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ABSTRACT Three-operation multiplication (TOM) over binary extension field is frequently encountered
in cryptosystems such as elliptic curve cryptography. Though digit-serial polynomial basis multipliers are
usually preferred for the realization of TOM due to their efficient tradeoff in implementation complexity,
the Karatsuba algorithm (KA)-based strategy is rarely employed to reduce the complexity further. Based
on this reason, in this paper, we derive a novel low-complexity implementation of TOM based on a new
KA-based digit-serial multiplier. The proposed TOM is obtained through two novel coherent interdependent
efforts: 1) mapping an efficient KA-based algorithm into a novel digit-serial multiplier and 2) obtaining a new
TOM structure through the novel derivation of the TOM algorithm. From the estimated results, it is shown
that the proposed structure has significant lower area-time-complexities when compared with the existing
competing TOMs. The proposed TOM is highly regular with low-complexity, and hence can be employed
in many cryptographic applications.

INDEX TERMS Digit-level serial-in parallel-out (DL-SIPO) multiplier, Karatsuba-algorithm (KA) decom-
position, low-complexity, three-operand multiplication (TOM).

I. INTRODUCTION
Finite field arithmetic, especially multiplication, plays an
important role in several applications such as elliptic curve
cryptography (ECC), error correcting code, and signal pro-
cessing [1]. For example, standards (NIST [1] and IEEE
p1363 [2]) have recommended five binary extension field
fields (GF(2m)) for elliptic curve digital signature algorithm
(ECDSA) implementation, e.g., m = 163, 233, 289, 409,
and 571, many experts and scholars have devoted signifi-
cant efforts on ECC designs for secure resource-constrained
applications [3]–[5] like key exchange, authentication, digital
signature, encrypt/decrypt, and so on. Basically, the main
operation involved within ECC is the point multiplica-
tion (PM) kP, where k is an integer and P is given by a
point on elliptic curves. We can use point addition and point
doubling to perform the PM, i.e., left-to-right algorithm and
right-to-left algorithm, where the point addition can be real-
ized based on affine coordinates or projective coordinates.
To achieve efficient implementation of PM on hardware plat-
forms, optimized modular arithmetic operations are greatly

needed. The finite field addition can be implemented by
bitwise XORing, while multiplication is a complicated opera-
tion (to avoid inversion operation, point addition can employ
the projective coordinates to have only finite field addition,
squaring, and multiplication operations involved). Therefore,
the finite field multiplication over GF(2m) is considered as
the bottleneck of the PM, where the form of three-operand
multiplication (TOM) is frequently encountered [1]–[3].

In binary field, hardware implementation of multiplica-
tion can be classified as bit-serial, bit-parallel, and digit-
level architectures, respectively, based on their structuring
styles. Bit-serial structure has the lowest circuit complex-
ity but possesses a long calculation time; while the bit-
parallel architecture involves a very high design area to
obtain fast calculation. In order to achieve efficient time com-
plexity, many scholars have proposed bit-parallel multipliers
based on special polynomials, such as trinomials and pen-
tanomials [6]–[9] (with relatively larger area occupation), for
potential ECC implementation. The digit-level designs pro-
vide the trade-off between time and area complexities,
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where they can be classified into three categories, namely,
digit-level parallel-in serial-out (DL-PISO) [10], digit-level
serial-in parallel-out (DL-SIPO) [11]–[13], and digit-level
fully-serial-in parallel-out (DL-FSIPO) structures [14] (both
systolic and non-systolic designs are included).

Karatsuba algorithm (KA) ( [15], [16]) is a very efficient
multiplication algorithm which can be used to obtain the
subquadratic complexity multiplication. Based on the KA
decomposition technique, the space complexity of the mul-
tiplier can be reduced from O(m2) to O(m1.596). Recently,
Lee et al. [17] and Lee and Meher [18] have presented a gen-
eralized (a, b)-way KA decomposition for digit-serial mul-
tiplication to achieve O(mloga

ab+a
2 ) space complexity, while

the schoolbook digit-serial multiplier has O(dm) space com-
plexity (for example, (9,3)-way KA decomposition involves
O(m1.32) space complexity).

