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ABSTRACT Due to the limited resources and scalability, the security protocols for the Internet of
Things (IoT) need to be light-weighted. The cryptographic solutions are not feasible to apply on small and
low-energy devices of IoT because of their energy and space limitations. In this paper, a light-weight protocol
to secure the data and achieving data provenance is presented for the multi-hop IoT network. The Received
Signal Strength Indicator (RSSI) of communicating IoT nodes are used to generate the link fingerprints.
The link fingerprints are matched at the server to compute the correlation coefficient. Higher the value of
correlation coefficient, higher the percentage of the secured data transfers. Lower value gives the detection
of adversarial node in between a specific link. Data provenance has also been achieved by comparison of
packet header with all the available link fingerprints at the server. The time complexity is computed at the
node and server level, which is O(1). The energy dissipation is calculated for the IoT nodes and overall
network. The results show that the energy consumption of the system presented in this paper is 52–53 mJ
for each IoT node and 313.626 mJ for the entire network. The RSSI values are taken in real time from
MICAz motes and simulations are performed on MATLAB for adversarial node detection, data provenance,
and time-complexity. Experimental results show that up to 97% correlation is achieved when no adversarial
node is present in the IoT network.

INDEX TERMS IoT, link-fingerprints, light-weight, provenance, security, multi-hop.

I. INTRODUCTION
Internet of Things (IoT) comprises a complex network of
smart devices, which frequently exchange data through the
Internet [1]. IoT has become the necessity for the future
communication. It is estimated that 50 billion smart devices
will be connected through IoT by 2020 [2]. The information
of a patient to a medical staff, automobile’s performance
and statistics, home automation, transportation domain, smart
grids and smart meters will be based on IoT. The data
acquired from sensors or IoT nodes is propagated to Inter-
net cloud where it is received by the concerned body. The
acquired data needs to be accurate and should have the infor-
mation about its origin.

As the number of nodes are large in number, small in
size and mostly accessible, the measures should be taken to
make sure that the data is secured and efficiently received
at the receiving end. Data security and provenance act as
backbone in order to implement IoT network because the IoT
nodes are not physically protected [3]. The data can easily
be forged or tampered if proper security primitives are not
taken. Security primitives include detection of certain attacks,

masking channel state, intrusion detection, location distinc-
tion and data provenance. Provenance is to find the origin of
the data. A single change in data might cause big problems
e.g., in terms of medical health report generated by an IoT
node sent to a doctor, meter reading sent to the company for
billing according to the consumption and change in trans-
portation system information [1]. Therefore, the traditional
cryptographic techniques are not the viable solution in IoT
because of the energy limitations of the IoT nodes [4]. Less
space acquiring and energy efficient security primitives with
less computational complexities are key building blocks for
enabling end-to-end content protection, user authentication,
and consumer confidentiality in the IoT world [2].

To ensure the trust of users, the IoT-based network should
be secured enough. The security mechanism involved should
be light-weighted because of the low energy requirements
for IoT nodes [5]. The mutual authentication between IoT
nodes with the server should also be secured and authen-
tic [3]. Accurate and secure data provenance in the IoT are
used for improving the level of trust. The data provenance is
useful for determining and describing the derivation history
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of data starting from the original resource. The records can
be used to protect intellectual property and its relevance
from the perspective of regulatory mechanisms. However,
the data provenance integrity is a big question. The data
provenance can be forged or tampered by an unauthorized
party if the provenance is not properly protected by imple-
menting inefficient security protocols. In order to establish
the trust of IoT, a solution to security should be designed
which is light-weight and highly secured [6]. Most of the
security algorithms and cryptography techniques used today
contain high computational complexities with high energy
consumption.

The solution proposed in this paper incorporates
light-weight security algorithms for secured IoT-based infor-
mation exchange without using extra hardware. Adversarial
node is detected effectively by correlating the link finger-
prints generated by the adjacent IoT nodes. The correlation
coefficient is computed at the server. Data provenance is
also achieved using the same link fingerprints generated
to find the intrusion detection in the IoT network. Hence,
fingerprints are used to authenticate the integrity of data
and in the detection of intrusion. The proposed solution
has less time complexity compared to other state-of-the-art
available solutions. The energy calculations are presented as
well showing very desirable results when compared to the
previously work done in [7].

