition when Rx = In, Ryvi = λivi.
Because it is impossible to obtain the autocorrelation

matrices Rx and Ry beforehand in real time, they are esti-
mated according to the input signals through a weighted
window function [22] given as

R̂y(k + 1) = α1R̂y(k)+ y(k + 1)yT (k + 1) (4)

R̂x(k + 1) = α2R̂x(k)+ x(k + 1)xT (k + 1) (5)

where α1, α2 ∈ (0, 1) are the forgetting factors, R̂x and R̂y
denote the estimates of the matrix pencil. Since the restric-
tion of the condition number to a certain range cannot be
guaranteed, which means that the inversion of R̂x is not
stable, the inverse matrix must be estimated according to
lemma [12]. Let Qx represent R

−1
x , so

Qx(k + 1) =
1
α2

[
Qx(k)−

Qx(k)x(k + 1)xT (k + 1)Qx(k)
α2 + xT (k + 1)Qx(k)x(k + 1)

]
(6)

III. NOVEL GENERALIZED MINOR COMPONENT
EXTRACTION ALGORITHM
The minor subspace learning rule presented by Douglas to
extract the minor subspace [23] is self-stabilizing in that the
vectors do not need to be periodically normalized to unit
modulus. Based on the Douglas algorithm, we propose a
novel GMCA algorithm called generalized Douglas minor
component analysis (GDM),

wk+1 = wk+η(−(wTk Rxwk )
2R−1x Rywk + wTk Rywkwk ) (7)

where wk ∈ Rn×1 is the weight vector, and η ∈ (0, 1).
Let Rx , Ry and R−1x be replaced by R̂x , R̂y and Qx in (7),

respectively. The algorithm steps are summarized in Table 1.
After initializing R̂x , R̂y, Qx and w0, the algorithm reg-

ulates the weight vector wk by repeating the same compu-
tations in (8) while R̂x , R̂y, and Qx are updated until the
difference of adjacent weight vectors wk approaches zero.
Then,wk converges to the GMC of the matrix pencil (Ry,Rx).
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IV. SELF-STABILIZING ANALYSIS
Self-stability reflects the stability of the GMCA algorithm
against fluctuations in the weight matrix. The self-stabilizing
performance can be revealed through various vector norms.
Without loss of generality, the norm of the vector wk on
matrix Rx , ‖wk‖2Rx is selected. The Self-stability means that
the norm of wk is global stable with any initial value w0.
Theorem 1: It holds that

lim
k→∞
‖wk+1‖2Rx/‖wk‖

2
Rx = 1

if the learning factor η << 1.
Proof: As shown in (7), the norm of the vector wk+1 on

matrix Rx can be expressed by wk

‖wk+1‖2Rx
= wTk+1Rxwk+1

=

[
wk + η(−(wTk Rxwk )

2R1
xRywk + w

T
k Rywkwk )

]T
Rx

×

[
wk + η(−(w(t)TRxwk )2R−1x Rywk + wTk Ryw(t)wk )

]
= wTk Rxwk + 2ηwTk Rywkw

T
k Rxwk (1− w

T
k Rxwk )+ o(η

2)

(8)

The ratio of two adjacent norms is

‖wk+1‖2Rx/‖wk‖
2
Rx

=
wTk Rxwk + 2ηwTk Rywkw

T
k Rxwk (1− w

T
k Rxwk )+ o(η

2)

wTk Rxwk
= 1+ 2ηwTk Rywk (1− w

T
k Rxwk )+ o(η

2)/wTk Rxwk (9)

The sign of the function 2ηwTk Rywk (1 − wTk Rxwk ) +
o(η2)/wTk Rxwk will not change if η << 1. Therefore,

‖wk+1‖2Rx/‖wk‖
2
Rx


> 1 ‖wk‖2Rx < 1

= 1 ‖wk‖2Rx = 1

< 1 ‖wk‖2Rx > 1

(10)

(11) shows that ‖wk+1‖2Rx/‖wk‖
2
Rx gradually converges

to one as k increases. Eventually, the weight vector wk is
independent of the initial value w0.

