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ABSTRACT Constructing an interval model for nonlinear distributed parameter systems (DPSs) is chal-
lenging due to strong nonlinearity, spatiotemporal nature, and influence of noise. Although many methods
have been used to construct the interval model, they are only effective in the modeling of lumped parameter
systems, due to their inability to handle spatial information. In this paper, an interval modeling approach is
proposed for strongly nonlinear DPS under noisy conditions. The spatiotemporal dataset is first divided into
several subsets, and each subset is represented by the spatiotemporal least-squares support vector machine
sub-model. Using these sub-models, a distribution modeling method is then developed to construct the mean
and variance models of DPS. The confidence intervals are further derived based on these mean and variance
models. The effectiveness of the proposed method is demonstrated using experiments on a practical curing
thermal process and a long, thin rod in a reactor.

INDEX TERMS Distributed parameter systems, noise, spatiotemporal LS-SVM model, mean, variance,
confidence interval.

I. INTRODUCTION
Many industrial processes are inherently distributed in space
and time [1]–[3], [10]–[12], such as distillation, a continuous
stirring reaction and the processes involved in heat exchange
used in the chemical industry, and the integrated circuit (IC)
cure/reflow process used in the electronics packaging indus-
try. Each of these processes is complex and nonlinear dis-
tributed parameter system (DPS) and is disturbed by all sorts
of noise.Most of these processes require an interval model for
uniformity measurement or process monitoring. For exam-
ple, in the electronics packaging industry, the temperature
uniformity has a significantly influences on the packaging
quality [4] during the IC cure/reflow process. If the fluctu-
ation of the temperature in the cure/reflow oven exceeds a
reasonable range, this may result in the cracking and bubbling
of the cured products [5]. However, constructing an interval
model for DPS is challenging due to strong nonlinearity,
spatiotemporal nature and noise influence.

Generally, distributed parameter processes are described
by using partial differential equations (PDEs) [6]–[9],
in which a variety of parameters, including both the input

and output, can vary both temporally and spatially [6], [13].
Many data-driven methods have been developed to model
DPS. The spatial basis function in these methods was either
determined beforehand, which usually using the Green’s
function [14] and the finite element basis function [15],
or was determined from a set of snapshots using the sin-
gle value decomposition (SVD) method [16], [17] or the
Karkunen-Loève (KL) method [18], [19]. The temporal
dynamic model was then constructed by using Galerkin
function [20], neural network [21], Volterra [22], Hammer-
steinm [23], Wiener [24], autoregressive exogenous (ARX)
model [25] and fuzzy model [26]. Recently, the spatiotempo-
ral LS-SVM method [5], [27], [30] and the spatiotemporal
extreme learning machine (ELM) method [28], [29] were
developed to model the strongly nonlinear DPS. Although the
existing DPS modeling approaches have had a great deal of
successful applications, they paid no attention to the interval
modeling of the strongly nonlinear DPS. Also, they less
considered the influence of noise to the DPS model. To our
best knowledge, no method is found to address the interval
modeling of DPS under noise.
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Many studies have contributed to the construction of the
interval model for the lumped parameter systems. In the early
stages of neural network (NN) modeling studies, only an
average estimate of the reliability of the neural model was
provided using the mean square model error on a test set [31].
The reliability of the neural model has been improved in
the past decades by using the bootstrap methods [32]. Addi-
tionally, confidence intervals were derived using the least
squares estimation based on the linearized NN model [33].
In order to address the construction of the interval estima-
tion, the Bayesian approach, the Markov chain Monte Carlo
method [34], [35], the leave-one-out cross-validation estima-
tor [36], [37] and the resampling method [38], [41] were also
used. Recently, both SVM [38], [39] and ELM [28], [40] were
developed for interval modeling. Although these approaches
have had a large number of successful applications, they are
ineffective for the interval modeling of DPS due to their
inability to handle space information. Thus, the development
of an effective interval modeling method is necessary for the
strongly nonlinear DPS with the presence of noise.

In this paper, an interval modeling approach is proposed to
model strongly nonlinear DPS under noise. In order to esti-
mate the distribution of data with noise, the spatiotemporal
datasets are divided into several subsets, and the spatiotempo-
ral LS-SVM is used to represent each subset. The mean and
variance models of DPS are then constructed based on the
output of sub models. Furthermore, the confidence intervals
are derived by using these mean and variance models. Actual
thermal experiments were used to demonstrate the effective-
ness of this modeling method.

