IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 24, 2018, accepted June 21, 2018, date of publication June 29, 2018, date of current version August 20, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2851604

Fast PageRank Computation Based on Network
Decomposition and DAG Structure

ZHIBO ZHU', QINKE PENG“'', ZHI LI2, XINYU GUAN', AND OWAIS MUHAMMAD'

ISystems Engineering Institute, Xi’an Jiaotong University, Xi’an 710049, China
2Works Applications China Company Ltd., Shanghai 200062, China

Corresponding author: Qinke Peng (gkpeng @mail.xjtu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61173111 and in part by the
Ph.D. Programs Foundation of Ministry of Education of China under Grant 20090201110027.

ABSTRACT PageRank has been widely used for the problem of evaluating the importance of data in
many applications, such as Web science, information systems, and social network analysis. As vast amounts
of data generate, the development of efficient PageRank computation is a vibrant area of contemporary
research. In this paper, we propose a fast PageRank computation method based on network decomposition
and the structure of directed acyclic graph (DAG). A network decomposition technique is first introduced
to decompose the original network into three parts, including a general sub-network and two sub-DAGs.
Based on the acyclic characteristic, we demonstrate that these two sub-DAGs can be theoretically lumped
into two single nodes by a similarity transformation. Then, the PageRank problem on the original network
is transformed into a PageRank problem on a much smaller network, and the full PageRank vector can be
easily recovered from the result of new problem. As the time taken by the estimation of PageRank is directly
proportional to the network size, the proposed method achieves an improved time complexity and is more
efficient as the size of two sub-DAGs increases. Experimental results on real data sets show that our method

provides a significant speedup compared with existing alternatives.

INDEX TERMS PageRank, link analysis, DAG structure, network decomposition.

I. INTRODUCTION
In recent years, many information systems are modeled as
complex networks, where nodes represent the data objects
and edges specify the relationships among them. Problems,
such as finding the most influencing node or top-K influ-
ential nodes in a network, arise in plenty of data mining
applications including information retrieval [1], [2], literature
analysis [3]-[5], and recommendation systems [6]. Many dif-
ferent methods have been studied to address these problems
by estimating the overall importance of nodes and ranking as
per their importance score [7]-[10]. Among those, PageRank
is one of the most popular measures, due to its successful
application in search engine and clear theoretical foundation.
The development of methods for efficient PageRank com-
putation is a vibrant area of contemporary research. The
representative algorithm is the power method, which stands
out for the stable and reliable performance [11]. However,
as an iterative algorithm, the power method calculates the
PageRank values of all nodes in each of its iterations. Hence
its application to large networks can take a considerable time
to yield results, such as web graph and citation network.

Another drawback of the power method is the indeterminate
convergence time, closely depending on the structure of net-
work itself and the prescribed parameters [12], [13].

Many studies aim to accelerate the PageRank computation
to remedy the shortcomings of the power method [14], [15].
The extrapolation method reduces the computation cost via
periodically subtracting off the estimates of nonprincipal
eigenvectors in the iteration [16]-[18]. The adaptive method
speeds up the algorithm with no recomputation for the con-
verged PageRank values, according to the discovery that the
convergence pattern of all PageRank values has a nonuniform
distribution [19]. The distributed randomized algorithms are
proposed based on the multi-agent consensus [20], [21],
and there also exist some advanced numerical computation
methods [22], [23].

Besides, some researchers paid attention to some special
kind of nodes in a network to reduce the size of system solved
by iterative computation. Ipsen and Selee [24] lumped the
dangling nodes in a network to improve the performance.
Lin et al. [25] improved the above method by lumping
two classes of nodes, including dangling nodes and weakly

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

41760

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5448-8529

Z.Zhu et al.: Fast PageRank Computation Based on Network Decomposition and DAG Structure

IEEE Access

dangling nodes, which only reach to dangling nodes. Based
on that, Yu et al. [26] gave a unified presentation of a few
lumping methods for the PageRank computation. In addition,
Langville and Meyer [27] proposed a reordered PageRank
algorithm, followed by Bu and Huang [28] who introduced
an adaptive reordered method for further speedup.