V. CONVERGENCE ANALYSIS
In this section, we analyze the convergence of the GDM
algorithm via DDT. According to previous research [24],
the basic task of DDT is to analyze the projection of weight
vectors on the GMC. To obtain the DDT system, the con-
ditional expectation E

{
wk
/
w0, x(i), i < k

}
of both sides is

simultaneously sought.
According to matrix theory [22], both Rx and Ry are

positive definite symmetric matrices. The generalized eigen-
vectors of the matrix pencil (Ry,Rx) are composed of a
set of orthogonal bases in the space Rn×n. Without loss of
generality, we choose a specific set as the default set in
the following argument of this paper, where the eigenvalues
of the matrix pencil are arranged in descending order as

TABLE 1. Adaptive generalized minor component analysis algorithm.

λ1 > λ2 > · · · > λn > 0. Therefore, the weight vector is
a linear combination in the set of orthogonal bases

wk =
n∑
i=1

zi(k)vi (12)

where zi(k) = vTi Rxwk is a scalar that represents the pro-
jection length of w(k) onto the generalized eigenvector vi.
Substituting (12) into (7)

zi(k + 1) =
{
1+ η(−λi(wTRxw)2 + wTRyw)

}
zi(k) (13)

where k ≥ 0. Meanwhile, the Rayleigh quotient should be
noted [25],

0 < λnwTk Rxwk ≤ wTk Rywk ≤ λ1w
T
k Rxwk (14)

The details of the analysis are as follows.
Theorem 2: For k ≥ 0, if wT0Rxvn 6= 0 and 0 ≤
‖w0‖Rx ≤ 1, then ‖wk‖Rx < 1+ ηλ1.

Proof: Due to (12) and (13),

‖wk+1‖2Rx =
n∑
i=1

z2i (k + 1)

=

n∑
i=1

[
1+ η(−λi(wTk Rxwk )

2
+ wTk Rywk )

]2
z2i (k)

<
[
1+ ηλ1wTk Rxwk

]2 n∑
i=1

z2i (k)

=

[
1+ ηλ1 ‖wk‖2Rx

]2
‖wk‖2Rx (15)

For simplicity, assuming s = ‖wk‖2Rx , we define a differ-
entiable function

f (s) = (1+ ηλ1s)2s (16)

where s ∈ [0, 1], and the differential form of (16) is

ḟ (s) = (1+ ηλ1s)(1+ 3ηλ1s) (17)

The zero points of ḟ (s) are s1 = −1/ηλ1 and s2 =
−3/ηλ1. Since η > 0, λ1 > 0, then s1 < s2 < 0. As a
consequence, ḟ (s) > 0 for s ∈ [0, 1], which means that f (s)
is a monotonically increasing function. Therefore,

f (s) ≤ f (1) = (1+ ηλ1)2 (18)

This result illustrates that ‖wk‖Rx < 1+ ηλ1 for k ∈ N ∗.
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Theorem 3: Suppose that c =
[
1− ηλ1 (1+ ηλ1)4

]
. For

k ≥ 0, if ‖wk‖Rx < 1 + ηλ1 and ηλ1 < 0.2, then
‖wk‖Rx > ck ‖w0‖.

Proof: According to (12) and (13),

‖wk+1‖2Rx

=

n∑
i=1

z2i (k + 1)

=

n∑
i=1

[
1+ η(−λi(wTk+1Rxwk )

2
+ wTk Rywk )

]2
z2i (k)

>

[
1− ηλ1

[
wTk+1Rxwk

]2]2 n∑
i=1

z2i (k)

=

[
1− ηλ1 ‖wk‖4Rx

]2
‖wk‖2Rx (19)

Since ‖wk‖Rx < 1+ ηλ1, then

‖wk+1‖2Rx ≥
[
1− ηλ1(1+ ηλ1)4

]2
‖wk‖2Rx (20)

where c =
[
1−ηλ1 (1+ηλ1)4

]
, and c=

[
1−ηλ1 (1+ηλ1)4

]
>[

1− 0.2× (1+ 0.2)4
]
= 0.58528 > 0 when ηλ1 < 0.2.