II. PROBLEM DESCRIPTION
Many industrial processes are distributed parameter systems
and disturbed by noise, which can be described by the follow-
ing partial differential equation:

∂y(x, t)
∂t
=
∂

∂x

(
f1 (y(x, t))

∂y(x, t)
∂x

)
+f2 (y(x, t))+b(x)T u(t)︸ ︷︷ ︸

Nominal system

+ d(x, t)︸ ︷︷ ︸
Disturbance

(1)

The boundaries and the initial conditions can be described as
follows:

Cy (xi, t)|xi on boundary+D
∂y (xi, t)
∂x

∣∣∣∣
xi on boundary

= g (y(x, t)) (2)

y (x, 0) = y0 (x, 0) (3)

These processes represent a kind of practical industrial
processes. Due to the physical realizability of these processes,
their solution is existence. Generally, these processes require
an interval model for uniformity measurement or process
monitoring; however, achieving the interval model of this
type of processes is difficult due to the following reasons:

Time/space coupled system, the strong nonlinearity of
the spatiotemporal dynamics, and unknown and bound-
ary conditions.
Influence of all sort of noise.

Currently, almost all of the interval modeling methods are
intended for the lumped parameter systems and are ineffective
for DPS with the presence of noise because they neglect
the influence of the spatial dynamics. Thus, a new approach
needs to be developed to construct the interval model of this
type of processes under noise.

III. CONFIDENCE INTERVAL PREDICTION FOR
DISTRIBUTED PARAMETER PROCESSES
In order to determine the confidence intervals caused by
both the spatial distribution and noise, an interval modeling
approach is developed for the strongly nonlinear DPS with
the presence of noise, as shown in Figure 1. First, the influ-
ence of noise can be estimated by resampling the system
into several sub spatiotemporal datasets. Then, the spatiotem-
poral LS-SVM is used to reconstruct the spatiotemporal
dynamics of each sub spatiotemporal dataset. Using this
spatiotemporal LS-SVM model, the information from un-
sampled time/space points may be obtained. Additionally,
a distribution modeling method is developed, upon which
the mean and variance models of DPS are derived. Finally,
the confidence intervals are constructed by using the derived
mean and variance models. In summary, the main ideas of the
proposed method are listed as follows:

Resampling—in order to estimate the influence of noise.
The datasets are resampled into several sub datasets.
Process estimation—in order to model spatiotemporal
dynamics. The spatiotemporal LS-SVMmodel is used to
represent the spatiotemporal process of the data subset.
By this model, dynamics of any space position can be
estimated.
Distribution modeling—in order to construct the mean
and variance models. The mean and variance models of
the DPS are constructed based on all of the spatiotem-
poral LS-SVM model outputs.
Confidence interval construction. Using the estimated
mean and variance models, the confidence intervals for
the original system is constructed.

A. DATA DIVISION AND SPATIOTEMPORAL
LS-SVM MODEL
Collecting a set of spatiotemporal data from the DPS as the
dataset

{
u(tk ), y(xj, tk )

}s,L
j=1,k=1, where xj is the space location

of the j-th sensor and tk is the k-th time, and s and L are the
number of all sensors and the length of the sampling time,
respectively. The sensors are divided into many sub groups
according to the resampling theory [41]. As shown in Figure
2, all of the sensors for training are randomly partitioned
into I groups, where each group is defined as a subset that
contains n sensors (n < s). This resampling technique, used
to construct local models, can uncovermore information from
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FIGURE 1. Interval modeling approach for DPS.

FIGURE 2. Sensor division for resampling.

data, thus, it is effective to be used for interval modeling even
in the presence of noise.

The spatiotemporal LS-SVM [5], [30] has the ability to
model DPS since it considers both the nonlinear temporal
dynamics and the nonlinear spatial properties of DPS. Thus,
it is employed to construct the sub-model by using the data
from the sensors in each subset. For the ith local subset,
the following spatiotemporal LS-SVMmodel is developed to
represent its model:

yi(xj, tk ) = wi(tk )Tφi(xj)+ bi(tk ) (4)

Here, yi(xj, tk ) is the output of the spatial location xj at time
tk of the ith local subset, φi(·) is a spatial-related nonlinear
projection function that is used to represent the nonlinear
relationship between the spatial locations,wi(tk ) is the weight
matrix, and bi(tk ) is the bias term.
According to the SVM theory, the solution to Eq. (4) can be

determined by solving the following optimization problem:

min
w,b,e

Ji(wi, bi, ei) =
1
2

L∑
k=1

‖wi(tk )‖2 +
γi

2

L∑
k=1

n∑
j=1

ei(xj, tk )2

s.t. yi(xj, tk ) = wi(t)Tφi(xj)+ bi(tk )+ ei(xj, tk )

i = 1, . . . , I ; j = 1, . . . , n; k = 1, . . . ,L (5)

Here, γi is the regularization factor for the tradeoff between
approximation accuracy and generalization, and ei(xj, tk ) is
the modeling error.