The rest of this paper is organized as follows. Section II
provides an overview on the literature related to IoT security.
Methodology of our work is discussed in section III. Experi-
mental and simulation results are presented in section IV. The
paper is concluded in section V.

II. LITERATURE REVIEW
Due to scalability of IoT devices, it is difficult to protect
them. That is why they are very prone to attacks [3]. The
taxonomy of attacks in IoT are spoofing, altering, replaying
routing information, Sybil attack [8], Denial of Service (DoS)
attacks [9], attacks based on node property, attacks based on
access level, attacks based on adversary location and attacks
based on information damage level [1] etc. In order to tackle
these attacks, a required solution needs to be light-weighted
and secured enough to gain the trust of IoT users [10]. A cryp-
tographic solution to secure the IoT network is provided using
Advanced Encryption Standard (AES)-128 Algorithm and
Inverse AES-128 Algorithm [11]. These solutions deal with
intense cryptography and computational complexities. That
is why AES-128 algorithm is not suitable for IoT considering
a large number of IoT nodes.

Working on the mutual authentication between RFID tags
in IoT, researchers introduced a light-weight protocol by
encryption method based on XOR manipulation, instead
of complex encryption such as using the hash function,
for anti-counterfeiting and privacy protection [12]. In unse-
cured RFID the attacker can clone the Electronic Product
Key (EPC) of the target tag and program it to another
tag. Physical Unclonable Functions (PUFs) are used at the

node end to protect it from the attacker to get access to
the information stored in the node memory. PUFs may be
used to provide security in IoT systems without the need
to store secrets in the nodes [13]. For communication pur-
poses, a light-weight messaging protocol called MQ Teleme-
try Transport (MQTT) can be used. A centralized ‘‘broker’’ is
used to communicate with terminals. MQTT broker controls
the type of information shared among terminals, which helps
to protect the privacy. Elliptic Curve Cryptography (ECC)
is also preferred because it provides an equal amount of
security with less computation power and bandwidth than
its Rivest, Shamir, and Adelman (RSA) counterpart [14].
In some papers, the concept of mutual trust between secu-
rity systems on IoT objects through the establishment of a
framework for access control at the node level is discussed.
According to the researchers, trust is established from the
creation phase to the operation phase in IoT. This trust arises
through two mechanisms; the creation of key and the token
key created by the manufacturer [15]. Based on the new
Lightweight Label-Based Access Control Scheme (LACS),
the authentication of authorized fog nodes is achieved to
ensure protection. Specifically, LACS authenticates fog node
by checking the integrity of the value of the shared file
embedded label, where only the authorized fog node has
access to the caching service [16]. A trusted Internet of Vehi-
cles (IoV) network is proposed in [17]. Both the physical
and social layer information are combined for realizing rapid
content dissemination in device-to-device vehicle-to-vehicle
(D2D-V2V)-based IoV networks.

In [7] paper, securing the data provenance is achieved by
using the RSSI values received by a static base station and
a mobile body-worn device. Performed experiments show
that highly correlated fingerprints are acquired. After every
10 to 15 minutes, a link fingerprint of 128 bits is generated
by using RSSI at base station and body worn device. The
storing and accessing of data provenance are also important to
be a secured process. The proposed trust model is described
for cloud computing in [6]. High trust can be achieved using
the same model in IoT environment. Improved energy effi-
ciency is achieved by using Gale-Shapley algorithm which
matches D2D pair with cellular user equipments (UEs).
Correlation among UEs are analyzed using a game-theoretic
approach. Mutual preferences based on nonlinear fractional
programing is also established [18], [19].

III. METHODOLOGY
When two IoT nodes communicate, then various metrics like
RSSI, Time of Arrival (ToA), phasor information and Error
Vector Magnitude (EVM) are used to generate link finger-
print. In terms of RSSI, there is a linear relation between
the RSSI variations of any connected nodes. This informa-
tion is helpful in generating the link fingerprints which are
highly correlated for two connected nodes by computing the
Pearson correlation coefficient. We can use this information
to develop link fingerprints as shown in Fig 1. The RSSI
values are recorded in real time by using MICAz motes.
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The duration of recording RSSI values at each IoT node can
be increased or decreased depending on the availability of
power to the nodes. As the IoT nodes are power limited,
realistic approach is to take the recording time large but
acceptable in a manner that the results are not affected. The
following scenarios are taken in account when performing the
experiments and simulations:

FIGURE 1. System model.