To obtain efficient structure for TOM, Lee et al. [19] have
used KA decomposition to derive a bit-parallel TOM. Based
on the polynomial basis of GF(2m), Lee et al. [20] have pro-
posed a novel DL-SIPO non-KA-based TOM (NKATOM).
Lee et al. [19] have proposed the bit-parallel TOM based on
a KA approach. To further reduce the involved complexity,
in this paper, we have defined a novel partial product for-
mula to develop a novel DL-SIPO TOM structure based on
KA decomposition, namely the DL-SIPO KA-based TOM
(DL-SIPO KATOM). The proposed TOM is derived through
two stages of two novel coherent interdependent efforts.
At first, we present a novel KA based digit-serial multiplier
with reduced space complexity. Secondly, based on a novel
TOM algorithm, the proposed structure with reduced com-
plexity is introduced. From the estimated results, we find
that the proposed TOM has significant higher-throughput and
lower area-complexity compared to the existing TOMs.

The rest of this paper is organized as follows. Section II
briefly reviews the conventional KA decomposition tech-
nique and its complexity. In Section III, we introduce the
proposed DL-SIPO multiplier based on the KA approach.
In Section IV, we propose a novel partial product formula
to derive our novel KATOM structure. Section V presents
the complexity of the proposed structure and the comparison
with the existing TOMs. Finally, we conclude the paper in
Section VI.

II. REVIEW OF KARATSUBA ALGORITHM
Suppose that A = a0 + a1x + · · · + an−1xn−1 is a universal
polynomial of degree (n − 1). KA [15] is one of the high-
precision computations, which uses three subproducts of half-
length operands to replace the original grade-school multipli-
cation. For example, let n be a power of 2, two polynomials A
and B can be splitted into A = A0+x

n
2A1 and B = B0+x

n
2B1,

where A0, A1, B0, and B1 are four polynomials of degree n
2 .

Applying the divide-and-conquer algorithm, the product of A
and B can be calculated as

AB = A0B0 + [(A0 + A1)(B0 + B1)

+A0B0 + A1B1]x
n
2 + A1B1xn. (1)

FIGURE 1. High-level description of the KA decomposition.

We can use three stages (evaluation polynomial genera-
tion (EPG) stage, point-wise multiplication (PWM) stage,
and reconstruction (R) stage) to compute the product AB
in (1). Observing three sub-products {A0B0, (A0 + A1)
(B0+B1) = A01B01, A1B1} in (1), three stages can be defined
as
• EPG stage:EPG(B) = (B0, B0+B1, B1) andEPG(A) =
(A0, A0 + A1, A1).

• PWM stage: D = PWM (EPG(A), EPG(B)) =
(D0, D1, D2), whereD0 = A0B0,D1 = (A0+A1)(B0+
B1), and D2 = A1B1.

• R stage: C = (C0, C1, C2) = R(D) = (D0, D0+D1+

D2, D2).
Based on the recursive EPG step, each polynomial is

splitted into three polynomials with their degrees reduced
to about half of the original polynomial. The decomposition
algorithm is completed after each polynomial degenerates
into single-bit coefficient. The multiplication process based
on the recursive KA scheme is shown in the functional block
architecture of Fig. 1.
If n is a number of power of 3, two polynomials A and

B can be represented by A = A0 + A1xm/3
+ A2x2m/3 and

B = B0+B1xm/3
+B2x2m/3, respectively, where Ai and Bi are

(m3 )-bit polynomials. Based on the 3-way KA decomposition,
the product of A and B can be rewritten

C = AB = C0 + C1xm/3
+ C2x2m/3

+ C3xm + C4x4m/3,

(2)

where

D0 = A0B0, D1 = A1B1, D2 = A2B2,

D01 = (A0 + A1)(B0 + B1),

D12 = (A2 + A1)(B2 + B1),

D02 = (A0 + A2)(B0 + B2),

C0 = D0, C1 = D01 + D0 + D1,

C2 = D02 + D0 + D1 + D2,

C3 = D12 + D1 + D2, C4 = D2.