Solving Eq. (5) using the Lagrange multiplier αij(tk ),
the resulting LS-SVM model becomes:

ŷi(xj, tk ) =
n∑
j=1

αij(tk )Ki(x, xj)+ bi(tk ) (6)

Here, αij(tk ) and bi(tk ) can be solved using the Lagrange
method, and φi(xm)Tφi(xl) = Ki(xm, xl) is a kernel function,
and the radial basic function (RBF) kernel is generally chosen
as the space kernel function. This model (6) can estimate the
temperature of the un-sampled space points or the untrained
time points.

B. DISTRIBUTION MODELING AND CONFIDENCE
INTERVAL CONSTRUCTION
Furthermore, a distribution modeling method is developed to
construct the confidence intervals, as shown in Figure 3. The
main ideas are given as follows:

Collecting all of the outputs of the spatiotemporal
LS-SVM sub-models in order to calculate the mean and
variance. At time tk , each spatiotemporal LS-SVM sub-
model built may predict the temperature values at all
J spatial positions and all of the outputs for the sub-
models at J spatial positions will construct an array
Yk (I × J ), where its elements are yi(xj, tk ) and i and j
are the ith sub-model and the jth spatial position, respec-
tively. Then, the mean and the variance of Yk (I × J ) are
calculated.
Collecting all of the mean and variance data for the
whole time, the mean and variance model is then con-
structed and, using these models, the confidence inter-
vals model is also constructed.

The details of this approach are presented as follows.
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FIGURE 3. Distribution modeling method.

1) MEAN ESTIMATION
The mean at time tk is calculated as follows:

ave(tk ) =
1

I × J

I∑
i=1

J∑
j=1

yi(xj, tk ) (7)

In order to estimate the mean at the untrained or the un-
sampled time points, the mean model must be established.
Here, the following LS-SVM [43] is used to construct the
mean model:

ave(tk ) = ωTϕ (z(tk−1))+ c k = 1, . . . ,L (8)

Where z(tk−1) = [ave(tk−1)T , u(tk−1)T ]T , ave(tk ) is the
mean at time tk , ω and c are the weight vector and the bias
term, and ϕ is the unknown mapping function.
The solution to Eq. (8) can be determined using the least

square method with the temporal Lagrange multiplier β. The
resulting LS-SVM mean model becomes:

av̂e(tk ) =
L∑
s=2

β(ts)K̃ (z(tk−1), z(ts−1))+ c (9)

Where K̃ (, ) is the RBF kernel function.

2) VARIANCE ESTIMATION
According to the definition of the variance, the variance at
time tk is calculated as follows:

var(tk ) = E(yi(xj, tk )− (ave(tk ))2)

=
1

I × J

I∑
i=1

J∑
j=1

(yi(xj, tk )− ave(tk ))2 (10)

In order to estimate the variance at the untrained or the un-
sampled time points, the following LS-SVM model is devel-
oped to represent the variance model:

var(tk ) = $ Tψ (z̄(tk−1))+ υ, k = 1, . . . ,L (11)

Here, $ and υ are the weight vector and the bias term,
ς is the unknown mapping function, ψ is the unknown
mapping function, and the model input is z̄(tk−1) =
[var(tk−1)T , u(tk−1)T ]T .
The solution of Eq. (11) can be determined using the

least square method with the temporal Lagrange multiplier θ .
Then, the resulting LS-SVM variance model becomes:

vâr(tk ) =
L∑
s=2

θ (ts)K̄ (z̄(tk−1), z̄(ts−1))+ υ (12)

Where K̄ (, ) is the RBF kernel function.

3) CONFIDENCE INTERVAL CONSTRUCTION
Then, the derivedmeanmodel (9) and the variancemodel (12)
are used to construct confidence intervals. According to the
central limit theorem [42], there has the following asymptot-
ical relation:

y(x, t)− av̂e(t)√
vâr(t)

D
→ N(0, 1) (13)

Here,
D
−→ denotes the convergence in the distribution,

N (0, 1) is the normal distribution with the mean equal to zero
and the variance equal to 1.
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FIGURE 4. (a) Snap curing oven system. (b) Sensors on the leadframe.

Thus, giving a confidence level equal to 100(1− α)%, the
confidence intervals of y(x, t) can be estimated as follows:

av̂e(t)± z1−α/2
√
vâr(t) (14)

Where α is the confidence degree and z1−α/2 is the critical
value of the standard Gaussian distribution, which depends
on the desired confidence level 100(1− α)%. The higher the
confidence level is, the greater the corresponding confidence
intervals will be. Therefore, this model (14) may be used for
uniformity measurement or the process monitoring of DPS
with the presence of noise.