The existing methods are primarily based on the itera-
tive process which demands a set of iterations to converge.
Considering the scope of the PageRank problem, reducing
even a handful of iterations is praiseworthy. This paper
introduces a method for fast PageRank computation based
on network decomposition and DAG (directed acyclic graph)
structures, which is essentially distinguished from other
methods. We firstly decompose the original network into
three parts, including two sub-DAGs and a general sub-
network. Owe to the acyclic characteristic of DAGs, such as
food web [29] and disease network [30], [31], it is feasible
to lump two sub-DAGs into two single nodes respectively.
Accordingly, the final PageRank is obtained by solving prob-
lem on a much smaller network, leading to a great reduction
of the iteration cost.

The remainder of this paper is organized as follows.
In section II, we provide an overview of the concepts of
PageRank. Section III presents the proposed method for fast
PageRank computation together with its characteristics. The
experiments and case-study are included in section I'V. Con-
cluding remarks can be found in section V.

Il. PRELIMINARIES
PageRank was originally proposed to rank web pages by
assigning an importance score for each page [2]. The basic
idea is that the importance of any page in the web graph is in
relation to the quantity and the quality of the pages linking
to it. Specifically, the importance score of one web page
depends on two aspects: the number of its incoming hyper-
links and the importance scores of web pages linking to it.
Assume a web graph is represented as a directed network
G = (V,E),where V = {1,2,...,n} with n € N is the set
of nodes representing pages, and £ = {(i, j)| node i points
to j; i, j € V} is the set of edges as hyperlinks. A = (a;j)
is the adjacency matrix of G such that a;; = 1if (i,j) € E
and 0 otherwise. Let B; = {j|(j, i) € E} is the set of parent
nodes, and F; = {j|(i,j) € E} is the set of child nodes of
node i respectively. Then the PageRank value p; of node i is
formalized as below,

Pj
p=y M
s

The matrix form of the above iterative definition is
following,

pl =p'P 2

where p = [p1,...,p,]" is the PageRank vector, and
P = D7 'A with D = diag(max{|Fi|, 1}, max{|Fa|, 1}, ...,
max{|F,|, 1}) is the initial transition matrix.

VOLUME 6, 2018

If there are no out-links from node i, namely |F;| = 0,
the transition matrix P does not satisfy the necessary condi-
tion being row-stochastic. These nodes are dangling nodes,
which lead to a computation problem for PageRank. The most
popular remedy is uniformly connecting dangling nodes to all
nodes [12], namely

P =P+c-v 3)

where v = [1/n, ..., 1/n]T is the teleportation vector, and
¢ = [c1,...,cy)T in which ¢; is 1 if i is a dangling node
and 0 otherwise.

In addition, another possible problem is that some loops
may result in the rank sink in a network [11]. Considering
two nodes i and j that are pointing to each other only, while
node k is pointing to node i. Then during the computation
process, the PageRank values would be accumulated in this
loop only, and never distributed to other nodes as there are no
out-links to other nodes. The remedy for this problem of rank
silk is analogous to the modification for dangling nodes, and
the final transition matrix P” is as below,

P'=dP +(1 —d)e- V' @

where 0 < d < 1 is the damping factorand e = [1, .. ., 17.

This transformation retains the row-stochastic property of
the transition matrix. Finally, the PageRank vector is the
solution of the following eigenvector problem,

pT =pTP// — deP/ + (1 _ d)VT (5)

The definition of PageRank can be described as a random
walk model [32]: a walker starts at a uniformly chosen ran-
dom node, 1) from the dangling node, it teleports to a random
node; 2) from other node, it follows a uniformly selected out-
links with probability d, or teleports to a random node with
probability 1 — d. The PageRank value eventually means the
probability the walker visiting each node. Besides the uni-
form vector, the teleportation vector v can be any nonnegative
vector with ||v||; = 1, known as the personalization vector
in many applications [33]-[35]. The proposed method in this
paper is appropriate to any form of the teleportation vector.

