
Received May 27, 2018, accepted June 22, 2018, date of publication July 2, 2018, date of current version July 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2850910

Emotion Based Automated Priority
Prediction for Bug Reports
QASIM UMER , HUI LIU , AND YASIR SULTAN
School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China

Corresponding author: Hui Liu (liuhui08@bit.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2016YFB1000801 and in
part by the National Natural Science Foundation of China under Grant 61472034, Grant 61690205, and Grant 61772071.

ABSTRACT Issue tracking systems allow users to report bugs. Bug reports often contain product name,
product component, description, and severity. Based on such information, triagers often manually prioritize
the bug reports for investigation. However, manual prioritization is time consuming and cumbersome.
DRONE is an automated state-of-the-art approach that recommends the priority level information of the
bug reports. However, its performance for all levels of priorities is not uniform and may be improved. To this
end, in this paper, we propose an emotion-based automatic approach to predict the priority for a report.
First, we exploit natural language processing techniques to preprocess the bug report. Second, we identify
the emotion-words that are involved in the description of the bug report and assign it an emotion value.
Third, we create a feature vector for the bug report and predict its priority with a machine learning classifier
that is trained with history data collected from the Internet. We evaluate the proposed approach on Eclipse
open-source projects and the results of the cross-project evaluation suggest that the proposed approach
outperforms the state-of-the-art. On average, it improves the F1 score by more than 6%.

INDEX TERMS Bug reports, classification, machine learning, priority prediction, software maintenance.

I. INTRODUCTION
Enterprise and business softwares are often released with
bugs due to inadequate testing [1]. In order to improve the
next version of the software and to meet the new busi-
ness requirements, developers allow the users to report bugs
using issue tracking systems e.g., Bugzilla [2], Mantis [3],
Google Code Issue Tracker [4], GitHub Issue Tracker [5],
and JIRA [6]. These bug-tracking systems often rely on
unstructured natural language bug descriptions [7]. Users
help developers through reporting bugs which is a standard
practice in software maintenance process. For instance, res-
olution of bug reports is one of the most important task [8]
in software maintenance process. Resolving bug reports
becomes more and more challenging and expansive [7],
because bug reports are increasing at an exponential rate
as the size and complexity of a software is increasing [9].
It is reported that ‘‘On average, Mozilla received 170 and
Eclipse 120 new bug reports on each day from January to
July 2000’’ [10].

Triaging bug reports are significantly important for any
bug-tracking system. To triage bug reports most of the
bug-tracking systems are using an attribute called priority.
The classification of the priority of bug reports is based on

its importance and urgency. In Bugzilla, the priority of a
bug report can be defined from P1-P5, where P1 has the top
priority level and P5 has the least priority level. Reporters
help developers by prioritizing the bug reports. As a result,
developers may resolve the most severe bug reports on prior-
ity basis [11].

Although reporters assign priority while reporting bugs,
in most of the cases, this field is left blank. Because assign-
ing priority to a bug report requires a rich experience and
its technical understanding. Therefore, the priority of a bug
report may be assigned incorrectly due to different back-
ground knowledge of reporters. The missing information and
incorrect assignment of priority levels of a bug report may
delay its resolution. Consequently, it is manually checked
and adjusted by developers. The manual prioritization of
bug reports is a time-consuming task and can increase the
developers’ workload and bug fixing time [12]. Therefore,
the decision about priority should be automated.

In order to automate the priority prediction, a number
of automated approaches have been proposed to predict
the priority of bug reports [1], [13], [14]. However, their
performance is not accurate and none of them consider the
emotions of the reporter for priority prediction. It is observed

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

35743

https://orcid.org/0000-0002-0237-3025
https://orcid.org/0000-0002-3267-6801

Q. Umer et al.: Emotion-Based Automated Priority Prediction for Bug Reports

that the count of negative emotions of the reporters in severe
bug reports is higher than in non-severe bug reports.

To this end, in this paper, we propose an emotion-based
approach to predict priority of bug reports. To facilitate the
automated task, we employ the emotion analysis of bug
reports. The emotion words in the summary of a bug report
can explain the positive and negative feelings of the reporter.

We extract the history data of bug reports from Bugzilla
and apply natural language processing techniques on each
bug report to preprocess it. From the preprocessed bug
reports, we perform feature modeling to identify the useful
features of each bug report for training. As hidden emotion
may affect the priority of bug reports, the proposed approach
performs an emotion analysis to identify emotions-words
from each bug report using emotion-based corpus [10] and
assigns it an emotion-value. Finally, we train and test a clas-
sifier with the resulting features. The cross-project evaluation
suggests that the proposed approach is accurate and improve
improves the F1-score that varies from 5.12% to 7.31%.

Following are the main contributions:
• An automated emotion-based approach is proposed to
predict the priority of bug reports which help developers
to focus on bugs resolution by avoiding their manual
prioritization.

• Evaluation results of the proposed approach on the his-
tory data suggest that the proposed approach is accurate
in priority prediction of bug reports.

The remaining sections of the paper are arranged as fol-
lows: The background study is explained in Section II.
Section III presents the detailed description of the proposed
approach. Section IV describes the evaluation process of the
proposed approach and its results. Section V and Section VI
presents the threats and discusses the related works respec-
tively. Finally, Section VII concludes the paper and suggests
future work.