IV. EXPERIMENTAL VALIDATION
In this section, the proposed modeling method is validated
by using two practical distributed parameter processes. These
modeling processes are conducted on the MATLAB simula-
tion software, which is commonly used in data analysis and
modeling. The relative error is defined as follows:

relative error =

∣∣y(x, t)− ŷ(x, t)∣∣
y(x, t)

× 100%

A. CASE 1: SNAP CURING PROCESS
The curing thermal process in the snap oven [5], [27], [30], as
shown in Figure 4, is used to validate the proposed modeling
method. This curing system consists of a computer with
dSPACE 1102 controller, PCLD-789 signal condition board,
PCL-855 relay board, and a snap oven. The software for
the snap oven control includes Matlab and dSPACE. Chips
placed on the lead-frame cure best at a set temperature profile.
In the thermal process, we adjust heat in the oven by using
four heaters (h1-h4). The temperature distribution inside the
chamber is required for the fundamental analysis and better
curing quality. For modeling this system, the J-type thermo-
couples (Range: -40 ◦C ∼375 ◦C, the maximal measurement

FIGURE 5. Input signals of heater h2 in the experiment.

FIGURE 6. (a) Real and model mean under training; (b) Relative error.

error: 1.5 ◦C) placed on the lead-frame are used to measure
temperature, as shown in Figure 4 (b).

For this interval modeling, random input signal was used to
power the heaters in order to excite the thermal process. The
input signal of the heater h2 is shown in Figure 5. Since the
temperature in the oven changes slowly, a sampling interval
1t = 10 second is set. In the experiment, according to
the practical experience and prior process knowledge, ran-
dom noise with the zero mean and the variance equal to
0.05 is added into experimental data from sensors. The sen-
sors (s1-s16) are used for training and the space points (c1-c9)
are used for testing, as shown in Figure 4. According to the
resampling theory [41], the training sensors (s1-s16) were
randomly partitioned into one hundred groups and each group
included ten sensors. Then, the sensor data for each groupwas
used to train the spatiotemporal LS-SVM sub-model. After
all of the sub-models were built, the mean and the variance
models were then constructed using the collected mean and
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FIGURE 7. (a) Real and model mean under prediction; (b) Relative error.

variance data. Then, the interval model was constructed by
using the mean and variance models.

Then, the mean and variance models are verified using
experiments. The mean of the real output and the model out-
put for training and prediction are shown in Figures 6 and 7.
The variance of the real output and the model output for
training and prediction are shown in Figures 8 and 9. The
relative error traces are also shown in Figures 6∼9. From
these Figures, it is obvious that the mean and variance models
fit and predict the practical mean and variance well. Thus,
this modeling method is effective for modeling DPS with the
presence of noise.

The interval models are also validated with experiments.
According to the user’s requirement, a 95% confidence level
was used to derive the confidence interval models. Data from
all of the training sensors and nine test points (c1-c9) were
used to check the interval models. As shown in Figure 10,
the real output from all of the training sensors are represented
by black dotted lines and the output of the test points are
represented by mauve dotted lines, and the output of the
interval models are represented by red and blue lines. It is
clear from this figure that the interval models are effective at
modeling DPS with the presence of noise, because the real
output from all of the training sensors and the output of test
points are almost within the interval model, as well these
interval models are able to successfully track the dynamics
of the DPS under noisy conditions.

Then, three common interval modeling methods,
a LS-SVM interval modeling method [28], an extreme learn-
ing machine (ELM) interval modeling method [40] and a

FIGURE 8. (a) Real and model variance under training; (b) Relative error.

FIGURE 9. (a) Real and model variance under prediction; (b) Relative
error.

neural network (NN) interval modeling method [33], are
employed for comparison. If the data for any sensor at any
time falls outside of the interval models, the temperature of
this sensor is determined to be outside of the interval models.
The comparison results are shown in Table 1. From this
Table, the practical confidence level of the proposed method
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FIGURE 10. Performance verification.

TABLE 1. Modeling performance comparison.

FIGURE 11. The catalytic rod.

is closer to the 95% desirable confidence level as compared
to other methods. Thus, the proposed method is superior to
these existing methods, because it considers the nonlinear
spatiotemporal dynamics and can obtain the interval model
even in the presence of noise, but the other common interval
modeling methods are only for time dynamics without con-
sideration of space dynamics.

B. A CATALYTIC ROD
A long thin rod in a reactor that is typically found in the
transport-reaction process in the chemical industry [6], [25],
as shown in Figure 11, is then used to verify the proposed
model.

During the transport-reaction process, the reactant A is
fed into the inlet of the rod reactor, and then a zero-th
order exothermic catalytic reaction takes place in the rod,
which transforms the conditions of reactant A into product
B. Finally, the product and the surplus come out at the outlet.
Since the reaction is exothermic, a cooling medium is in
contact with the rod for cooling.