1) No adversarial node is present in the IoT network
2) Adversarial node is present in between two communi-

cating IoT nodes
3) The packet is forged or tempered at any IoT node
4) The IoT node is replaced by adversarial node
5) The server is not secured in a way that adversarial node

can send its data to the server but cannot access the data
present at the server

6) Finding the intrusion in later data using provenance
algorithm

The scheme presented in this paper ensures security of IoT
network for all the scenariosmentioned above consuming less
energy. It uses real-time experimental values. MICAz motes
are used as IoT nodes.

A. ADVERSARIAL NODE DETECTION
In our experiment, each IoT node records its respective RSSI
values after every 20 seconds. The RSSI values received
are in dBm ranging from −48 dBm to 20 dBm. The signal
strength is calculated using Friis transmission equation which
states that

Pr =
PtGtGr
Lp

, (1)

where, Pr is the received power, Pt represents the transmitted
power, Gr and Gt are the receiving and transmitting antennas
gains, respectively and Lp is the path loss. More the path loss,
less will be the received power and hence low value of RSSI.
Path loss is expressed as:

Lp = (
4πd
λ

)2, (2)

where d is the distance between two communicating IoT
nodes. λ is the wavelength which is approximately 416 µm
because the operating frequency ofMICAzmotes is 2.4 GHz.
A gain of 50 is given to make all the values positive. The
resulting RSSI values are quantized usingword-length of 8 bit
providing 256 levels (L). The amplitude values are mapped
onto a finite set of known values. This is achieved by dividing
the distance between minimum and maximum RSSI values
into L zones, each of height 1, which is given as,

1 =
Pr(max) − Pr(min)

L
. (3)

Pr(max) and Pr(min) are the maximum and minimum received
powers, respectively. The midpoint of each zone is assigned
a value from 0 to L − 1. Each sample falling in a zone is
approximated to the value of the midpoint. Each zone is then
assigned an 8 bit of word-length. This 8-bit word-length is
representing the link fingerprint (LF). The link fingerprint
(each 8-bit binary stream representing RSSI value) is then
encoded with an 8-bit secret key i.e.,K1 for IoT node 1,K2 for
IoT node 2 and K3 for IoT node 3.

LFencoded(1→n) = LF1→n ⊕ Ki. (4)

In 4, ⊕ represents logical exclusive-OR operation, whereas
LFencoded is the encoded link fingerprint. Each IoT node
sends LFencoded to the server and keeps a copy of the same
with itself. The link fingerprint and the secret key will not
be shared with any other IoT node. The server is assumed as
highly secured and the data is stored after the authentication
is successful. Though in one case, it is considered that adver-
sarial node can send its data to the server by replacing IoT
node.
K1, K2 and K3 are present at the server, which are assumed

to be fully protected. The server decodes all the received
encoded link fingerprints of each IoT node using key asso-
ciated to the concerned IoT node as,

LF1→n = Ki ⊕ LFencoded(1→n). (5)

The binary coded link fingerprints are converted to the
respective decimal values in dBm and correlation process
is performed by computing the Pearson correlation coeffi-
cient (ρ). If the value is between 0.8 and 1 then it is considered
as highly correlated in a multi-hop network. Mathematically,

ρX ,Y =
cov(X ,Y )
σXσY

, (6)

where, cov is the covariance and σ represents the standard
deviation. A simplified equation can be written as;

r =

∑n
i=1(Xi − X̄ )

∑n
i=1(Yi − Ȳ )√∑n

i=1(Xi − X̄ )2
√∑n

i=1(Yi − Ȳ )2
, (7)

where Xi and Yi are the RSSI values of the ith packet received
at communicating IoT nodes and X̄ and Ȳ are the respective
mean RSSI values of a sequence of n packets. The correlation
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coefficient r returns a value in [−1:1] where 1 indicates per-
fect correlation, 0 indicates no correlation, and −1 indicates
anti-correlation.

The server correlates the LFs of adjacent IoT nodes. They
are highly correlated if there is no involvement of any adver-
sarial node in the IoT network. If any adversarial node comes
between IoT node 1 and IoT node 2 then the link finger-
print received by IoT node 1 is different than link finger-
print received by IoT node 2. A highly uncorrelated Pearson
correlation coefficient is computed. The decoding is done
at the server using the keys already present at the server.
Algorithm 1 and 2 represent the detection of adversarial
node’s presence in IoT network.