II. BACKGROUND KNOWLEDGE
A. BUG REPORT
Users write bug reports on bug tracking systems if they find
any problems in the software product. A sample bug report is
shown in Fig. 1.
• This bug report was reported on 18 January 2010 (5) and
was fixed on 11 August 2010.

• The title (1) defines the summary (3) of the bug report.
• This report also includes some data fields, e.g., status,
severity, product, and cc. Such fields are common for all
reports in a different bug.

• The priority (severity and priority are same on Android
tracking systems) of the bug defines its importance.

The priority level of bug reports is different in various bug
tracking systems. For the priority prediction of bug reports,
we need to be careful about severity because, Eclipse defines
priority as P1, P2, P3, P4 or P5. However, Android1 and
JBoss2 define severity as priority.

1https://source.android.com/setup/report-bugs
2https://issues.jboss.org/

FIGURE 1. Summary of bug report (#300006).

B. BUG REPORTING AND TRIAGING
Each bug report contains information about how a bug could
be resolved using related information. A bug report consists
of bug-id, title (Text fields include of summary and long
description), component, product, resolution, status, the esti-
mated severity (how serious bug is) and the priority (how
important bug is, represented normally as levels P1-P5).
These fields are entered by the reporter but may be changed
by the triager or developer if needed [3]. When a new bug
report is placed in the repository its status is NEW. Then a
triager takes a decision about bugs reported in bug repository
based on standards procedures.

Based on the investigation, triager makes sure that a new
reported bug is not duplicate [14] or not to check the valid-
ity of it. The purpose of such decisions is to filter out the
valid bug reports. For the development-oriented decisions,
the triager analyzes the priority of new bug reports and
changes their priority if required. Assigning correct priority
is a very important task to resolve more important bugs first.
Triager also writes comments for bug reports and assigns
them to the appropriate developer for their resolution. Devel-
opers fix them and change their status as RESOLVED which
is further changed to CLOSED or CONFIRMED by the
quality assurance personals.

III. APPROACH
A. OVERVIEW
The proposed approach categorizes the bug reports into five
classes: P1, P2, P3, P4 or P5, where P1 has top priority and
P5 has the least priority. The overview of the approach is
shown in Fig. 2. The priority anticipation of a new bug report

35744 VOLUME 6, 2018

Q. Umer et al.: Emotion-Based Automated Priority Prediction for Bug Reports

FIGURE 2. Overview of the proposed approach.

br can be categorized into predefined class c as a function f.

c = f (br) c ∈ {P1,P2,P3,P4,P5} , br ∈ BR (1)

where c represents the classification result: P1, P2, P3,
P4 or P5, f represents the categorization function of priority
anticipation, br represents a bug report, and BR represents a
set of bug reports.

For the priority anticipation of a bug report, first we collect
the bug reports’ history data from Eclipse. Next, we perform
the preprocessing using extracted bug reports. Then, from the
preprocessed bug reports, we employ an open source emotion
repository [10] to find the emotion words from the summary
attribute of bug reports. Next, we calculate and assign an
emotion-value to each bug report. Finally, we train and test
a classifier to anticipate the priority of bug reports. Each of
the key steps is introduced in the following sections.

B. DATA ACQUISITION
Software bugs are generally reported into issue-tracking sys-
tems which help in continuous monitoring of reported bugs.
We extract and store the bug reports of Eclipse from Bugzilla
issue-tracking system.

A bug report br is from a set of bug reports (BR) which can
be formalized as,

br =< d, p > (2)

where d represents the textual information and p represented
the associated priority of each bug report.

C. PREPROCESSING
Standard preprocessing techniques are applied using Python
Natural Language Processing Toolkit (NLTK) [15] to convert

FIGURE 3. Overview of preprocessing.

a textual information into a set of features. These preprocess-
ing techniques include tokenization, Parts of Speech (POS)
tagging, stop-word removal, and lemmatization. Fig. 3 illus-
trates the following steps involved in preprocessing.

1) TOKENIZATION
Breaking up a sequence of textual document into words is
referred as tokenization. In this process, each word is called
a token which is tagged with a POS tag after misspelling
correction. Note that some natural language processing tools
perform POS tagging in a separate step.

2) STOP-WORD REMOVAL
The frequently used words like ‘‘the,’’ ‘‘in,’’ ‘‘am,’’ ‘‘are,’’
‘‘is,’’ ‘‘I,’’ ‘‘he’’ and ‘‘that’’ which has no meaning in actual
are known as stop-words. Such words do not carry much
information in the context of a bug report. We remove these
words from the set of tokens extracted in the previous step.

3) LEMMATIZATION
Each term appearing in the description of bug report can
appear in various forms. We perform stemming of all filtered
words to convert into their ground word. For example, there
is no difference in between ‘‘write’’ and ‘‘writes.’’ In the
text mining and information retrieval community, stemming
plays a vital role. For example, ‘‘working’’, ‘‘worked’’ and
‘‘work’’ would all be reduced to ‘‘work’’. There are various
algorithms available to perform stemming, however we use
Porter’s stemming algorithm [20] for lemmatization as it is
a commonly used stemming algorithm by many researchers.
The preprocessing of a bug report can be formalized as,

er = < d ′, p > (3)

d ′ = < t1, t2, . . . , tn > (4)

where d ′ is preprocessed textual description of bug report br,
p represents its priority and t1, t2, . . . , tn represents the n
terms or tokens involved in d ′.