Under the assumption of a constant density, heat capacity,
and a constant conductivity of the rod, as well as a constant

FIGURE 12. Real and model mean under training.

temperature at both sides of the rod and an excess of reactant
in the furnace, the following partial differential equation is
used to describe the spatiotemporal evolution of the rod:

∂y(x, t)
∂t

=
∂2

∂x2
(y(x, t))+ βT

(
e−

γ
1+y − e−γ

)
+βu

(
b(x)T u(t)− y(x, t)

)
+ d(x, t) (15)

It is subject to the Dirichlet boundary and the following initial
conditions:

y(0, t) = 0, y(π, t) = 0, y(x, 0) = y0(x)

where y(x, t), βT , γ , βu, b(x), u(t) and d(x, t) represent the
temperature in the reactor, the heat of the reaction, the activa-
tion energy, the heat transfer coefficient, the actuator distri-
bution, the manipulated input and the random process noise,
respectively. The thermal process parameters are set as βT =
50, βu = 2, and γ = 4. Here, u(t) = [u1(t), . . . , u4(t)]T is
the manipulated input with the spatial distribution function:

b(x) = [b1(x), . . . , b4(x)]T ,

bi(x) = H (x − (i− 1)π/4)− H (x − iπ/4) (i = 1, . . . , 4)

and H (·) is the standard Heaviside function. In this modeling
process, themanipulated input ui(t) = 1.1+5 sin(t/10+i/10)
(i = 1, . . . , 4) is used to excite the system. The sampling
interval 1t is 0.01 and 501 data points were collected and
the temperature was measured using twenty-seven sensors
placed on the rod. In this modeling, according to the practical
experience and prior process knowledge, random noise with
the zero mean and the variance equal to 0.0085 is added into
data produced from Eq. (15). An interval model should be
constructed for the entire process in order to measure and
predict the temperature uniformity.

In this experiment, twenty-seven sensors were used to train
the interval model and nine test points were selected to test
this built model. For this interval modeling, all of the training
sensors were randomly partitioned into one hundred groups
and each group had seventeen sensors. Then, the sensor data
from each group is used to train the spatiotemporal LS-SVM
sub-model. After all of the sub-models are built, the mean
and variance models are then constructed using the collected
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FIGURE 13. Real and model mean under prediction.

FIGURE 14. Real and model variance under training.

FIGURE 15. Real and model variance under prediction.

mean and variance data. Then, the interval model is con-
structed using the mean and variance models.

Then, the mean and variance models are verified
using experiments. The mean of the real output and
the model output for training and prediction are shown
in Figures 12 and 13. The variance of the real output and the
model output for training and prediction are shown in Fig-
ures 14 and 15. From these Figures, it is clear that the mean
and variance models fit and predict the practical mean and
variance well. Thus, this modeling method is effective for
modeling DPS under noisy condition.

Furthermore, the interval models were validated using
experiments. According to the experimental requirement,
an 84% confidence level was used to derive the confidence
interval models. Data from all of the training sensors and

FIGURE 16. Modeling performance verification.

TABLE 2. Modeling performance comparison.

nine test points were used to check the interval models. The
real output from all of the training sensors are represented by
black dotted lines, the output of the testing points are repre-
sented by mauve dotted lines, and the output of the interval
models are represented by red and blue lines, as shown in
Figure 16. It is clear from this Figure that the interval models
are effective for modeling DPS with noise, because the real
output from all of the training sensors and the output of test
points are almost within the interval model, as well these
interval models are able to successfully track the dynamics
of the DPS under noisy condition.

Then, three common interval modeling methods,
a LS-SVM interval modeling method [28], an extreme learn-
ing machine (ELM) interval modeling method [40] and a
neural network (NN) interval modeling method [33], are
employed for comparison. If the data for any sensor at any
time falls outside of the interval models, the temperature
of this sensor is determined to be outside of the interval
models. The comparison results are shown in Table 2. From
this Table, the practical confidence level of the proposed
method is closer to the 85% desirable confidence level as
compared to these existing methods. Thus, the proposed
method is superior to the existing method, because it con-
siders the nonlinear spatiotemporal dynamics and can obtain
the interval model even in the presence of noise, but the
other common interval modeling methods are only for time
dynamics without consideration of space dynamics.

V. CONCLUSION
An interval modeling approach is proposed for the modeling
of a complex DPS under noisy condition. The results indicate
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that the distribution modeling method is able to accurately
represent the mean and variance of the DPS. The derived
confidence interval models could also effectively track the
dynamics of the DPS under noisy condition. Ultimately,
this will benefit the uniformity measurement and/or process
monitoring. Furthermore, the effectiveness of the proposed
method was evaluated using both the experiment and the sim-
ulation. These results demonstrate that the developed inter-
val modeling method can effectively estimate the dynamic
behavior of a DPS under noisy condition. In future, we will
contribute to the interval modeling of a time-varying DPS
under all sorts of noise.