Let ‘‘S’’ and ‘‘D’’ to represent ‘‘space’’ and ‘‘delay’’,
respectively. Table 1 lists the time and space complex-
ities of each component for the 2-way and 3-way KA
decompositions.
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TABLE 1. Listing of the time and space complexities of the three components for KA decomposition with n = bi .

III. PROPOSED DIGIT-SERIAL KA-BASED
MULTIPLICATION
The proposed subquadratic space complexity digit-serial
multiplier based on KA decomposition is derived as follows.
Let the field be constructed from an irreducible polynomial
F(x) = xm + K (x), where K (x) =

∑k
i=0 fix

i over GF(2).
We can find that if k is a very small value, F(x) is abundant
in GF(2m) (the low-weight polynomials F(x), such as trino-
mials and pentanomials, exist in any field of GF(2m)). Since
F(x) = 0, we have

xm = K (x),

xm+1 = xK (x),
...

xm+d = xdK (x).

Suppose that n =
⌈m
d

⌉
, and m is divided by d , then based

on y = xd , we have

F(y) = xnd−mF(x) = yn + K , (3)

where

K = xnd−mK (x).

Thus, polynomials A =
∑m−1

i=0 aix i and B =
∑m−1

i=0 bix i

can be rewritten as A =
∑n−1

i=0 Aiy
i and B =

∑n−1
i=0 Biy

i,
respectively, where Ai =

∑d−1
j=0 adi+jx

j and Bi =∑d−1
j=0 bdi+jx

j. This polynomial formula is called the bivariate
polynomial. The product of A and B in GF(2m) must follow
the steps as:

1) Schoolbook multiplication: T = AB.
2) First reduction polynomial: D = T mod F(y).
3) Second reduction: C = D mod F(x).
As mentioned above, the multiplication process involves

sub-field multiplication steps, which is different from the tra-
ditional multiplication. Based on this multiplication scheme,
suppose thatAyi is denoted asA(i) =

∑n−1
j=0 A

(i)
j y

i, then we can

getA(i) = yA(i−1) modF(y), whereF(y) = yn+K . Therefore,
for the product C = AB mod F(x), we can use two-step
reduction polynomial to compute the product C = AB as:
• Step-1 (first reduction): T = A(0)B0 + A(1)B1 + · · · +
A(n−1)Bn−1, where A(i) = yA(i−1) mod F(y).

• Step-2 (second reduction): C = T modF(x).
For simplicity of discussion, let us define that PA =

EPG(A), PA � PB = PWM (PA,PB). Since A(i) =∑n−1
j=0 A

(i)
j y

i, where A(i)j is a d-bit polynomial in variable x,
A(i)Bj based on the KA approach can be expressed as

A(i)Bj =
n−1∑
j=0

R(PA(i)j
� PBi )y

j. (4)

Consequently, Algorithm 1 shows the proposed digit-serial
KA-based multiplication algorithm according to two-step
reduction polynomials. Fig. 2 shows the corresponding digit-
serial KA-based multiplier based on Algorithm 1. As shown
in Fig. 2, the proposed multiplication architecture consists of
×y, EPG1, EPG2, Mult, recovery multiplication (RM), and
final reduction polynomial (FRP) units.

Suppose that d is a power of b for b = 2 or 3, Table 2
lists the complexities of EPG, PWM, and R components for
b-way KA decomposition. The complexity of each compo-
nent in Fig. 2 is analyzed as follows:
• ×y unit: This unit performs A = Ay mod F(y) in Step
2.5 of Algorithm 1. Define that ×y unit involves Q1
XOR gates, where the value Q1 is based on the irre-
ducible polynomial F(x). Generally, we have Q1 = d
for trinomials or Q1 = 4d for pentanomials (see the
example of (15) later).