VOLUME 6, 2018 35745

Q. Umer et al.: Emotion-Based Automated Priority Prediction for Bug Reports

D. EMOTION VALUE CALCULATION
In order to calculate the emotion-value of each bug report,
the words from each preprocessed bug report are taken into
consideration and compared with the list of words from
emotion-word corpus [10]. SentiWordNet is a commonly
used corpus [16]–[19] which includes the emotion values of
each emotion word. The total number of positive and negative
emotion words are 23,147 and 26,440 respectively, which
are extracted from the bug reports. In Table 1, we provide
top ten words having highest emotion values (positive and
negative) from the emotion-word base corpus. The emotion
corpus contains positive and negative scores for each word.
We use the sum of the positive score and negative score of
the emotion words of each bug report to calculate its emotion
score.

TABLE 1. Top 10 highest emotion values.

To assign an emotion-value to each bug report, we filter out
the words of each bug report as emotion words if they are in
the corpus, otherwise ignored.

E. FEATURE EXTRACTION
In a classification problem, we extract features from bug
reports that can be effective in the characterization of bug
reports. In order to build a model to predict the priority of
a new bug report, we select the bug reports from Bugzilla.
We analyze the bug reports and examine them to identify
feature words from the summary of each bug report. Addi-
tionally, we calculate the emotion-value of each bug report
using emotion words that are involved in the summary of the
bug report. Finally, a high dimension matrix is created where
each bug report is a row of the matrix and its emotion value
and feature words are the columns of the matrix. A feature
vector can be defined as,

br =< emo, f1, f2,fn > (5)

where br represents the bug report, emo is the calculated
emotion-value of each bug report and f1, f2,.. fn represents
the features words.

For each bug report, we use term frequency (TF) to rep-
resent a feature in the feature vector. We define a rule to
find features from each bug report, if feature not found in
bug reports, marked as 0 otherwise marked by its frequency
count (N). Following conditions are used to mark the value

of the feature to fill the matrix.

fi(br) =

{
0, if ti 6∈ d ′

1, if ti ∈ d ′

where fi is featureset of preprocessed textual description d ′ of
each bug report br.

F. TRAINING AND PREDICTION
The training and prediction are two main steps of the clas-
sification module. The feature vectors produced by feature
extraction module are taken into consideration for training
and testing.

The proposed approach utilizes the Support Vector
Machine (SVM) to captures the relationship between
extracted features and priority levels of bug reports. We use
support vector machine for classification for the following
reasons. First, it scales relatively well to high dimensional
data set using kernel trick. Second, the trade-off between
classifier complexity and error can be controlled explicitly.
Third, the flexible threshold can be applied during the selec-
tion of priority levels for the imbalanced dataset. Therefore,
we train the support vector classifier using feature sets of each
bug reports which are tagged while feature modeling using
Equation (5). Then the trained model is used to predict the
priority level of bug reports.

1) TRAINING
Given a training data, the proposed approach build a model
capturing the relationship between explanatory variable with
a dependent value. In our problem setting, a given set of
bug reports BR = <br1, br2, br3,. . . .brn> form explanatory
variable, while the priority level P1 - P5 are the dependent
variables. Each bug report br from BR contains the classifica-
tion category c as mentioned in Equation (1), emotion-value
emo, and set of features f as mentioned in Equation (5).
Next, we train the support vector classifier for the proposed
approach. To find the decision surface for the priority pre-
diction of each bug report, we divide our reports into five
categories P1, P2, P3, P4, and P5. The decision plane is called
hyper-plane which is used for the training of our approach.
The hyper-plane can be formalized as,

f (br) = w>br + b

where function f calculates the hyperplane for the training bug
reports br, w is a weight vector which is normal to decision
surface and b is bias.
Given the separable data bri labeled into specified five

categories yi to find a weight vector w, function f can be
specified as,

f (br i) = w>br i + b

separates the categories for i = 1, 2, n. Hence, the sepa-
rable data is formalized as,

f (br) =
n∑
i

yiαi
(
br i>br

)
+ b

35746 VOLUME 6, 2018

Q. Umer et al.: Emotion-Based Automated Priority Prediction for Bug Reports

where αi represents the Lagrangian multiplier which is used
to find the possible extremes to the respective classification
category. The optimized support vector classifier can be for-
malized as,

max(w) 2
‖w‖

subject to w>br i + b
≥+1 ifyi=+1
≤−1 ifyi=−1 for i = 1n

2) PREDICTION
Once the support vectors are defined with the training set,
each bug report from the testing dataset may be prioritized
by comparing the results of the following equation for each
priority class defined in training.

w>br + b > 1

Finally, compare the results of all priority classes to pick the
best one.

IV. EVALUATION
In this section, we evaluate the performance of the proposed
approach on the bug reports of four main Eclipse projects.

A. RESEARCH QUESTIONS
The evaluation investigates the following research questions:
• RQ1:Does the proposed approach outperform the state-
of-the-art approach? If yes, to what extent?

• RQ2: Is there any strong correlation between the emo-
tion value of bug reports and their priority? If yes, how
strong is the correlation.?