Ill. FAST PAGERANK

There are many real systems modeled by directed networks,
such as web graphs, biological networks, and social net-
works [36]-[39]. Besides the cycles, there also exist some
sub-DAGs in these networks, especially the web graphs with
the bowtie structure. The intuition behind our method is that,
this special structure of sub-DAGs can minimize the number
of nodes, whose PageRank values need to be iteratively com-
puted. More specifically, if we can decompose the sub-DAGs
from the whole network and transform the original PageRank
problem into a smaller one, the cost for iterative computation
would be largely reduced such that improving the efficiency
of PageRank estimation. Fig.1 shows the framework of our
proposed fast PageRank method. In this section, we firstly
explain the network decomposition mechanism, then describe

41761

IEEE Access

Z.Zhu et al.: Fast PageRank Computation Based on Network Decomposition and DAG Structure

- e
A A -y -
) S, -” - Y P g
« \'?’ ¢ - o — e
A > R e
% K":.. g e te
C = R .

"N -
v
e N~
thwok

. T) decomposition
. L
= i -.I" d
I "=
T " =
T
R .

Decomposed network and
adjacency matrix

Original network and
adjacency matrix

[TT

thwork\ . nfag:;ii:kani X
Tl‘ansforma[io)/ compu /
[recovery

(LT T ——

Transformed network and

. . PageRank
adjacency matrix agehan

FIGURE 1. The flowchart of Fast PageRank. The whole process is divided into network decomposition, network transformation, and PageRank
computation and recovery. The original network is decomposed into three parts, including two sub-DAGs and one general sub-network. Then, two
sub-DAGs are lumped into two nodes respectively based on a similarity transformation, such that the original network is transformed into a much
smaller one. Finally, PageRank on this small network is computed and used to recover the original PageRank.

how to transform the original PageRank problem into a
smaller one, and recover the result of the original problem.
Finally, the algorithm analysis is provided.

A. NETWORK DECOMPOSITION

Same as section II, we denote a general directed network as
G = (V, E). For Vi, j € V, if there is a path that leads
from i to j, we call that j is reachable from i. Specifically,
if one node is reachable from itself, a cycle exists in the net-
work. Now, we introduce a particular technique to decompose
the original network into three parts, including two sub-DAGs
and one general sub-network.

As aforementioned, the nodes without out-links are dan-
gling nodes in a network, and as [26] states, the nodes without
in-links are referred to as unreferenced nodes. In the adja-
cency matrix A, the rows corresponding to dangling nodes
are 0T rows, and the columns corresponding to unreferenced
nodes are 0 columns. Moreover, if some nodes are iso-
lated, namely both dangling nodes and unreferenced nodes,
we regard them as the dangling nodes to simplify the descrip-
tion. By permuting the rows and columns of A, we can achieve
the goal that all 0T rows are at the bottom of A and all
0 columns are at the left of A, namely

0 * x
A=[0 A =« (6)
0O 0 O

where A represents the links among nodes that are neither
dangling nodes nor unreferenced nodes.

The matrix A can be regarded as an adjacency matrix
of a sub-network in G, thus there may exist 0T rows and
0 columns, that is, the sub-network also contains dangling
nodes and unreferenced nodes. Likewise, we permute A with
the above strategy that setting all 0T rows at bottom and all
0 columns at left, namely we separate the dangling nodes

41762

and unreferenced nodes of the sub-network corresponding
to A. This process of locating zero rows and columns can be
repeated recursively on the smaller and smaller middle sub-
matrices, until there are no zero rows and columns. Eventu-
ally, the adjacency matrix A is rearranged as below,

Al A A
A=| 0 Axn Axn @)
0 0 A3z

where A1 and A3z are strictly upper triangle matrices.