Algorithm 1 Link Fingerprint Generation and Encoding at
IoT Node. i = 1→ n and j = 1→ Number of IoT Nodes
Initialize the IoT node
Read the RSSI values from adjacent IoT node
RSSInew[i]← RSSI [i]+ gain
Quantize RSSInew[i]
LinkFingerprint[i] ← Assign binary code-word to Quan-
tized RSSInew[i]
RSSIen[i]← XOR(LinkFingerprint[i],Keynode(j))
RSSIen[i] bundled up with session identifiers
Keep a copy at the IoT Node
Send a copy to the server

Algorithm 2 Adversarial Node’s Detection at the Server.
ρ Is the Pearson Correlation Coefficient Having Values
Between −1 and 1
LinkFingerprint[i]← XOR(RSSIen[i],Keynode(a))
RSSInew[i]←bin-dec conversion(LinkFingerprint[i])
LinkFingerprint[j]← XOR(RSSIen[j],Keynode(b))
RSSInew[j]←bin-dec conversion(LinkFingerprint[j])
ρ (RSSInew[i], RSSInew[j])
if 0.9 < ρ ≤ 1 then
return No adversarial node is present

else if ρ = −1 to 0.9 then
return Adversarial node is present

else
return The RSSI values are not correctly measured

end if

B. DATA PROVENANCE
For data provenance, header information is used to reach the
origin from which the data is originated. As discussed earlier,
each IoT node sends the copy of the link fingerprints to the
server, so all the header information will already be present
at the server. If the information is received at IoT node 3
from IoT node 1 via IoT node 2, the link fingerprints of
header are compared at the server in sequence with copies
of link fingerprints previously sent by the IoT nodes. From
whichever IoT node the last header information matches,
the data is originated from that IoT node. Size of header

depends on the selection of packet size. In our case, the header
size is 16 bytes. Algorithm 3 describes the data provenance
in which the IoT nodes are connected to each other in a way
described in Fig 1. Each IoT node attaches the encoded link
fingerprint as header to the packet it receives and forwards it
to the next IoT node. At the end, the concerned node upon
receiving the packet adds its own link fingerprint as header
and just like any other IoT node, it sends it to the server. The
server knows the size of header that each IoT node attaches
and the adjacent IoT nodes of each IoT node. In order to
check the origin from which the data is originated, server
decodes the header with the keys present at the server and
correlates the link fingerprint with the already present link
fingerprints received from that node. If the link fingerprints
match, the same process is repeated for the adjacent IoT
node(s). The process continues until;

Algorithm 3 Data Provenance
for Headeri, i = n→ 1 do
// n is the last IoT node the packet is received at
LinkFingerprintHeaderi = XOR(Headeri,Keyi)
Correlate LinkFingerprintHeaderi with copy of link fin-
gerprints received from IoTnode[i]
if Correlation>95% then

return i← i− 1
else

Data forged between IoTnode[i] and IoTnode[i− 1]
end if

end for
The origin of the packet is IoTnode[i]

1) Highly matched link fingerprints are observed and all
the header data is exhausted. The origin is the last IoT
node from which the header data is matched.

2) Mismatch occurs in link fingerprints showing that the
data has been tempered at that node.

While finding the origin of data, if adversarial node is present
between any two IoT nodes and the packet flows through
adversarial node then the server will still get high correlated
result by comparing the link fingerprints. The link finger-
prints will match the link fingerprints present at the server
received from the IoT node. The reason is that if we consider
the mentioned situation in Fig 1, the adversarial node is
between IoT node 1 and IoT node 2, the IoT node 1 adds the
link fingerprint at the header which is of the link between IoT
node 1 and adversarial node. Similarly, IoT node 2 adds the
link finger print of the link between adversarial node and IoT
node 2 to the packet header received from adversarial node
and forwards it. The last IoT node on receiving it, adds its link
fingerprint. The server checks the header for the origin and
gets high correlated value after decoding the header inserted
by IoT node 2. The origin can still be measured even if
the adversarial node is present in between. Though the link
fingerprints of IoT node 1 and IoT node 2 will be highly
uncorrelated. The intrusion detection is already performed in
section A.
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As IoT nodes will be large in number, the physical protec-
tion will not be possible for most of the nodes. The data can
be easily forged or tempered. If the data is tempered at IoT
node 2 and sent to IoT node 3 afterwards, the data provenance
cannot be achieved rather the adversarial node’s involvement
can be detected. The process can tell exactly between which
link the data has been forged. This is a very useful information
in data forensics. The highly uncorrelated result is achieved
when comparing the link fingerprints in the header and the
ones present at the server. Algorithm 3 represents the achieve-
ment of data provenance.