• RQ3: Does support vector outperform other classifica-
tion algorithms in predicting priority for bug reports?

To answer the research question (RQ1), we compare the
performance of proposed approach with the state-of-the-art
approach [1] in order to find out the performance improve-
ment of the proposed approach. DRONE [1] is the latest
approach that could help to predict the priority of bug reports
and has significant results. Therefore, we select it for the
comparison with the proposed approach.

To answer the research question (RQ2), we figure out the
relationship between the emotion value and priority of bug
reports.

To answer the research question (RQ3), different classifi-
cation algorithms are taken into consideration and compared
with the proposed approach to evaluate the performance
(precision, recall, and f1-score) of the proposed approach.

B. DATASET
We use the same dataset as DRONE [1]. We extract the
bug reports of four main projects: Java development tools
(JDT), Eclipse’s C/C++ Development Tooling (CDT),
Plug-in Development Environment (PDE) and Platform from
Bugzilla.

The history data is extracted from Bugzilla3 using its
Native REST API.4 We collect the summary, resolution and
priority attributes of each bug report by filtering the Bugzilla
API’s JSON response, submitted from October 2001 to
December 2007. Summary briefly describes the bug reported
by the users, resolution keeps the status of the bug and priority
indicates the importance of the bug that is marked by the
developers. The total number of bug reports are 80,000 which
includes 25%, 28%, 16%, 31% bug reports of CDT, JDT, PDE
and Platform respectively.

C. PROCESS AND METRICS
1) PROCESS
The evaluation of the proposed approach is performed
as follows, we first extract the bug reports (BR) of four
main Eclipse projects from Bugzilla and preprocessed them
as mentioned in Section III. Second, we perform the
cross-project technique on the given dataset.

For the ith cross-validation, we select the bug reports BR
that are not from the project Pj as training dataset (TR) and
bug reports from project Pj as a testing dataset (TE).
For the ith cross-validation, a step by step process is as

follows:

• First, we extract and combine all the bug reports TR
from BR but project Pj.

TRj =
⋃

k∈[1,4] ∧ k 6=j

Pk

• Second, we train a Naïve Bayes classifier (NB) on TR.
• Third, we train a Multinomial Naïve Bayes
classifier (MNB) on TR.

• Fourth, we train a Linear Regression classifier (LR)
on TR.

• Fifth, we train a proposed classifier (SV) on TR.
• Sixth, for each bug report from TE, we predict its
priority using trained NB, MNB, LR and proposed
approach respectively.

• Finally, we calculate the precision, recall, and F1-score
for each classifier for their comparison.

2) METRICS
To evaluate the performance of the proposed approach of the
given bug reports, we calculate the priority specificPrecision,
Recall and F1-score of the approaches:

Precisioni =
TPi

TPi + FPi

Recalli =
TPi

TPi + FN i

F1− scorei =
2 ∗ Precisioni ∗ Recalli
Pecisioni + Recalli

where, Precisioni (Recalli / F1 − scorei) is the precision
(recall / F1-score) of the approaches in predicting priority of

3https://https://www.bugzilla.org
4https://bugzilla.readthedocs.io/en/latest/api/

VOLUME 6, 2018 35747

Q. Umer et al.: Emotion-Based Automated Priority Prediction for Bug Reports

TABLE 2. Evaluation results of macro and micro analysis.

TABLE 3. Priority-level comparison against drone.

TABLE 4. Project-level comparison against drone.

bug reports whose actual priority is Pi. TPi is the number of
bug reports that are predicted as Pi and they are actually Pi,
FPi is the number of bug reports that are predicted as Pi
whereas they are actually not Pi, and FN i is the number of
bug reports that are not predicted as Pi whereas they are
actually Pi.
Besides the priority specific precision, recall, and F1-score,

we also employ the macro-analysis and micro-analysis for all
classes C that are widely employed to evaluate the perfor-
mance of multi-class classifier. In this perspective, we com-
putemicro-precisionPmicro, micro-recallRmicro andmicro-F1
F1micro that can be formalized as:

Pmacro =
1
|C|

|C|∑
i=1

TPi
TPi + FPi

Rmacro =
1
|C|

|C|∑
i=1

TPi
TPi + FN i

F1macro =
1
|C|

|C|∑
i=1

2 ∗ Pmacro ∗ Rmacro
Pmacro + Rmacro

Pmicro =
|C|∑
i=1

TPi
TPi + FPi

Rmicro =
|C|∑
i=1

TPi
TPi + FN i

F1micro =
|C|∑
i=1

2 ∗ Pmicro ∗ Rmicro
Pmicro + Rmicro

We also calculate the error using Hamming-loss which
calculates the average number of the relevance of an example

to a class which is incorrectly predicted [20]. It normalizes
the loss over a total number of classes and the total num-
ber of examples using prediction error (an incorrect label is
predicted) andmissing error (a relevant label is not predicted).
The error can be formalized as:

Error =
1

|N | . |L|

|N |∑
i=1

|L|∑
j=1

(
yi,j, zi,j

)
where, N represents the number of bug reports, L represents
the number of labels, where yi,j is the target labels and zi,j is
the prediction labels.