• EPG1 and EPG2 units: Since polynomial A is repre-
sented by a bivariate polynomial as A = A0 + A1y +
· · · + An−1yn−1, we use n EPG components in parallel
to compute PAi = EPG(Ai) for 0 ≤ i ≤ n − 1 (as seen
in Step 2.3). In Step 2.2, we use one EPG component to
compute PBi = EPG(Bi). Thus, EPG1 and EPG2 have
(n+ 1) SEPGX (d) space complexity with DEPGX (d) delay.
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TABLE 2. Listing of the complexities of the proposed structure and the existing digit-serial TOMs.

FIGURE 2. The proposed DL-SIPO KA-based multiplier.

• Mult unit: This step performs T =
∑n−1

j=0 PBi � PAjy
j in

Step 2.4 of Algorithm 1, which involves n PWM compo-
nents. Therefore, theMult unit requires nSPWMA (d) space
complexity.

• RM unit: The RM unit is based on the R component of
KA decomposition to performD = D+

∑n−1
i=0 R(Ti)y

i in
Step 2.4, and the result is stored in the register < D >.
According to Step 2.4, we have obtained that RM unit
is using n R components, namely, RM unit has nSRX (d)
space complexity with DRX (d) XOR gate delay.

• FRP unit: This unit is operating C = D mod F(x) =∑n−1
i=0 Diy

i mod F(x), where y = xd . Based on the

KA decomposition, each coefficient Di has (2d − 1)-bit
digit-size. Thus, let us define Di = D0,i + D1,iy, where
D0,i and D1,i have d-bit and (d − 1)-bit polynomials,
respectively. We have

C = D+ D1,n−1yn mod F(x), (5)

where

D = D0,0 + (D1,0 + D0,1)y

+ · · · + (D1,n−2 + D0,n−1)yn−1.

The computation of D has (n − 1)(d − 1) XOR gates.
Since D+D1,n−1yn is (nd + d − 1)-bit polynomial, the
FRP unit involves Q2 = (n−1)(d −1)+2d XOR gates
for trinomials, or Q2 = (n− 1)(d − 1)+ 4d XOR gates
for pentanomials.

As shown in Fig. 2, the digit-serial multiplier is com-
posed of three parts, so the designed multiplier requires
(n + 2) clock cycles, and the critical-path delay (CPD) is
MAX (DRX (d)TX ,TA+ (DEPGX (d)+1)TX ). As analyzed above,
the digit-serial multiplier has the following complexities:

#XOR = (n+ 1)SEPGX (d)+nSPWMX (d)+nSRX (d)+Q1+Q2,

#AND = nSPWMA (d),

#FF = 3nd + nSPWMA (d)− n,

delay = (n+ 2)MAX (DRX (d)TX , TA+(DEPGX (d)+1)TX ).

(6)

IV. PROPOSED DIGIT-LEVEL SERIAL-IN PARALLEL-OUT
THREE-OPERAND MULTIPLICATION
In this Section, we define a partial product formula to derive
the proposed TOM algorithm to achieve an architecture with
subquadratic space complexity.
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Algorithm 1 The proposed DL-SIPO Multiplication Algo-
rithm
Input: A and B are two polynomials in GF(2m)
Output: C = AB mod F(x)
1. Initial step:
1.1. A = A0 + A1y+ · · · + An−1yn−1;
1.2. B = B0 + B1y+ · · · + Bn−1yn−1;
1.3. D = 0;
2. Multiplication step:
2.1. for i = 0 to n− 1 do
2.2. PBi = EPG(Bi);
2.3. PA = [PA0 ,PA1 , · · · ,PAn−1 ], where PAi = EPG(Ai);
2.4. D = D+ R(

∑n−1
j=0 PBi � PAjy

j);
2.5. A = Ay mod F(y);
2.6. end for
2.7. C = D mod F(x);

A. DEFINITION OF THE PARTIAL PRODUCT FORMULA
Let the bivariate polynomial A in GF(2m) be written as A =
A0+A1y+ · · · +An−1yn−1 over GF(2) with y = xd . We can
define the following polynomial formula as