As a result,

‖wk+1‖2Rx > c2 ‖wk−1‖2Rx > · · · > c2k ‖w0‖
2
Rx (21)

which illustrates that ‖wk‖Rx > ck ‖w0‖.
Theorem 4: For k ≥ 0, if wT0Rxvn 6= 0 and ηλ1 < 0.2, then

1+ηwTRyw−ηλi(wTRxw)2 > 0, which is the proportion of
zi(k) noted in (13).

Proof: As shown in (13),

1+ ηwTRyw− ηλi(wTRxw)2

> 1− ηλ1(wTRxw)2

≥ 1− ηλ1(1+ ηλ1)4

≥ 1− 0.2× (1+ 0.2)4

= 0.58528 > 0 (22)

where ηλ1 ≤ 0.2.
From (12), each wk can be expressed by a linear combina-

tion of the eigenvectors, which is rewritten as

wk =
n−1∑
i=1

zi(k)vi + zn(k)vn (23)

where in the k th iteration, zi(k) is a combination factor corre-
sponding to its eigenvector. Then, the convergence analysis of
the GDM algorithm is transferred from vectors wk to scalars
zi(k). Clearly, if each sequence {zi(k)}, i = 1, 2, ...,N − 1
converges to a constant, wk will approach the MC. This
assumption is proved by Theorems 5 and 6.
Theorem 5: For i = 1, 2, · · · , n − 1, limk→∞ zi(k) = 0

if
[
1− ηλ1 (1+ ηλ1)4

]
< ‖w(k)‖Rx < 1 + ηλ1 and 1 +

ηwTRyw− ηλi(wTRx w)2 > 0.

Proof: For k ≥ 0,[
zi(k + 1)
zn(k + 1)

]2
=

[
1+ ηwTk Rywk − ηλi(w

T
k Rxwk )

2

1+ ηwTk Rywk − ηλn(w
T
k Rxwk )

2

]2
z2i (k)

z2n(k)

=

[
1−

η(λi − λn)(wTk Rxwk )
2

1+ ηwTk Rywk − ηλn(w
T
k Rxwk )

2

]2
z2i (k)

z2n(k)

≤

[
1−

η(λi − λn)(wTk Rxw(k))
2

1+ ηλ1wTk Rxwk − ηλn(w
T
k Rxwk )

2

]2
z2i (k)

z2n(k)
(24)

Let

δk =
η(λi − λn)(wTk Rxwk )

2

1+ ηλ1wTk Rxwk − ηλn(w
T
k Rxwk )

2

and

θk =

[
1−

η(λi − λn)(wTk Rxwk )
2

1+ ηλ1wTk Rxwk − ηλn(w
T
k Rxwk )

2

]2
= (1− δ2k )

2.

Then, rewrite (25) as[
zi(k + 1)
zn(k + 1)

]2
≤

[
zi(k)
zn(k)

]2
θk ≤

[
zi(k − 1)
zn(k − 1)

]2
θkθk−1

≤ · · · ≤
z2i (0)

z2n(0)

k∏
j=0

θk ≤
z2i (0)

z2n(0)
θk+1 (25)

where θ = max(θ0, θ1, · · · θk , · · · ). As long as zn(k) is
bounded and 0 < θ < 1, then

lim
k→∞

zi(k) = 0, i = 1, 2, · · · , n− 1 (26)

Because {zi(k)|i = 1, 2, ..., n} is bounded, zn(k) is
bounded. If 0 < θk < 1, then 0 < θ < 1. According to
the definition of θk , if 0 < δk < 1, then 0 < θk < 1. Given
that

1+ ηλ1wTk Rxwk − ηλn(w
T
k Rxwk )

2

> 1− ηλ1(wTk Rxwk )
2

> 1− ηλ1(1+ ηλ1)4

≥ 1− 0.2× (1+ 0.2)4

= 0.5853 > 0 (27)

and λ1 > λn. Moreover, (wTk Rxwk )
2 > 0 and δk > 0.