D. RESULTS
1) RQ1: COMPARISON AGAINST DRONE
The average precision, recall, and F1-score of the proposed
approach and DRONE for macro-analysis and micro-analysis
are presented in Table 2. The columns of the table repre-
sent the average precision, recall, F1-score, and error-rate.
Whereas, the rows of the table represent the performance
of both approaches. However, the last row represents the
improvement achieved by the proposed approach.

From the Table 2, we observe that the proposed approach
outperforms DRONE. It improves the F1-score for both
macro-analysis and micro-analysis by 6.10% and 6.19%
respectively and decreases the error by 0.0820.

Moreover, the performance of both approaches for each
priority and each project is presented in the Tables 3 and 4
respectively. The columns of Table 3 represent the precision,
recall, and F1-score for each priority. However, the columns
of Table 4 represent the precision, recall and F1-score for
each project. Whereas, the rows of both tables represent the
results of precision, recall and F1-score of both approaches.

35748 VOLUME 6, 2018

Q. Umer et al.: Emotion-Based Automated Priority Prediction for Bug Reports

TABLE 5. Performance comparison of the proposed approach.

However, the last row from both tables represents the average
improvement achieved by the proposed approach.

From the Table 3 and 4, we make the following
observations:
• The proposed approach achieves significant improve-
ment in performance on each priority level. The
improvement in F1-score varies from 2.04% to 11.59%.

• The proposed approach achieves significant improve-
ment in performance on each project. The improvement
in F1-score varies from 5.12% to 7.31%.

• The proposed approach fails to achieve significant
improvement in recall on priority level P3. One possible
reason is that the bug reports with priority P3 contain
fewer positive or negative words whereas the proposed
approach improves the state-of-the-art by exploiting
such strong positive/negative words.

We also apply ANOVA analysis on the F1-score (given
in the columns of Table 4 labeled as F1-score) of
cross-project evaluation. The results are presented in Table 6
where F > Fcric and Pvalus < (α = 0.05). Consequently,
the ANOVA analysis confirms that the single factor (different
prediction approaches) do lead to a significant difference in
performance.

TABLE 6. ANOVA analysis of the proposed approach against drone.

Based on the preceding analysis, we conclude that the
proposed approach outperforms the state-of-the-art.

2) RQ2: INFLUENCE OF EMOTION ANALYSIS
The percentages of positive, negative and neutral bug reports
against each priority-level are presented in Table 7. The rows
and columns of the table represent the emotion’s type and
priority-level respectively.

From the Table 7, we observe that a bug report having
negative emotion may get higher priority level. Whereas,
bug reports having positive emotion may get lower priority
level.

We also compute the Pearson correlation coefficient (r)
to access the strength of the relationship between the two
variables (emotion and priority). Results (r = 0.405) suggest

TABLE 7. Priority-wise emotion analysis of dataset.

that there is strong positive correlation between emotion and
priority of bug reports.

3) RQ3: PERFORMANCE COMPARISON OF CLASSIFICATION
ALGORITHMS
We apply machine learning algorithms (naive bayes, multi-
nomial naive bayes, linear regression and support vector
machine) in order to evaluate the best classifier to predict
the priority of bug reports. The reason to choose these clas-
sifiers is their importance in terms of usage and competitive
performance [21].

The performance results of each classifier are shown
in Table 5. The columns of the table represent the average
precision, recall, and F1-score for each project. Whereas,
the rows of the table represent the results of each classifier.
We also compare their resulting performance in Fig. 4 that
visualizes the difference.

FIGURE 4. Performance comparison of algorithms.

From Table 5 and Fig. 4, we observe that the proposed
approach (SVM) outperforms other machine learning algo-
rithms. It achieves the best performance (precision, recall, and
F-score) on each of the subject applications.

VOLUME 6, 2018 35749

Q. Umer et al.: Emotion-Based Automated Priority Prediction for Bug Reports

V. THREATS
THREATS TO VALIDITY
A threat to construct validity is the suitability of our eval-
uation metrics. We have used the precision, recall, and
F1-score for the evaluation of classification algorithms.
Because, thesemetrics are standard and also adopted bymany
researchers [1], [22].

A threat to construct validity is related to the usage of
SentiWordNet corpus for emotion analysis. There is a number
of other sentiment corpora, however, we select SentiWordNet
due to its excessive use in research. Other sentiment corpora
may decrease the performance of the proposed approach.

A threat to internal validity is related to the implementation
of the approaches. To mitigate the threat, the implementation
and results are checked. However, there could be some unno-
ticed errors.

A threat to external validity is related to the generalizability
of our results. We have only considered and analyzed the bug
reports that are related to the four main projects of Eclipse.
Also, we exclude those bug reports that do not contain infor-
mation about their priority field.

A threat to external validity is the proposed approach may
not perform well or may not work for the bug reports written
in other languages. The proposed approach is trained and
evaluated on bug reports which are written in English.

A threat to external validity is a small number of bug
reports. Therefore, we use traditional machine learning algo-
rithms to evaluate the proposed approach. Deep learning
algorithms have a number of parameters to be adjusted and
usually require a large training data. Without those settings,
the performance can be influenced.

VI. RELATED WORK
Although a number of approaches have been proposed in
order to prioritize bug reports and provide good results. How-
ever, the existing studies are not considering the emotion
involved in bug reports. To this end, in this paper we pro-
posed an automated approach to prioritize the bug reports
with emotion analysis which is different from state-of-the-art
approaches.