IV. RESULTS
A. EXPERIMENTAL RESULTS
The RSSI values are taken in real time using MICAz
motes shown in Fig 2. The MICAz is a 2.4 GHz, IEEE
802.15.4 compliant mote used for enabling low-power wire-
less sensor networks. It features a IEEE 802.15.4/ZigBee
compliant radio which transceivers use in the 2400 MHz to
2483.5 MHz band, offering both high speed (250 kbps) and
hardware security (AES-128). The range of the radio is 75 m
to 100 m outdoors and 20 m to 30 m indoors. The MICAz
MPR2400CA platform provides 4 KB of RAM, 128 KB of
program flash memory and 512 KB measurement (serial)
flash memory. It is very energy efficient with current draw
of 8 mA in active mode and less than 15 µA in sleep
mode. The user interface consists of 3 LEDs - red, green
and yellow [20]. The MICAz is capable of running TinyOS
2.1.2, which we use to program the MICAz motes to get
the desired RSSI values. The experiment is performed in
an indoor environment. The base station and MICAz motes
are shown in Fig 2a and 2b, respectively, while the layout of
experimental premises is shown in Fig 3. The base station
is positioned at the lobby to generate log files having RSSI
values in dBm of each MICAz mote. Three MICAz motes
move randomly in the lobby, halls and labs to generate RSSI
values and sends their respective RSSI values to the static
base station. The MICAz motes do not cross each other. The
orientation of the MICAz motes are kept in a way as shown
in Fig 1. The RSSI values are plotted in Fig 4 and 6 with a
gain provided to all RSSI values received in order to make
them positive.

FIGURE 2. nodes used in the experiment. (a) Base station. (b) MICAz
motes.

FIGURE 3. Layout of experimental premises.

FIGURE 4. The comparison of RSSI variations of IoT node 1 and IoT
node 2 when no adversarial node is present in IoT network.

B. SIMULATION RESULTS
The RSSI values acquired from MICAz motes are simulated
on MATLAB R2017a. The results have been achieved for
various scenarios described in Section III. Each scenario is
presented below;

1) ADVERSARIAL NODE DETECTION
Various cases are implemented and the simulation results
are presented for adversarial node detection. The results are
achieved by using two methods:

1) Finding Pearson correlation coefficient without using
any filter

2) Finding Pearson correlation coefficient by applying
Savitzky-Golay filter

A significant improvement in results are seen by filtering
out the RSSI variations. The comparative results are shown
in Table 1.
Case 1 (No Adversarial Node in the Network): If there is

no adversarial node present in the network then the link fin-
gerprint will correlate at the server and we get the correlation
coefficient greater than 0.95.

Fig 4 and 6 represent the RSSI variation comparison of link
A and link B respectively as shown in Fig 1. IoT node 1 com-
municating with IoT node 2 and IoT node 2 communicating
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TABLE 1. Pearson correlation coefficient (r ) calculated for various cases.

FIGURE 5. Filtered RSSI variations of IoT node 1 and IoT node 2 when no
adversarial node is present in IoT network.

FIGURE 6. The comparison of RSSI variations of IoT node 2 and IoT
node 3 when no adversarial node is present in IoT network.

with IoT node 3 are showing the highly correlated pattern.
The correlation coefficients achieved are 0.9270 and 0.8420,
respectively. A higher values of 0.9614 and 0.9713 are
achieved by applying the filter, which further smooths down
the RSSI variations. A linear relationship is observed among
the RSSI variations of connected IoT nodes as shown
in Fig 5 and 7. These results are achieved at the server when

FIGURE 7. Filtered RSSI variations of IoT node 2 and IoT node 3 when no
adversarial node is present in IoT network.

it decodes the encoded link fingerprints and then compares
the concerned dBm values.

FIGURE 8. When adversarial node is present between IoT node 1 and IoT
node 2. The link is 1 →AdvNode →2→3.