A(i) = A0 + A1y+ · · · + Aiyi. (7)

When i = 0, we haveA(0) = A0. In general, the polynomial
A(i) can be re-expressed as

A(i) = Aiyi + A(i−1). (8)

In order to derive the proposed TOM, let us define first the
novel partial formula in the following theorem.
Theorem 1: Let A and C be two polynomials in GF(2m)

constructed by the irreducible polynomial F(y). We can
define the partial product D(i)

= (A0 + A1y+ · · · + Aiyi)Cyi

mod F(y), where F(y) = yn+K. The partial product D(i) can
then be re-expressed as D(i)

= D(i−1)y+ AiCy2i mod F(y).
Proof: Assume that the partial product is defined by

D(i)
= (A0 + A1y + · · · + Aiyi)Cyi mod F(y). The product

D(i) can be rewritten as D(i)
= (A0 + A1y + · · · + Aiyi)Cyi

mod F(y) = [(A0 + A1y + · · · + Ai−1yi−1)Cyi−1]y + AiCy2i

mod F(y) = D(i−1)y+ AiCy2i mod F(y). �
Let us denote C (i)

= Cy2i mod F(y). The partial product
D(i) in Theorem 1 can be re-expressed as

D(i)
= D(i−1)y+ AiC (i) mod F(y). (9)

Besides that, we can list each partial product D(i) as fol-
lows:

D(0)
= A0C mod F(y),

D(1)
= (A0 + A1y)Cy mod F(y)=D(0)y+A1C (1) mod F(y),

...

D(i)
= D(i−1)y+ AiC (i) mod F(y).

As stated previously, we can use the iterative relation
of (2) to compute each partial product D(i). Following
this, we employ (2) to derive a new digit-serial TOM in
Section IV-B.

B. PROPOSED KA-BASED THREE-OPERAND MULTIPLIER
Using the polynomial presentation of (8), the product of A(i)

and B(i) is rewritten as

A(i)B(i) = (Aiyi + A(i−1))(Biyi + B(i−1))

= AiBiy2i + (AiB(i−1) + BiA(i−1))yi + A(i−1)B(i−1)

= (AiB(i) + BiA(i−1))yi + A(i−1)B(i−1). (10)

Given the recursive formula in (10), the partial product
A(i)B(i) can be obtained as

A(i)B(i) = A0B0 + (A1B(1) + B1A(0))y+ · · · + (AiB(i)

+BiA(i−1))yi = P(i) + Q(i), (11)

where

P(i) = A0B0 + A1B(1)y+ · · · + AiB(i)yi mod F(y),

Q(i)
= B1A(0)y+ B2A(1)y+ · · · + BiA(i−1)yi mod F(y).

We find that, since i = n − 1, C (n−1)
= P(n−1) + Q(n−1)

is exactly the product of A and B. Based on the recurrence
A(i)B(i) in (11), the TOM is derived as

E = ABC mod F(x)=P(n−1)C + Q(n−1)C mod F(x), (12)

where C is another polynomial in GF(2m). In the followings,
we give the process to derive two partial products P(n−1)C
and Q(n−1)C .
• Computing P(n−1)C : Based on the novel partial product
formula in Theorem 1, P(i)C in (12) can be rewritten as

P(i)C

= A0B(0)C + A1B(1)Cy+ · · · + AiB(i)Cyi mod F(y)

= A0D(0)
p + A1D

(1)
p + · · · + AiD

(i)
p mod F(y), (13)

where

D(i)
p = (B0 + B1y+ · · · + Biyi)Cyi mod F(y)

= D(i−1)
p y+ BiCy2i mod F(x).