Some state-of-the-art approaches on bug reports classifi-
cation that define their importance and identify their priority
are following:

SEVERIS (SEVERity ISsue assessment) is an automated
algorithm proposed by Menzies and Marcus [22] to assign
severity levels to bug reports. They are first to predict
the severity of the various bugs reported in NASA. Their
approach provides fine-grained severity level out of 5 severity
levels used in NASA. They used information-gain to get
feature-words from the reports. Top-k feature words are used
for feature modeling of the bug reports. The feature vectors
are used to train a machine learning classifier which can
predict the severity of future bug report.

Menzies and Marcus [22] work is extended by Lamkanfi
and et al. [23]. They adopted the approach and predict the

severity of reports in open-source bug repositories. They
analyzed the textual description of bug reports, that are from
GNOME, Eclipse and Mozilla, to predict their severity. They
used 5 severity labels out of 6 severity labels and grouped
them into two categories: severe and non-severe for the sever-
ity prediction.

Chaturvedi and Singh [24] demonstrated the applicability
of various machine learning algorithms to predict the severity
levels of bug reports using textual summary.

Tian et al. [1] proposed an automated classification
approach to predict the priority of bug reports. They utilized
machine learning algorithm for priority classification and
achieve the average F1-score up to 29%.
Abdelmoez et al. [25] used Naive Bayes classifier to build

amodel that could predict the bug reports in order to prioritize
and fix them according to their mean-time.

Dommati et al. [26] focused on feature extraction and noise
reduction of bug reports using Naïve Bayes, Multinomial
Naïve Bayes.

Supervised and unsupervised classification and multi-
variate visualization technique was proposed by
Podgurski et al. [27] to prioritize the software failures and
diagnosing their causes. The resulting classification is then
used to assess the operational frequency and severity of
failures caused to diagnose those defects.

An Artificial Neural Network (ANN) based framework
was proposed by Yu et al. [14] to predict the priori-
ties of five different product bugs reported by an inter-
national health-care company. Experiments on threefold
cross-validation suggest that proposed approach is better in
term of precision, recall and f1-score.

Kanwal and Maqbool [13] proposed a machine learning
based recommender to assign automatic priorities of reported
bugs. They utilized Support Vector Machine (SVM) to train
their classification-based approach on Eclipse bug reports.
Evaluation of proposed recommender use precision, recall,
and f1-score for automatic bug priority assignment.

The studies related to software repositories [23], [28]–[32]
such as source code repositories [33], email archives [34],
duplicate detection [35] of bug reports, assigning an appropri-
ate developer [36] and prediction of bug fixing-time [37] also
classify the bug reports. However, these are different from the
proposed approach.

VII. CONCLUSION
A large number of bug reports usually contain incorrect
priority level which is assigned by reporters. Developers
check and reassign priority to such bug reports which is a
time-consuming task and requires a lot of manual efforts.
To this end, in this paper, we proposed an emotion-words
based automated approach to predict the priority levels of
bug reports. The proposed approach combines the natural
language processing techniques and machine learning algo-
rithms to solve the said problem. The proposed approach
helps users and developers by assigning an appropriate prior-
ity level to future bug reports in an automated way and saves

35750 VOLUME 6, 2018

Q. Umer et al.: Emotion-Based Automated Priority Prediction for Bug Reports

the valuable time of developers. The cross-project evaluation
is performed on the history-data of the four main projects of
Eclipse. The performance results suggest that the proposed
approach outperforms the state-of-the-art.

ACKNOWLEDGMENTS
The authors would like to say thanks to the associate editor
and the anonymous reviewers for their valuable suggestions.

REFERENCES
[1] Y. Tian, D. Lo, and C. Sun, ‘‘Drone: Predicting priority of reported

bugs by multi-factor analysis,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance (ICSM), Sep. 2013, pp. 200–209, doi: 10.1109/
ICSM.2013.31.

[2] (Jan. 2018). (Bugzilla Issue Tracker). [Online]. Available: https://www.
bugzilla.org/

[3] (Jan. 2018). Mantis Bug Reporting System. [Online]. Available: https://
code.google.com/archive/p/support/wikis/IssueTracker.wiki

[4] (Jan. 2018). Google Issue Tracker. [Online]. Available: https://www.
mantisbt.org/

[5] (Jan. 2018). Github Issue Tracker. [Online]. Available: https://github.
com/features

[6] (Jan. 2018). Jira Issue Tracker. [Online]. Available: https://www.atlassian.
com/software/jira

[7] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshy-
vanyk, ‘‘Auto-completing bug reports for Android applications,’’ in Proc.
10th Joint Meeting Found. Softw. Eng. (ESEC/FSE), 2015, pp. 673–686,
doi: 10.1145/2786805.2786857.

[8] X. Xie, W. Zhang, Y. Yang, and Q. Wang, ‘‘Dretom: Developer rec-
ommendation based on topic models for bug resolution,’’ in Proc. 8th
Int. Conf. Predictive Models Softw. Eng. (PROMISE), 2012, pp. 19–28,
doi: 10.1145/2365324.2365329.

[9] C. F. Kemerer, ‘‘Software complexity and software maintenance: A survey
of empirical research,’’ Ann. Softw. Eng., vol. 1, no. 1, pp. 1–22, Dec. 1995,
doi: 10.1007/BF02249043.