Case 2 (Adversarial node is present between IoT
node 1 and IoT node 2): As the adversarial node is present
between IoT node 1 and IoT node 2, the link fingerprints
generated at IoT node 1 and IoT node 2 will be different.
The uncorrelation is quite obvious in Fig 8 by observing the
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relationship in RSSI variations of in-line IoT nodes. The vari-
ations relationship is more monotonic than linear. Though,
high correlation is observed between the link fingerprints of
IoT node 2 and IoT node 3. The correlation details are given
in Table 1.

FIGURE 9. When adversarial node is present between IoT node 2 and IoT
node 3. The link is 1 →2 →AdvNode →3.

Case 3 (Adversarial Node Is Present Between IoT
Node 2 and IoT Node 3): When adversarial node is present
between IoT node 2 and IoT node 3, all the packets reach
IoT node 3 from IoT node 2 via adversarial node. The com-
parison of RSSI variations is presented in Fig 9. Both IoT
node 2 and IoT node 3 send their respective encoded link
fingerprints to the server. The server upon correlating the
link fingerprints of both the IoT nodes computes correlation
coefficient approximately equals to 0 as shown in Table 1.
This reflects the adversarial node presence in between IoT
node 2 and IoT node 3. The correlation coefficient is quite
high for IoT node 1 and IoT node 2 where no adversarial node
is present in between.
Case 4 (Adversarial Node Is Present Between IoT

Node 2 and IoT Node 3, and IoT Node 2 and IoT Node 3):
When two adversarial nodes are present in the IoT network,
i.e. one between the link of IoT node 1 and IoT node 2 and
other between the link of IoT node 2 and IoT node 3, then
all the link fingerprints mismatch at the server because the
RSSI variations comparison is uncorrelated. The reason is
that they are connected to the adversarial node. The links are
established through the adversarial nodes. We are getting low
correlation coefficient for both links as shown in the Table 1.
Case 5 (Data Tempering): This scenario is implemented at

IoT node 1 by considering that the data has been forged at IoT
node 1 and the same can be applied for any other IoT node
as well. If the data is forged or tempered at any of the IoT
node then the link fingerprints at the server do not correlate.
The server receives different RSSI link fingerprints because
the original binary stream of link fingerprints are forged by
the intruder. In this case, IoT node 1 sends a different link

FIGURE 10. RSSI comparison of IoT node 1 and IoT node 2 when the
packet at IoT node 1 is forged.

FIGURE 11. RSSI comparison of IoT node 1 and Adversarial node (IoT
node 2 is replaced by Adversarial Node).

fingerprint compared to the link fingerprints of IoT node 2.
Fig 10 represents the uncorrelated plot for both filtered RSSI
variations. The correlation is high between the RSSI variation
patterns of IoT node 2 and IoT node 3.
Case 6 (IoT Node Replaced by the Intruder): It is assumed

for this case only that the adversarial node is able to send
data to the server. When IoT node 1 is replaced by adversarial
node, the adversarial node sends the link fingerprints to the
server. The adversarial node has no information of the key
to encode the data, rather it sends the unencoded data to
the server. The server assumes that the link fingerprint is
encoded and decodes it with the key of that node which is
replaced by adversarial node. Here after performing multiple
experiments, it is observed that the correlation coefficient can
be high at times but not high enough to remain unnoticed. The
results in Fig 11 and 12 are taken when IoT node 2 is replaced
by adversarial node.
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TABLE 2. Data provenance.

FIGURE 12. RSSI comparison of Adversarial node and IoT node 3
(IoT node 2 is replaced by Adversarial Node).

2) DATA PROVENANCE
Data provenance has been achieved using the same data
received at the base station as described in subsection IV-A.
Simulation is performed for two cases. They are as under,
Case 1 (No Forging of Data): The first case is when the

packet is transferred from IoT node 1 to IoT node 3 via IoT
node 2, IoT node 1 attaches the encoded link fingerprint to
the header and sends it to IoT node 2. IoT node 2 attaches
two encoded link fingerprints to the header. One of link A and
other of link B as shown in Fig 1. IoT node 3 upon receiving
the packet adds its encoded link fingerprint to the packet.
When data provenance has to be performed, the packet header
is decoded in sequence at the server. Firstly, the last inserted
packet is decodedwith the key associated with IoT node 3 and
link fingerprints are compared with all the available link
fingerprints received from IoT node 3. The simulations have
shown that the match is 100% with a part of all the available
link fingerprints of IoT node 3. Then the adjacent nodes are
checked. As the adjacent node is IoT node 2, so the next
sequence of packet is decoded with K2 and 100% match is
detected at some part of all available link fingerprints from
IoT node 2. Now the adjacent nodes are checked again. IoT
node 2 connected with IoT node 1 and IoT node 3 connected
with IoT node 2 are in the adjacency list. Both are checked
and 100% match is found with a part of all link fingerprints
present at the server recived from IoT node 2 linked with
IoT node 1. Now the same process is done for the next in
sequence of header. A 100% match in link fingerprints from
the header with part of IoT node 1’s link fingerprints is
achieved. By now, all the header sequences are checked and
no header data is left to find a match for. The last header is