Algorithm 2 illustrates the computation of P(i)C accord-
ing to (13). Based onAlgorithm 2, Fig. 3 shows the novel
digit-serial KA-based multiplier for computing P(i)C .
In order to reduce the CPD, Fig. 3 is decomposed into
three units (t0, t1, and t2 units). We then use the KA
decomposition to analyze the time and space complex-
ities of these three units (based on Section III). The
obtained complexities of EPG1, EPG2, Mult, RM, ×y,
and FRP components are already listed in Section III.
The t0 unit performs Steps 6.1, 6.2, 6.3, and 6.6 of Algo-
rithm 2, and it involves EPG1, EPG2, Mult-1, RM1,×y,
and×y2 components. The t1 unit performs Steps 6.4 and
6.5 of Algorithm 2, and it involves EPG1, EPG2,Mult-2,
RM2, and Add2 components. The t2 unit performs Steps
8 of Algorithm 2, and it involves FRP component. At the
initial step, register C is set as zero. After (n+ 1) clock
cycles, the product result is stored in register < E >,
one extra clock cycle is required in the t2 unit to produce
the final result P(n−1)C . Therefore, the computation of
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Algorithm 2 Computing the Product P(n−1)C Based on KA
Approach
Input: A, B, and C in GF(2m)
Output: P(n−1)C =

∑n−1
i=0 AiD

(i)
p mod F(y), where D(i)

p =

(B0 + B1y+ · · · + Biyi)Cyi mod F(y) and y = xd

Initial step:
1. A = A0 + A1y+ · · · + An−1yn−1

2. B = B0 + B1y+ · · · + Bn−1yn−1

3. C = C0 + C1y+ · · · + Cn−1yn−1

4. D = 0
5. E = 0
Multiplication step:
6. for i = 0 to n-1

6.1. PBi = EPG(Bi)
6.2. PC = [PC0 ,PC1 , · · · ,PCn−1 ],where PCi = EPG(Ci)
6.3.D = (D×y +R(PBi�PC ) mod F(y), wherePBi�PC =

[PBi � PC0 ,PBi � PC1 , · · · ,PBi � PCn−1 ]
6.4. PD = [PD0 ,PD1 , · · · ,PDn ] and PAi = EPG(Ai),

where PDi = EPG(Di)
6.5. E = E + R(PAi � PD)
6.6. C = Cy2 mod F(y)

7. end for
8. E = FRP(E)

P(n−1)C needs (n + 2) clock cycles, and the CPD is
MAX (Dt0 , Dt1 , Dt2 ).

• Computing Q(n−1)C : Since Q(n−1)C = B1A(0)Cy +
· · ·+BiA(n−2)Cyn−1 mod F(y),we can find that the term
D(i)
q = A(i−1)Cyi in Q(n−1)C is unsuitable for the partial

product formula in Theorem 1. To solve this problem,
D(i)
q multiplied by y can be rewritten as

D
(i)
q = D(i)

q y = ACyi mod F(x)

= (A0 + A1y+ · · · + Aiyi)Cyi mod F(x), (14)

where

A0 = 0,

· · · ,

Aj = Aj−1, for 1 ≤ j ≤ i.

As show in (14), we can then have

A =
n−1∑
i=0

Aiyi = A� 1,

where the symbol ‘‘� 1’’ denotes the right shifting of
polynomial A by sub-polynomial with d-bits. We can
find that the result D

(i)
q is suitable for the partial product

formula in Theorem 1. From (14), we have obtained
D(i)
q = D

(i)
q y
−1. Thus, Q(n−1)C can be expressed as

Q(n−1)C = y−1Q
(n−1)

C mod F(x)

= y−1(B0D
(0)
q + B1D

(1)
q

+ · · · + Bn−1D
(n−1)
q ) mod F(x). (15)

FIGURE 3. The proposed digit-serial KA-based multiplier for
computing P(i )C .

Therefore, we can use similar structure of Fig. 3 to
compute Q

(n−1)
C mod F(x) in (15).