[10] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem, and H. Shah, ‘‘A survey on
bug prioritization,’’ Artif. Intell. Rev. vol. 47, no. 2, pp. 145–180, 2016.

[11] J. K. Anvik, ‘‘Assisting bug report triage through recommendation,’’
Ph.D. dissertation, Dept. Comput. Sci., Univ. British Columbia, Vancouver,
BC, Canada, 2007. [Online]. Available: https://open.library.ubc.ca/cIRcle/
collections/24/items/1.0051337

[12] M. Alenezi and S. Banitaan, ‘‘Bug reports prioritization: Which fea-
tures and classifier to use?’’ in Proc. 12th Int. Conf. Mach. Learn.
Appl. (ICMLA), Dec. 2013, pp. 112–116, doi: 10.1109/ICMLA.2013.114.

[13] J. Kanwal and O. Maqbool, ‘‘Bug prioritization to facilitate bug report
triage,’’ J. Comput. Sci. Technol., vol. 27, no. 2, pp. 397–412, Mar. 2012,
doi: 10.1007/s11390-012-1230-3.

[14] L. Yu, W.-T. Tsai, W. Zhao, and F. Wu, ‘‘Predicting defect priority based
on neural networks,’’ in Advanced Data Mining and Applications, L. Cao,
J. Zhong, and Y. Feng, Eds. Berlin, Germany: Springer, 2010, pp. 356–367.

[15] E. Loper and S. Bird, ‘‘NLTK: The natural language toolkit,’’ in Proc.
ACL Workshop Effective Tools Methodol. Teach. Natural Lang. Process.
Comput. Linguistics (ETMTNLP), 2002, pp. 63–70, doi: 10.3115/1118108.
1118117.

[16] M. Z. Asghar, A. Khan, S. Ahmad, I. A. Khan, and F. M. Kundi, ‘‘A unified
framework for creating domain dependent polarity lexicons from user
generated reviews,’’ PLoS ONE, vol. 10, no. 10, p. e0140204, 2015.

[17] J. Steinberger et al., ‘‘azquez, ‘‘Creating sentiment dictionaries via tri-
angulation,’’ in Proc. 2nd Workshop Comput. Approaches Subjectivity
Sentiment Anal. (WASSA), 2011, pp. 28–36. [Online]. Available: http://dl.
acm.org/citation.cfm?id=2107653.2107657

[18] M. Z. Asghar et al., ‘‘Medical opinion lexicon: An incremental model for
mining health reviews,’’ Int. J. Acad. Res., vol. 6, pp. 295–302, Jan. 2014.

[19] K. Denecke, ‘‘Using sentiwordnet for multilingual sentiment analysis,’’ in
Proc. IEEE 24th Int. Conf. Data Eng. Workshop, Apr. 2008, pp. 507–512.

[20] R. E. Schapire and Y. Singer, ‘‘BoosTexter: A boosting-based system
for text categorization,’’ Mach. Learn., vol. 39, nos. 2–3, pp. 135–168,
May 2000.

[21] A. Khan, B. Baharudin, L. H. Lee, K. Khan, and U. T. P. Tronoh, ‘‘A review
of machine learning algorithms for text-documents classification,’’ J. Adv.
Inf. Technol., vol. 1, no. 1, pp. 4–20, 2010.

[22] T. Menzies and A. Marcus, ‘‘Automated severity assessment of software
defect reports,’’ in Proc. IEEE Int. Conf. Softw. Maintenance, Sep. 2008,
pp. 346–355.

[23] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, ‘‘Comparing
mining algorithms for predicting the severity of a reported bug,’’ in Proc.
15th Eur. Conf. Softw. Maintenance Reeng., Mar. 2011, pp. 249–258.

[24] K. K. Chaturvedi and V. B. Singh, ‘‘Determining bug severity using
machine learning techniques,’’ in Proc. CSI 6th Int. Conf. Softw.
Eng. (CONSEG), Sep. 2012, pp. 1–6.

[25] W. Abdelmoez, M. Kholief, and F. Elsalmy, ‘‘Bug fix-time prediction
model using Naïve Bayes classifier,’’ in Proc. 22nd Int. Conf. Comput.
Theory Appl. (ICCTA), Oct. 2012, pp. 167–172.

[26] S. J. Dommati, R. Agrawal, R. M. R. Guddeti, and S. S. Kamath, ‘‘Bug
classification: Feature extraction and comparison of event model using
Naïve Bayes approach,’’ CoRR, vol. abs/1304.1677, Apr. 2012. [Online].
Available: https://arxiv.org/abs/1304.1677?context=cs.LG

[27] A. Podgurski et al., ‘‘Automated support for classifying software
failure reports,’’ in Proc. 25th Int. Conf. Softw. Eng. (ICSE),
May 2003, pp. 465–475. [Online]. Available: http://dl.acm.org/citation.
cfm?id=776816.776872

[28] T. Kremenek and D. Engler, ‘‘Z-ranking: Using statistical analysis to
counter the impact of static analysis approximations,’’ in Proc. 10th Annu.
Int. Static Anal. Symp., 2003, pp. 295–315.