Given that

δk =
η(λi − λn)(wTk Rxwk )

2

1+ ηλ1wTk Rxwk − ηλn(w
T
k Rxwk )

2

<
ηλ1(wTk Rxwk )

2

1+ ηλ1wTk Rxwk − ηλ1(w
T
k Rxwk )

2

<
ηλ1(1+ ηλ1)4

1− ηλ1(1+ ηλ1)4

≤
0.2× (1+ 0.2)4

1− 0.2× (1+ 0.2)4
= 0.7086 < 1 (28)
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then δk < 1. Therefore, limk→∞ zi(k) = 0, i = 1, 2, · · · ,
n− 1 is true.
Theorem 6: If ηλ1 ≤ 0.2, wT0Rxvn 6= 0 and 0 ≤
‖w0‖Rx ≤ 1, it holds that limk→∞ zn(k) = ±1.

Proof: According to Theorem 4, there exist k0, and wk0
converges to the direction of the MC vn, namely, wk0 =
zn(k0)vn. Substituting wk0 = zn(k0)vninto (13) gives

zn(k + 1) =
[
1+ ηλnz2n(k)− ηλnz

4
n(k)

]
zn(k) (29)

One is subtracted from both sides of (30) to obtain

zn(k + 1)− 1

= (1+ ηλnz2n(k)− ηλnz
4
n(k))zn(k)− 1

=

[
1− ηλnz2n(k)(zn(k)− 1)(zn(k)+ 1)

]
zn(k)− 1

= (zn(k)− 1)
[
1− ηλnz3n(k)(zn(k)+ 1)

]
(30)

Define β = 1− ηλnz3n(k)(zn(k)+ 1). For k > k0,

β = (zn(k + 1)− 1)
/
(zn(k)− 1)

= 1− ηλnz3n(k)[zn(k)+ 1]

> 1− ηλ1(1+ ηλ1)3(1+ ηλ1 + 1)

≥ 1− 0.2× (1+ 0.2)3(2+ 0.2)

= 0.2397 > 0 (31)

where zn(k) ≤ ‖wk‖B ≤ 1+ ηλ1.

|zn(k + 1)− 1| ≤ |zn(k)− 1|β ≤ · · · ≤ |zn(0)− 1|βk+1

≤ |zn(0)− 1| (k + 1)e−α(k+1) (32)

where α = − lnβ. Therefore, for any ε > 0, there exists
K > 1 in

5Ke−αK

(1− e−α)2
≤ ε (33)

where 5 = ηλ1(1+ ηλ1)2(2+ ηλ1) |zn(0)− 1|.
To analyze the change of zn(k) when k > K , we arbitrarily

choose k1 and k2, where k1 > k2 > K . Then,

|zn(k1)− zn(k2)| =

∣∣∣∣∣∣
k1−1∑
r=k2

[zn(r + 1)− zn(r)]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
k1−1∑
r=k2

[
ηλnz2n(r)− ηλnz

4
n(r)

]∣∣∣∣∣∣
≤

k1−1∑
r=k2

∣∣∣ηλnz2n(r)∣∣∣ |zn(r)+ 1| |zn(r)− 1|

≤ ηλ1(1+ ηλ1)2(2+ ηλ1)
k1∑

r=k2

|zn(r)− 1|

≤ 5

k1∑
r=k2

re−αr

≤ 5

+∞∑
r=K

re−αr

≤ 5Ke−αK
+∞∑
r=0

r
(
e−α

)r−1
≤

5Ke−αK

(1− e−α)2
≤ ε (34)