Finally, all nodes in the network G are sorted into three
classes: n; nodes corresponding to Aj; are the unrefer-
enced nodes in all middle sub-matrices, denoted as general
unreferenced nodes; 72 nodes corresponding to Apy are the
core nodes; and n3 nodes corresponding to A3z are general
dangling nodes containing the dangling nodes in all middle
sub-matrices (11 + ny 4+ n3 = n). Due to the above recursive
permutation, both Aj; and A3z are strictly upper triangle
matrices, and their corresponding sub-networks are DAGs.
Therefore, the above process decomposes the original
network into two sub-DAGs and one general sub-network.
Moreover, this decomposition is optimal, since there are no
dangling nodes and unreferenced nodes in the sub-network
corresponding to App. The transition matrix P of (7) has
following structure,

Pii Py Pp3
P=| 0 Pyn Py (8)
0 0 P33

where P11 and P33 are also two strictly upper triangle
matrices.

Algorithm 1 depicts our network decomposition algorithm
in detail. Inspired by the citation network where each article
has an attribute as the published time, we artificially assign a
time attribute #; for each node to observe the possible link
relations among nodes. Our algorithm searches all edges

VOLUME 6, 2018

Z.Zhu et al.: Fast PageRank Computation Based on Network Decomposition and DAG Structure

IEEE Access

related to general unreferenced nodes and general dangling
nodes, which is much smaller than |E|. In the algorithm,
r; is an indicator counting the total times that node i has been
visited. When r; is equal to the in/out-degree of a general
unreferenced/dangling node i, all its in/out-links have been
visited and #; would not be updated later. The algorithm
ensures that for Vi, j € V,, t; < t;if (i,j) € E, and for
Vi,j € Vy,t; > t;if (i,j) € E. Then we can compare any
pair of nodes by their time attributes, which extends V,, and
V4 to the totally ordered sets. After sorting nodes in V,, in
ascending order and nodes in V; in descending order by their
time attributes, the adjacency matrix is formed as (7).

Algorithm 1 Network Decomposition
Input: V, the set of nodes; E, the set of edges.
Output: V,,, general unreferenced nodes;
V., center nodes;
V4, general dangling nodes.
D V,=Vy=9
2) forVieV
3) sett;=1,r,=0
4) if |B;j| = 0 add i to list L,, else if |F;| = 0 add i to
list Ly
5) fornode iin L,
6) addito V,
7 forj € Fi:rj =rj+ 1,4 = max{tj, t; + 1},
if rp = |Bj|, add j to Lyext
8) if Lyexr 1s not empty, set L, = Lyeyr and clear Ly,
else break
9) fornodeiin Ly
10) addito Vy
11) forje Bi:rj=rj+1,4; = max{t, t; + 1},
if ri= |Fj|’ add j to Lyext
12) if Lyeyr 18 not empty, set Ly = Lyeyr and clear Lyeyy,
else break
13) Vo=V /V, I Vy
14) return V,, V., V,.

B. FAST PAGERANK COMPUTATION

Based on the above network decomposition, we introduce a
method to accelerate the PageRank computation. Our solu-
tion allows to transform the original PageRank problem into
a PageRank problem on a much smaller network, then recover
the results for the original problem. It minimizes the number
of nodes whose PageRank values need to be iteratively com-
puted. In order to achieve our goal, we first show that the
PageRank problem introduced in section II is equivalent to a
corresponding linear system [27], [28].

Theorem 1: Given a PageRank problem with the damping
factor d, the teleportation vector v, and the initial transition
matrix P. The estimation of PageRank by the eigenvector
problem p*P" = pT with pTe = 1 is equivalent to the linear
system xT(I — dP) = u" with v = u/ue, and normalizing x
to sumto I, thatis p = x/xTe.