REFERENCES
[1] H.-X. Li, X.-X. Zhang, and S.-Y. Li, ‘‘A three-dimensional fuzzy control

methodology for a class of distributed parameter systems,’’ IEEE Trans.
Fuzzy Syst., vol. 15, no. 3, pp. 470–481, Jun. 2007.

[2] X.-X. Zhang, H.-X. Li, and C.-K. Qi, ‘‘Spatially constrained fuzzy-
clustering-based sensor placement for spatiotemporal fuzzy-control sys-
tem,’’ IEEE Trans. Fuzzy Syst., vol. 18, no. 5, pp. 946–957, Oct. 2010.

[3] X. Wang and X. Lu, ‘‘Three-dimensional impact angle constrained dis-
tributed guidance law design for cooperative attacks,’’ ISA Trans., vol. 73,
pp. 79–90, Feb. 2018.

[4] K. Iko, Y. Nakamura, M. Yamaguchi, and N. Imamura, ‘‘Encapsulat-
ing resins for semiconductors,’’ IEEE Elect. Insul. Mag., vol. 6, no. 4,
pp. 25–32, Jul. 1990.

[5] X. Lu, W. Zou, and M. Huang, ‘‘A novel spatiotemporal LS-SVM
method for complex distributed parameter systems with applications to
curing thermal process,’’ IEEE Trans. Ind. Informat., vol. 12, no. 3,
pp. 1156–1165, Jun. 2016.

[6] P. D. Christofides, Nonlinear and Robust Control of PDE Systems: Meth-
ods and Applications to Transport-Reaction Processes, vol. 55, no. 2.
Boston, MA, USA: Birkhauser, 2002, p. B29.

[7] W. He, X. He, and C. Sun, ‘‘Vibration control of an industrial moving strip
in the presence of input deadzone,’’ IEEE Trans. Ind. Electron., vol. 64,
no. 6, pp. 4680–4689, Jun. 2017.

[8] W. He and S. S. Ge, ‘‘Vibration control of a flexible beam with output
constraint,’’ IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 5023–5030,
Aug. 2015.

[9] H.-Y. Zhu, H.-N. Wu, and J.-W. Wang, ‘‘Fuzzy control with guaranteed
cost for nonlinear coupled parabolic PDE-ODE systems via PDE static
output feedback and ODE state feedback,’’ IEEE Trans. Fuzzy Syst., to be
published, doi: 10.1109/TFUZZ.2017.2753726.

[10] Z. J. Zhao, Z. J. Liu, and Z. F. Li, ‘‘Control design for a vibrating flexible
marine riser system,’’ Sci. Direct, vol. 354, pp. 8117–8133, Dec. 2017.

[11] W. He and T. Meng, ‘‘Adaptive control of a flexible string system with
input hysteresis,’’ IEEE Trans. Control Syst. Technol., vol. 26, no. 2,
pp. 693–700, Mar. 2018.

[12] W. He, T. Meng, D. Huang, and X. Li, ‘‘Adaptive boundary iterative learn-
ing control for an Euler–Bernoulli beam system with input constraint,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 5, pp. 1539–1549,
May 2018.

[13] Y.-Q. Ren, X.-G. Duan, H.-X. Li, and C. L. P. Chen, ‘‘Dynamic switching
based fuzzy control strategy for a class of distributed parameter system,’’
J. Process Control, vol. 24, no. 3, pp. 88–97, Mar. 2014.

[14] S. Baroni, P. Giannozzi, and A. Testa, ‘‘Green’s-function approach to linear
response in solids,’’ Phys. Rev. Lett., vol. 58, no. 18, pp. 1861–1864,
May 1987.

[15] L. M. Manevitz and D. Givoli, ‘‘Towards automating the finite element
method: A test-bed for soft computing,’’ Appl. Soft Comput., vol. 3, no. 1,
pp. 37–51, Jul. 2003.

[16] Y. Jiang, I. Hayashi, and S. Wang, ‘‘Knowledge acquisition method based
on singular value decomposition for human motion analysis,’’ IEEE Trans.
Knowl. Data Eng., vol. 26, no. 12, pp. 3038–3050, Dec. 2014.

[17] H.-H. Tsai, Y.-J. Jhuang, and Y.-S. Lai, ‘‘An SVD-based image watermark-
ing in wavelet domain using SVR and PSO,’’ Appl. Soft Comput., vol. 12,
no. 8, pp. 2442–2453, Aug. 2012.