According to the preceding analysis, the derived P(n−1)C
andQ(n−1)C formulas have the same structures. Note that the
KA block recombination (KABR) approach [21] so far leads
the best KA decomposition. Based on the KABR decomposi-
tion, Algorithm 3 shows the proposed KATOM based on (13)
and (15). Fig. 4 shows the proposed DL-SIPOKATOM based
on Algorithm 3. As shown in Fig. 4, the proposed structure
is divided into thee units (t0, t1, and t2). In the followings,
we analyze the complexities of thee units:

• t0 unit: This unit performs Steps 6.1, 6.2, 6.3, and
6.6 of Algorithm 3. It involves two EPG1 components,
one EPG2 component, two Mult-1 components, two
Add1 components, two ×y components, and one ×y2

component. The value Q1 is the space complexity of×y
component. As shown in Fig. 4, we have obtained that,
based on the KA decomposition approach, EPG1 has
one EPG component; EPG2 has n EPGs; Mult-1 has n
PWM components. Add1 component involves nd XOR
gates. Thus, t0 unit has (n + 2)SEPGX (d) + 2nSRX (d) +

2SAdd1X + 2S×yX + S×y
2

X XOR gates and 2nSPWMA (d)
AND gates, and its CPD is Dt 0 = (1 + DEPGX (d) +
DRX (d))TX + TA.
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Algorithm 3 The Proposed TOM Based on KA Approach
Input: A,B, and C in GF(2m)
Output: P(n−1)C =

∑n−1
i=0 AiD

(i)
p mod F(y), where D(i)

p =

(B0 + B1y+ · · · + Biyi)Cyi mod F(y) and y = xd

Initial step:
1. A = A0 + A1y+ · · · + An−1yn−1

2. B = B0 + B1y+ · · · + Bn−1yn−1

3. C = C0 + C1y+ · · · + Cn−1yn−1

4. D1 = D2 = 0
5. E = 0
Multiplication step:
6. for i = 0 to n− 1

6.1. PBi = EPG(Bi), PAi = EPG(Ai), and PC =

[PC0 ,PC1 , · · · ,PCn−1 ]
6.2. T1 = PBi � PC and T2 = PAi � PC
6.3. D1 = (D1 × y +R(T1)) mod F(y) and D2 = (D2 × y

+R(T2)) mod F(y)
6.4. PD1 = [PD1,0 ,PD1,1 , · · · ,PD1,n ], PD2 =

[PD2,0 ,PD2,1 , · · · ,PD2,n ], PBi = EPG(Bi), and
PAi = EPG(Ai)
6.5. E = E + R(PAi � PD1 + PAi � PD2 × y

−1)
6.6. C = Cy2 mod F(y)

7. end for
8. E = FRP(E)

• t1 unit: This unit performs PD1 = [PD1,0 , PD1,1 , · · · ,

PD1,n ], PD2 = [PD2,0 ,PD2,1 , · · · ,PD2,n ], PBi =

EPG(Bi), PAi = EPG(Ai), and E = E + R(PAi �
PD1 + PAi � PD2 × y−1) in Steps 6.4 and 6.5 of
Algorithm 3. As shown in Fig. 4, the symbol ‘‘<<1’’
is performed by ×y−1 without doing modulo reduction,
namely, it is done by right-to-left shifting. The compu-
tation of E = E + R(PAi � PD1 + PAi � PD2 × y−1)
involves one Add2 component, ‘‘<<1’’, two EPG1 com-
ponents, two EPG2 components, Add3 component, and
two Mult-2 components. The Mult-2 involves (n + 1)
PWM components with TA delay. Add2 performs the
sum of PAi � PD1 + PAi � PD2 × y−1, where PD1

involves (n+ 1)PD1,i sub-product results, and each PD1,i

has SPWMX (d) bits. Thus, Add2 has nSPWMX (d) XOR
gates with TX delay. Add3 component has nd + d
XOR gates. RM2 has (n + 1) R components. Thus, t1
unit has 2nSPWMA AND gates and (n+ 1)SRX (d)+ (2n+
4)SEPGX (d)+ SAdd2X + SAdd3X XOR gates, and the CPD is
Dt 1 = TA + (DEPGX (d)+ DRX (d)+ 2)TX .

• t2 unit: This unit performs E = FRP(E) in Steps 8 of
Algorithm 3. t2 unit involves one FRP component, which
has Q2 XOR gates, and the CPD is Dt 3 = 2TX .