VOLUME 6, 2018

Proof: According to (5), pT = p"P" = dp"(P + cv') +
(1 — d)vT, thus we have
p U —dP) = dp v + (1 —dp?
= pldc+ (1 = d)ey’
Regarding the linear system x (I — dP) = u! = (u'ep?,
if p = x/xTe, then p*(I — dP) = (u"e/xTe)vT. Therefore, we
only need to prove that pT(dc + (1 = d)e) = uTe/xTe. Since

¢ = [e1,...,cy]T indicates which nodes are the dangling
nodes, hence ¢ = e— Pe. Under condition p = x/xTe, we have

xT(dd — P)e + (1 — d)e)
=x"(I —dPe=u"e

xTepT(de + (1 — d)e)

The equation has been proved.]

Imagining the PageRank values as traffics flowing along
the edges in a network [40], they will keep a stationary
state when the incoming traffic for each node is equal to its
out traffic, then the PageRank values are the steady traffics.
Regarding the DAG in Fig.2, the ancestor nodes of any node
cannot overlap with its descendent nodes, and the traffic
of one node can only flow to its descendant nodes without
flowing circularly. That is, the PageRank value of one node
only depends on its ancestor nodes in DAGs. This property
is beneficial to lump two sub-DAGs corresponding to Py
and P33 in (8) into two single nodes, such that reducing the
network size of PageRank problem.

:— Descendant nodes

———— Child nodes

—— 1

Target node

b |
L Parentnodes
<~ |

[Ancestor nodes

FIGURE 2. An example of directed acyclic graph.

Partitioning I = [v?, vg, vg] with VT being n; x 1, v}
being ny x 1, and v;r being n3 x 1, consistently with the
network decomposition result, we define a matrix of order
ny + 2,

ulPrie WY(Prieul + Pio) hT(Pijeul + Pi3)e

P=| 0 Py Pye)
0 0 0
where u = [uf,uy,u;] = [{d — dPi)~" vy, v31/

[vT(I — dP“)_l, vg, vg]e and hT = u]r/ulTe.
The matrix P is row-stochastic except for the last 0T row.
Therefore, it can be regarded as an initial transition matrix

41763

IEEE Access

Z.Zhu et al.: Fast PageRank Computation Based on Network Decomposition and DAG Structure

of a PageRank problem on a network G containing ny + 2
nodes. Comparing P with P, we observe that the new network
G is formed by lumping the general unreferenced nodes
and general dangling nodes in G, as well as adjusting the
weights of corresponding edges. Theorem 2 presents our
major conclusion which demonstrates this lumping process
via a similarity transformation, and provides an expression
for the original PageRank vector pT in terms of the result of
a PageRank problem on G.

Theorem 2: Given a PageRank problem on a network G
that containing initial transition matrix P, damping factor d,
and teleportation vector v, a new network G with ny+2 nodes
can be formed by lumping general unreferenced nodes and
general dangling nodes in G via a similarity transformation.
Then, if 7T =

are two scalars, is the PageRank vector on G with damping
factor d and teleportation vector u, the original PageRank

T
[m, Tyt 10 nn2+2], where w1 and 1wp, 42

vector is given by p = x/xTe with xT = [xlT,sz,x3T],
where

xir = ﬂlhT

T T

X2 = Moyl (10)

x3 = (1 —d +dmp,12 + dx] Prie)u;
+dx{ P13 + dx) P33)(I — dP33)”"

Proof: According to the network decomposition
result (8) and Theorem 1, the original PageRank problem

is equivalent to the linear system x'(I — dP) = T,
namely
I —dPq —dPqp —dP13
], %0, %3] 0 I —dPy —dPy
0 0 I — dP33

T T T
= [vi,vy,v3]

Let y' = D.y].311 = [xf.x].x](— dP33)] and
wl = [W]T,wg,w;r] = [v?(l — dPll)_l,vg,vg], we have

yT(I —dQ) = wT, where

0 P Pi3
0=1|0 Py Py
0 0 0

Based on Theorem 1, this linear system is equivalent to a
PageRank problem with the damping factor d, the teleporta-
tion vector u = [u?, ug, ug] = wiwTe, and initial transition
matrix Q + bu® where b = e — Qe. Assuming that o'T is the
result of this PageRank problem, thus we have 6TQ” = o1
with