the first inserted header from ioT node 1 which is received at
IoT node 3 in the end. Table 2 shows the results obtained.
Case 2 (Packet Is Forged at the Node Level): This case rep-

resents a situation when packet is forged at IoT node 1 and is
received at IoT node 3 via IoT node 2. The process described
in case 1 of subsection IV-B.2 is applied by decoding the
header in sequence with the key of that IoT node and com-
paring it with all the available link fingerprints of that IoT
node present at the server followed by checking in the table
for adjacent IoT node. The results show that when the packet
is checked for IoT node 1, the match is not 100% rather a
very low percentage of match is observed. This shows that
the packet data is forged at IoT node 1.

3) TIME COMPLEXITY
The time complexity comparison is performed by calculating
the computational time at node and server level. As shown
in Fig 13, the time remains constant if we increase the num-
ber of RSSI samples to be quantized at node level and for
correlation at the server. This shows that as the number of
bits are increased the computational time is not effected. The
time complexity of out system isO(1) which is as better com-
pared to other state of the art cryptographic solutions referred
at [21]. Table 3 shows the comparison of time complexity of
our model with other available data security algorithms.

FIGURE 13. Time complexity of system at node and server level.

TABLE 3. Time complexity comparison of our system with various state of
the art algorithms for data security. N is a constant that depends upon
the underlaying hardware used for encryption.
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TABLE 4. Energy consumption at IoT node level for link fingerprints transmission to the server.

TABLE 5. Energy consumption at IoT node level for data provenance protocol.

TABLE 6. Energy dissipated by each IoT node and by the whole network.

4) ENERGY CONSUMPTION
In this section, energy consumption is calculated for the
system model presented. The specifications of MICAz motes
are already presented in section IV-A. The standard values
specified for MICAz motes are used for energy calculations.
Furthermore, the energy benchmarks of MICAz motes used
in the litrature are applied to the presented protocols. The
energy consumption for AES-128 encryption (128 bits),
SHA-1 Hash (64 bits), ECDSA-160 Sign and Transmit 1 bit
are 1.83 µJ , 154 µJ , 52 µJ and 0.6 µJ respectively [7].
As the decoding is carried out at the server, the energy cal-
culations are not done for the server. The server is not energy
limited. Two scenarios are presented:

1) After every 5 minutes and 20 seconds, each IoT node
sends its respective quantized and encoded RSSI values
of 16 bytes to the server.

2) IoT nodes add certain bytes as headers to the payload
which contain encoded link fingerprints.

Table 4 and 5 show the energy consumption at each node
level when the packet is transmitted from IoT node 1 to
IoT node 3 via IoT node 1 considering the hash data and
session identifiers as part of protocols used previously by [7].
Table 6 shows the total energy dissipated at the node level
and of overall IoT network when the nodes are performing
in full capacity. It can be seen from Table 7 that previously
used techniques generate link fingerprints of a larger length
due to which the energy consumption is more compared to
the mechanism provided in this paper. By applying various
optimization techniques, the link fingerprint can be further
reduced.

TABLE 7. Energy dissipation comparison.

V. CONCLUSION
The fingerprints generated between any two connected IoT
nodes are highly correlated. Introducing an adversarial node
gives very low correlation coefficient. It means that the detec-
tion of any adversarial node in an IoT network can be done
for low power nodes. The data forensics can also be applied
by looking at the header of the last received data. The origin
of data is computed by extracting the header. The server is
considered as highly protected because it contains the keys
associated with all the IoT nodes. We get the light-weight
solution for the security and data provenance in IoT environ-
ment. The energy calculations show that less energy is con-
sumed by applying the link fingerprint generation protocol,
sending the packet to the server and to the adjacent IoT node.
Time complexity of the system remains the same no matter
how lengthy the code becomes.
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