According to the definition of a Cauchy series, the series
{zn(k)} is convergent. There must exist a constant z∗,
where limk→∞ zn(k) = z∗ and limk→∞ wk = z∗vn.
Furthermore, according to Theorem 1, it holds that
limk→∞ ‖wk+1‖Rx

/
‖wk‖Rx = 1. Therefore,

1+ ηλn(z∗)2 − ηλn(z∗)4 = 0 (35)

where z∗ = limk→∞ zn(k) = ±1.
Remark 1: Theorems 5 and 6 depict the variation of zi(k)

for i ∈ {1, 2, · · · , n}. As a combination of these two conclu-
sions,

lim
k→∞

wk = lim
k→∞

(zn(k)vn +
∑n−1

i=1
zi(k)vi)

= lim
k→∞

zn(k)vn +
∑n−1

i=1
(vi lim

k→∞
zi(k)).

= ±vn (36)

Remark 2:According to the complete convergence analysis
from Theorems 2 to 6, the GDM algorithm is convergent, and
the basic conditions are wT0Rxvn 6= 0, 0 ≤ ‖w0‖Rx ≤ 1,
ηλ1 ≤ 0.2. For ηλ1 ≤ 0.2, the learning factor is associated
with the greatest eigenvalue. The upper limit of λ1 can be
estimated in real applications [24]. In addition, the initial
weight vector w0, which satisfies wT0Rxvn 6= 0 and 0 ≤
‖w0‖Rx ≤ 1, is generated randomly. In fact, the alterna-
tive range of ‖w0‖Rx can be larger when ηλ1 is sufficiently
small.

VI. MULTIPLE GENERALIZED MINOR COMPONENT
EXTRACTION
In this section, we extend the GDM algorithm to extract
multiple GMCs. GMCs can be extracted in sequence accord-
ing to the analysis of matrix disturbance [12]. In each
extraction process, the extracted GMC corresponds to
the smallest generalized eigenvalue of the autocorrelation
matrix. Meanwhile, before the extraction, the autocorrela-
tion matrix is modified by a designed matrix disturbance.
The convergence of the extended algorithm is also analyzed
via DDT.

We can obtain a DDT system by using the conditional
expectation operator E{wk+1/w0, x(i), i < k} on both sides
of the Eq. (7) as

wj,k+1 = wj,k + η
[
wTj,k (Ry +M j,k )wj,kwj,k

− (wTj,kRxwj,k )
2R−1x (Ry +M j,k )wj,k

]
(37)

where nmc is the minimum of the extracted MCs and j =
1, 2, · · · , nmc.M j,k is the matrix disturbance produced by the
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result of the (j− 1)th extraction, andM1,k = 0.

M j,k = M j−1,k + τ
Rxwj−1,kwTj−1,kRx

wTj−1,kRxwj−1,k

= τ
∑j−1

i=1

Rxwi,kwTi,kRx
wTi,kRxwi,k

.

τ is a scalar that is larger than any other eigenvalue, namely,
τ > λ1. The convergence is analyzed through the following
theorem.
Theorem 7: If η[λ1 + (nmc − 1)τ ] ≤ 0.2 and wTj,0Rx

vn−j+1 6= 0, it holds that for j = 1, 2, · · · , nmc,
limk→∞ wj,k = ±vn−j+1.