[18] H. Deng, M. Jiang, and C.-Q. Huang, ‘‘New spatial basis functions for the
model reduction of nonlinear distributed parameter systems,’’ J. Process
Control, vol. 22, pp. 404–411, Feb. 2012.

[19] J. Fu, R. C. Shen, Z. M. Shu, X. G. Zhou, and W. K. Yuan, ‘‘Numerical
reconstruction of the catalyst bed temperature distribution in a multitubular
fixed-bed reactor by Karhunen–Loève expansion,’’ Ind. Eng. Chem. Res.,
vol. 52, pp. 7818–7826, May 2013.

[20] D. Zheng, K. A. Hoo, and M. J. Piovoso, ‘‘Low-order model identifica-
tion of distributed parameter systems by a combination of singular value
decomposition and the Karhunen–Loève expansion,’’ Ind. Eng. Chem.
Res., vol. 41, no. 6, pp. 1545–1556, Feb. 2002.

[21] M.Ghazal and J. Y.Mohammad, ‘‘Predictive control of uncertain nonlinear
parabolic PDE systems using a Galerkin/neural-network-based model,’’
Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 1, pp. 388–404,
Jan. 2012.

[22] H.-X. Li, C. Qi, and Y. Yu, ‘‘A spatio-temporal Volterra modeling approach
for a class of distributed industrial processes,’’ J. Process Control, vol. 19,
no. 7, pp. 1126–1142, Jul. 2009.

[23] C. Qi and H.-X. Li, ‘‘A time/space separation-based Hammerstein mod-
eling approach for nonlinear distributed parameter processes,’’ Comput.
Chem. Eng., vol. 33, no. 7, pp. 1247–1260, Jul. 2009.

[24] C. Qi and H.-X. Li, ‘‘A Karhunen–Loève decomposition based Wiener
modeling approach for nonlinear distributed parameter processes,’’ Ind.
Eng. Chem. Res., vol. 47, no. 12, pp. 4184–4192, May 2008.

[25] M.-L. Wang, N. Li, and S.-Y. Li, ‘‘Model-based predictive control for
spatially-distributed systems using dimensional reduction models,’’ Int. J.
Auto. Comput., vol. 8, no. 1, pp. 1–7, 2011.

[26] C. Qi, H.-X. Li, S. Li, X. Zhao, and F. Gao, ‘‘A fuzzy-based spatio-temporal
multi-modeling for nonlinear distributed parameter processes,’’ Appl. Soft
Comput., vol. 25, pp. 309–321, Dec. 2014.

[27] X. J. Lu, F. Yin, and M. H. Huang, ‘‘Online spatiotemporal least-
squares support vector machine modeling approach for time-varying dis-
tributed parameter processes,’’ Ind. Eng. Chem. Res., vol. 56, no. 25,
pp. 7314–7321, Jun. 2017.

[28] X. Lu, C. Liu, and M. Huang, ‘‘Online probabilistic extreme learning
machine for distribution modeling of complex batch forging processes,’’
IEEE Trans. Ind. Informat., vol. 11, no. 6, pp. 1277–1286, Dec. 2015.

[29] X. Lu, F. Yin, C. Liu, and M. Huang, ‘‘Online spatiotemporal extreme
learning machine for complex time-varying distributed parameter sys-
tems,’’ IEEE Trans. Ind. Informat., vol. 13, no. 4, pp. 1753–1762,
Aug. 2017.

[30] X. Lu,W. Zou, andM. Huang, ‘‘Robust spatiotemporal LS-SVMmodeling
for nonlinear distributed parameter system with disturbance,’’ IEEE Trans.
Ind. Electron., vol. 64, no. 10, pp. 8003–8012, Oct. 2017.

[31] C.Mencar, G. Castellano, andA.M. Fanelli, ‘‘Deriving prediction intervals
for neuro-fuzzy networks,’’ Math. Comput. Model., vol. 42, nos. 7–8,
pp. 719–726, Oct. 2005.

[32] R. W. Johnson, ‘‘An introduction to the bootstrap,’’ Teach. Statist. Int. J.
Teach., vol. 23, no. 2, pp. 49–54, Jan. 2001.

[33] I. Rivals and L. Personnaz, ‘‘Construction of confidence intervals for
neural networks based on least squares estimation,’’ Neural Netw., vol. 13,
nos. 4–5, pp. 463–484, Jun. 2000.

[34] C. M. Bishop and C. S. Quazaz, ‘‘Regression with input-dependent noise:
A Bayesian treatment,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 9,
Jan. 1997, pp. 347–353.

[35] P. W. Goldberg, C. K. I. Williams, and C. M. Bishop, ‘‘Regression with
input-dependent noise: A Gaussian process treatment,’’ in Proc. Adv. Neu-
ral Inf. Process. Syst., vol. 32, no. 4, Feb. 1998, pp. 493–499.