At the initial step, register C is set as zero. After (n + 1)
clock cycles, the product result is stored in register < E1 >

and one more clock cycle is required for the t3 unit to
obtain the final result E = ABC . Therefore, the proposed
KATOM structure needs (n + 2) clock cycles, and the CPD
isMAX (Dt0 ,Dt1 ,Dt2 ). From the analysis above, the proposed

FIGURE 4. The proposed structure for computing TOM.

DL-SIPO KATOM is estimated as

#XOR = (3n+ 6)SEPGX (d)+ SAdd2X + 2SAdd1X + SAdd3X

+ (3n+ 1)SRX (d)+ 2S×yX + S
×y2

X + SFRPX ,

#AND = (4n+ 2)SPWMA (d),

#FF = 4nd + d,

delay = MAX (Dt0 ,Dt1 ,Dt2 ), (16)

where

SAdd1X = nd,

SAdd2X = nSPWMX (d),

SAdd3X = nd + d,

S×yX = Q1 = d,

S×y
2

X = 2Q1,

SFRPX = Q2 = (n− 1)(d − 1)+ 2d .

V. COMPLEXITY AND COMPARISON
The complexities of the proposed KATOM are evaluated
on the situation when the field is generated by trinomi-
als. Generally, the implementation of TOM can be real-
ized through strategies such as digit-serial [20] structure,
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TABLE 3. The synthesized results for our proposed structure and the best existing TOM over GF (2409).

KA-based bit-parallel [19] design, and 2 two-operand mul-
tiplier ones [10], [22], [23], [24]. While the implementation
of the proposed KATOM structure is based on the digit-serial
approach (as seen in Fig. 4) combined with KA decomposi-
tion. Table 2 shows the comparison of the proposed structure
and the existing TOM structures [20], [10], [22], [23], [24].
As shown in this table, for the same digit-size d , different
structures have different area and time complexities deter-
mined by their structuring styles. But it is worth mentioning
that the proposed KATOM structure can obtain subquadratric
space complexity, which leads to lower area complexity than
the existing ones.

To further estimate the area-time complexities of all these
designs, we have used the FreePDK base kit [25] and the
45-nm NanGate’s library to synthesize the proposed and the
existing TOMs. Note that in [20], Lee et al. have shown their
design outperforms the ones of [10], [22], [23], and [24],
we hence only list the design of [20] as comparison. Both
designs are synthesized at 1 GHz clock frequency. We have
chosen digit-size of d = 16 and 32 to synthesize our proposed
structure and the corresponding TOM ( [20]) over GF(2409).
After that, we estimate the CPD (ns), latency (clock cycles),
average computation time (ACT) (ns), and area complexity
(um2) of the two designs, respectively. Table 3 shows the
synthesized results for our proposed structure and the existing
TOM. As shown in this table, we find that the proposed
KATOM structure, for the digit-size 16 and 32, has about
28.6% and 43.7% savings in area-complexity, respectively,
when compared to the existing TOM, namely the proposed
TOM has significant lower area-complexity than the existing
one. Moreover, one can find that the proposed design has
smaller area-delay product (ADP) than the competing one (at
most 15.21% smaller), the overall area-time-complexities of
the proposed TOM is better than the existing one though the
proposed structure has slightly higher delay-complexity than
the existing TOM.

VI. CONCLUSION
In this paper, through two interdependent stages’ efforts,
we have presented a novel KA-based TOM for low-
complexity implementation. A novel digit-serial KA multi-
plier is introduced first. Then, we have defined a new partial
product formula to obtain an efficient derivation of TOM
algorithm. Based on the proposed algorithm, we have pro-
posed an efficient KATOM structure to further reduce the
space complexity (based on the proposed KA multiplier).

As shown from the estimated results, the proposed KATOM
structure has significant lower area complexity and smaller
ADP when compared to the competing TOM. The proposed
KATOM is quite regular and therefore can be extended and
employed in many cryptographic applications.
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