Proof: For k > 0, let λi,j denote the eigenvalue of the
symmetric non-positive Ry +M j,k with

λ1,j > λ2,j > · · · λn,j ≥ 0 (38)

Given that Mj(k) = 0, λ1,1 = λ1, where λ1 is the largest
eigenvalue of the autocorrelation matrix Rx . According to the
update equation ofM j,k ,

Ry +M j+1,k = Ry +M j,k + τ
Rxwj,kwTj,kRx

wTj,kRxwj,k
(39)

According to [11],

λ1,j+1 ≥ λ1,j ≥ λ2,j+1 ≥ · · · λn,j+1 ≥ λn,j (40)

and ∑n

i=1
λi,j+1 −

∑n

i=1
λi,j = τ (41)

Therefore, λ1,j+1 ≥ λ1,j and λ1,j+1 ≤ λ1,j + τ . If j = nmc,

λ1,q ≥ λ1,nmc−1 ≥ · · · λn,2 ≥ λn,1 = λ1 (42)

and

λ1,nmc ≤ λ1,nmc−1 + τ ≤ · · · ≤ λn,1 + (nmc − 1)τ

= λ1 + (nmc − 1)τ (43)

Then, it holds that

η<1/{5[λ1+(nmc − 1)τ ]}≤1/(5λ1,nmc )≤· · · ≤ 1/(5λ1,1)

= 1/(5λ1) (44)

if η[λ1 + (nmc − 1)τ ] ≤ 0.2.
According to Theorems 2-6, wj,k converges to eigen-

vectors corresponding to the smallest eigenvalues for j =
1, 2, · · · , nmc conditional on (44). If so, limk→∞ w1,k = ±vn
when j = 1.

Assuming that j = 2,

lim
k→∞

Ry +M2,k =

n∑
i=1

λiRxvivTi + τRxvnv
T
n

=

n−1∑
i=1

λiRxvivTi + (τ + λn)RxvnvTn . (45)

Since τ + λn ≥ λ1, repeat steps (39) - (44); then,
limk→∞ w2,k = ±vn−1. Therefore, for j = 1, 2, · · · , nmc,
it holds that

lim
k→∞

wj,k = ±vn+1−j (46)

VII. SIMULATION EXPERIMENTS
In this section, we use three examples to evaluate the effec-
tiveness of the GDM algorithm. The first example illustrates
the convergence of the algorithm. The second experiment
demonstrates the self-stability of the GDM algorithm. The
third experiment verifies the convergence of the sequential
GMCA algorithm. In all the examples, the results are the
average of 100 independent runs in MATLAB.

A. EXAMPLE 1: CONVERGENCE
In this section, an example is designed to depict the con-
clusions drawn from Theorems 2-6. We examine the vary-
ing curve of the projection length zi(k), which means that
if zi(k) converges to zero for i = 1, 2, · · · , n − 1 and
zn(k) converges to unity modulus, then the GDM algorithm
is convergent. The convergence speeds of three algorithms,
i.e., a the GDM algorithm , GMOX algorithm [19] proposed
by Nguyen in 2013, and Ye algorithm [17] proposed by
M. Ye in 2008, are compared.
A randomly generated matrix pencil is given in (47)

and (48), as shown at the bottom of the next page. The
generalized eigenvalues of the matrix pencil (Ry,Rx) are
λ1 = 2.7015, λ2 = 2.2032, λ3 = 0.6181, λ4 =
0.5673, λ5 = 0.4561, and λ6 = 0.2028. We use
the three algorithms to extract the GMC of the matrix
pencil.
Without loss of generality, the learning factor η = 0.020 <

0.2/λ1. According to Theorem 6, the learning factor is in the
domain of the convergence condition. In addition, the initial
weight vectors are as follows, (49) and (50), as shown at the
bottom of the next page.
In Fig. 1 and 2, the convergence curves of the GDM algo-

rithm are solid lines, those of the GMOX algorithm are dotted
lines and the Ye algorithm are short-dashed lines. zi, i =
1, 2, · · · , 5 converges to zero rapidly while z6 converges to

FIGURE 1. Convergence curves of zi , i = 1, 2, · · · , 6 for w0 = wa.
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FIGURE 2. Convergence curves of zi , i = 1, 2, · · · , 6 for w0 = wb.

unity modulus. In addition, iteration number of the GDM
algorithm when z6 converges to unity modulus is less than
that of the GMOX and Ye algorithms. The convergence of
z6 is faster in Fig. 1 than that in Fig. 2. These results illus-
trate three facts. First, the GDM algorithm is convergent if
the learning rate satisfies the conditions in Theorems 2-5.
Second, regardless of the initial weight, the GDM algorithm
performs better than the GMOXandYe algorithms in terms of
convergence speed. Third, for a larger modulus of the initial
weight vector wa, the GDM algorithm has better convergence
speed than that for wb.