[29] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo, ‘‘Towards more accu-
rate severity prediction and fixer recommendation of software bugs,’’
J. Syst. Softw., vol. 117, pp. 166–184, Jul. 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121216000765

[30] G. Yang, T. Zhang, and B. Lee, ‘‘Towards semi-automatic bug triage
and severity prediction based on topic model and multi-feature of bug
reports,’’ in Proc. IEEE 38th Annu. Comput. Softw. Appl. Conf., Jul. 2014,
pp. 97–106.

[31] M. Iliev, B. Karasneh, M. R. V. Chaudron, and E. Essenius, ‘‘Auto-
mated prediction of defect severity based on codifying design knowl-
edge using ontologies,’’ in Proc. 1st Int. Workshop Realizing AI
Synergies Softw. Eng. (RAISE), 2012, pp. 7–11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2666527.2666529

[32] T. Zhang, G. Yang, B. Lee, and A. T. S. Chan, ‘‘Predicting severity
of bug report by mining bug repository with concept profile,’’ in Proc.
30th Annu. ACM Symp. Appl. Comput. (SAC), 2015, pp. 1553–1558,
doi: 10.1145/2695664.2695872.

[33] C. C.Williams and J. K. Hollingsworth, ‘‘Automatic mining of source code
repositories to improve bug finding techniques,’’ IEEE Trans. Softw. Eng.,
vol. 31, no. 6, pp. 466–480, Jun. 2005.

[34] J. Xuan, H. Jiang, Z. Ren, and W. Zou, ‘‘Developer prioritization in bug
repositories,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012,
pp. 25–35.

[35] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, ‘‘An approach to
detecting duplicate bug reports using natural language and execution infor-
mation,’’ in Proc. 30th Int. Conf. Softw. Eng. (ICSE), 2008, pp. 461–470,
doi: 10.1145/1368088.1368151.

[36] G. Canfora and L. Cerulo, ‘‘Supporting change request assignment in open
source development,’’ in Proc. ACM Symp. Appl. Comput. (SAC), 2006,
pp. 1767–1772, doi: 10.1145/1141277.1141693.

[37] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, ‘‘How long will
it take to fix this bug?’’ in Proc. 4th Int. Workshop Mining Softw.
Repositories (MSR), May 2007, p. 1, doi: 10.1109/MSR.2007.13.

QASIM UMER received the B.S. degree in com-
puter science from Punjab University, Pakistan,
in 2006, the M.S. degree in .net distributed system
development and the M.S. degree in computer sci-
ence from theUniversity ofHull, U.K., in 2009 and
2012, respectively. He is currently pursuing the
Ph.D. degree in computer science with the Beijing
Institute of Technology, China. He is particularly
interested in machine learning, data mining, and
software maintenance.

VOLUME 6, 2018 35751

http://dx.doi.org/10.1109/ICSM.2013.31
http://dx.doi.org/10.1109/ICSM.2013.31
http://dx.doi.org/10.1145/2786805.2786857
http://dx.doi.org/10.1145/2365324.2365329
http://dx.doi.org/10.1007/BF02249043
http://dx.doi.org/10.1109/ICMLA.2013.114
http://dx.doi.org/10.1007/s11390-012-1230-3
http://dx.doi.org/10.3115/1118108.1118117
http://dx.doi.org/10.3115/1118108.1118117
http://dx.doi.org/10.1145/2695664.2695872
http://dx.doi.org/10.1145/1368088.1368151
http://dx.doi.org/10.1145/1141277.1141693
http://dx.doi.org/10.1109/MSR.2007.13

Q. Umer et al.: Emotion-Based Automated Priority Prediction for Bug Reports

HUI LIU received the B.S. degree in control sci-
ence from Shandong University in 2001, the M.S.
degree in computer science from the Shanghai
University in 2004, and the Ph.D. degree in com-
puter science from Peking University in 2008.
He is currently a Professor with the School of
Computer Science and Technology, Beijing Insti-
tute of Technology. He is particularly interested
in intelligent software engineering, software refac-
toring, software evolution, and software quality.

He is also interested in developing practical tools to assist software engineers.

YASIR SULTAN received the B.S. degree in
information technology fromGovernment College
University in 2016. He is currently pursuing the
M.S. degree in computer science with the Beijing
Institute of Technology, China. He is particularly
interested in software engineering, data mining,
and machine learning.

35752 VOLUME 6, 2018

	INTRODUCTION
	BACKGROUND KNOWLEDGE
	BUG REPORT
	BUG REPORTING AND TRIAGING

	APPROACH
	OVERVIEW
	DATA ACQUISITION
	PREPROCESSING
	TOKENIZATION
	STOP-WORD REMOVAL
	LEMMATIZATION

	EMOTION VALUE CALCULATION
	FEATURE EXTRACTION
	TRAINING AND PREDICTION
	TRAINING
	PREDICTION

	EVALUATION
	RESEARCH QUESTIONS
	DATASET
	PROCESS AND METRICS
	PROCESS
	METRICS

	RESULTS
	RQ1: COMPARISON AGAINST DRONE
	RQ2: INFLUENCE OF EMOTION ANALYSIS
	RQ3: PERFORMANCE COMPARISON OF CLASSIFICATION ALGORITHMS

	THREATS
	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	QASIM UMER
	HUI LIU
	YASIR SULTAN