[36] G. C. Cawley, N. L. C. Talbot, R. J. Foxall, S. R. Dorling, and
D. P.Mandic, ‘‘Heteroscedastic kernel ridge regression,’’Neurocomputing,
vol. 57, pp. 105–124, Mar. 2004.

[37] G. C. Cawley, N. L. C. Talbot, and O. Chapelle, ‘‘Estimating predictive
variances with kernel ridge regression,’’ in Proc. Mach. Learn. Challenges
Workshop. Berlin, Germany: Springer-Verlag, Jan. 2005, pp. 56–77.

[38] J. A. K. Suykens, T. V. Gestel, J. De Brabanter, B. De Moor, and
J. Vandewalle, Least Squares Support Vector Machines, vol. 2. Singapore:
World Scientific, 2002, pp. 1–27.

[39] K. De Brabanter, J. De Brabanter, J. A. K. Suykens, and
B. De Moor, ‘‘Approximate confidence and prediction intervals for
least squares support vector regression,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 22, no. 1, pp. 110–120, Jan. 2011.

[40] C. Wan, Z. Xu, P. Pinson, Z. Y. Dong, and K. P. Wong, ‘‘Probabilistic
forecasting of wind power generation using extreme learning machine,’’
IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1033–1044, May 2014.

37756 VOLUME 6, 2018

http://dx.doi.org/10.1109/TFUZZ.2017.2753726


X. Lu et al.: Construction of Confidence Intervals for Distributed Parameter Processes

[41] K. W. Potter and D. P. Lettenmaier, ‘‘A comparison of regional flood
frequency estimation methods using a resampling method,’’Water Resour.
Res., vol. 26, no. 3, pp. 415–424, 1990.

[42] V. P. Demichev, ‘‘A central limit theorem for integrals with respect to
random measures,’’ Math. Notes, vol. 95, pp. 191–201, Jan. 2014.

[43] B. Fan, X.-J. Lu, and M.-H. Huang, ‘‘A novel LS-SVM control for
unknown nonlinear systems with application to complex forging process,’’
J. Central South Univ., vol. 24, pp. 2524–2531, Nov. 2017.

XINJIANG LU (M’12) received the B.E. and
M.E. degrees from the School of Mechanical and
Electrical Engineering, Central South University,
China, and the Ph.D. degree from the Depart-
ment ofManufacturing Engineering and Engineer-
ing Management, City University of Hong Kong,
Hong Kong. He is currently a Professor with the
School of Mechanical and Electrical Engineer-
ing, Central South University. His research inter-
ests include machine learning, process modeling

and control, and integration of design and control. He was a recipient of
the Excellent Thesis Award for the Master’s Degree of Hunan Province
in 2007 and the Hiwin Doctoral Dissertation Award in 2011. He received the
New Century Excellent Talents Award by the Chinese Ministry of Education
in 2013. He served on the Editorial Board of three international journals.

XIANGBO CUI received the M.E. degree from
the School of Mechanical and Electrical Engi-
neering, Xiamen University of Technology, China.
He is currently pursuing the Ph.D. degree at the
Department of Mechanical and Electrical Engi-
neering, Central South University, China. His cur-
rent research interests include machine learning
and system modeling and control.

YI ZHANG received the B.S. and Ph.D. degrees
from the School of Mechanical and Electrical
Engineering, Central South University, Changsha,
China, in 2004 and 2017, respectively. He is cur-
rently a Post-Doctoral Researcher with the School
of Mechanical and Electrical Engineering, Central
South University. His research interests include
design and modeling of complex system, robotic
hand, and robotic dynamics and control.

FENG YIN received the B.E. degree from the
School of Mechanical and Electrical Engineer-
ing, Changsha University, China. She is currently
pursuing the M.E. degree at the Department of
Mechanical and Electrical Engineering, Central
South University, China. Her current research
interests include machine learning and system
modeling and control.

VOLUME 6, 2018 37757


	INTRODUCTION
	PROBLEM DESCRIPTION
	CONFIDENCE INTERVAL PREDICTION FOR DISTRIBUTED PARAMETER PROCESSES
	DATA DIVISION AND SPATIOTEMPORAL LS-SVM MODEL
	DISTRIBUTION MODELING AND CONFIDENCE INTERVAL CONSTRUCTION
	MEAN ESTIMATION
	VARIANCE ESTIMATION
	CONFIDENCE INTERVAL CONSTRUCTION


	EXPERIMENTAL VALIDATION
	CASE 1: SNAP CURING PROCESS
	A CATALYTIC ROD

	CONCLUSION
	REFERENCES
	Biographies
	XINJIANG LU
	XIANGBO CUI
	YI ZHANG
	FENG YIN