B. EXAMPLE 2: SELF-STABILITY
In this section, an example is evaluated to verify whether
the limk→∞ ‖wk‖Rx = 1 holds for different moduli of the
initial weight vector. With the same matrix pencil (Ry,Rx)
and learning rate as in Example 1, three randomly generated
vectors, whose moduli are less then, equal to and greater than
one, are selected.

Fig. 3 shows that the norm of wk converges to a constant
regardless of the initial weight vector. According to this sim-
ulation experiment, we can conclude that the GDM algorithm
is self-stabilizing.

FIGURE 3. Norm curves of the GDM algorithm in three cases.

FIGURE 4. DC curves of the sequential GDM algorithm.

C. EXAMPLE 3: MULTIPLE EXTRACTION IN SEQUENCE
In this section, we use the matrix pencil (Ry,Rx) in (47)
and (48) to extract the three MCs in sequence. According to
algorithm (37), let τ = 3 > λ1 and let the learning factor
η = 0.02 < 0.2/λ1 − (nmc − 1)τ , where nmc = 3. The initial
weight vector w0 = wa. To measure the convergence speed
and accuracy of these algorithms, we calculate the direction

Ry =


0.0614 0.0174 −0.0127 −0.0049 0.0110 −0.0294
0.0174 0.0661 −0.0189 0.0052 0.0131 −0.0226
−0.0127 −0.0189 0.0578 0.0008 −0.0169 0.0317
−0.0049 0.0052 0.0008 0.0473 0.0024 −0.0023
0.0110 0.0131 −0.0169 0.0024 0.0506 −0.0082
−0.0294 −0.0226 0.0317 −0.0023 −0.0082 0.0471

 (47)

Rx =


0.0644 0.0092 0.0027 0.0244 −0.0128 −0.0126
0.0092 0.0681 −0.0160 −0.0004 −0.0013 0.0239
0.0027 −0.0160 0.0803 −0.0192 −0.0034 0.0161
0.0244 −0.0004 −0.0192 0.0675 0.0087 0.0082
−0.0128 −0.0013 −0.0034 0.0087 0.0690 0.0287
−0.0126 0.0239 0.0161 0.0082 0.0287 0.0715

 (48)

wa =
[
−5.8744 4.6453 −3.8261 −2.0116 −8.0562 −2.3446

]T (49)

wb =
[
−3.5757 2.8276 −2.3289 −1.2244 −4.9038 −1.4272

]T (50)
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FIGURE 5. Norm curves of the sequential GDM algorithm.

cosine for each iteration, which is given by

Direction Cosine(k)=
∣∣∣wTi,kv6−i∣∣∣/∥∥∥wTi,k∥∥∥ ‖v6−i‖ (i=1, 2, 3)

(51)

where v6−i is the true eigenvector associated with the
eigenvalue of the autocorrelation matrix pencil (Ry,Rx).
Fig. 4 shows that all the direction cosines of wTi,k converge
to one, which means wTi,k converges to the corresponding
MC. Fig. 5 shows that each norm converges to one, which
is consistent with Theorem 7, so all three MCs are self-
stabilizing.

VIII. CONCLUSION
In this paper, a novel algorithm was proposed for GMCA.
The convergence analysis was accomplished through
DDT method. Then the algorithm was proved to be self-
stabilizing. A sequential GMCs extraction algorithm was
also derived from the algorithm. Simulation results illustrate
that the GDM algorithm was advantageous in estimation
accuracy and convergence speed compared with some other
algorithms.
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