0" =dQ+bu")+ (1 —d)eu’

4 /! /!
11 Q12 13
T
= | U—=deu; 05 0O
T T T
eu, eu, eus

41764

where

0, = (1 — d)euj + dPyjeu]
0, =0- d)eu; + dPueu;F +dPp»
03 =(1-— d)eug + dPueu;r +dP3
05, = (1 — d)eul + dPy

Dy = (1 — d)eul + dPa3

Define a similarity transformation matrix S by

L' o o
s=| o 1, o0
0 0 Ly
where L, = [, — eeT/ny with ¢ = e —
; T
e; = [0,1,1,...,1]T, and L; = [! 1} with
_1}11—1 e
T = [u12/u1,1, u13/ut,1, -+, Ut /ur,1]l without loss

of generality. Their inverse matrices are L, ! =
I |:e elm —(Te+ DI

Tet1 | 1 /T

we achieve the similarity transformation for Q” by S. Set

W =[1,1T]/("e 4+ 1) = u] /u]e, it follows that

] and L;' = I,, + ée". Then

0 * *
SQ'sT'=10 O O
0 o0 0
where
hT Q/l/1 eT hT Q/1/2 hT /]/3 e
01 = | U—=deuje 05, 0).e
i uTe ug uge
O,
O =

Oy | Ly'[e2- - ens]
MT
L 3
[(1 —d +dh"Pr1e)uj + dh' Py3)
= (1 — d)eu + dP»3
T
U3

x (I, + 2eDler - ey]

Due to the similarity transformation, the matrix Qg is
row-stochastic of order n, + 2 with the same nonzero
eigenvalues as Q. Further, Q is a modified transition matrix
of the PageRank problem with uT, d, and initial transition
matrix (9)

B uiPrie hY(Piieuj +Prp) h'(Prieul + Pi3)e
P= 0 Py Py3e
0 0 0

Finally, we transform the original PageRank problem on
a network G with n nodes into the problem on a smaller
network G with ny + 2 nodes.

In the following, we show how to derive the original
PageRank vector by this smaller problem. Assume 7 is the
PageRank vector of P with uT and d, namely nTQl = 7T,

then the vector [0, 7T, 7TQ,] is an eigenvector for SQ”S !

VOLUME 6, 2018

Z.Zhu et al.: Fast PageRank Computation Based on Network Decomposition and DAG Structure

IEEE Access

associated with the eigenvalue 1. Due to the similarity trans-
formation, Q” has the same nonzero eigenvalues as Q.
Hence, [0, 7T, 7T7Q,]S is an eigenvector of Q" with the
eigenvalue 1, and a multiple of the stationary distribution o'
of Q”. By the following derivation, [0, 7T, 7TQ,]Se=1, thus
we express ol = [0, 7, nTQz]S. Return to the original
partition as (7) which separates the leading n; elements and
the last n3 elements,

" =[of. 0. o]
) L0 o0
T T T 1
=[O0, 7Lt 270D | O kO
B 0 0 Ly

= (0T7T1)L1_1, ng;ru-l—l’ (7Tn2+2nTQ2)L2]

= |mhA", JT;,,ZH, (7Tn2+27TTQ2)L2]
Regarding the trailing n3 elements, we have
T
h Qs
/!
23
us
m1((1 — dyuz + dh" (P11eu} + P13))
+ n§n2+1((1 — dYeus + dP3) + Tn, 12Ut
= (1—d + dmp, 12 + do Pi1e)u) + do P13 + doj Py

T T T
03 = (g2, T O =m

Since yT is a multiple of oT and xT = [xlT,sz,x3T] =

T, y3, yId — dP33)™'], we have
A= [xlTvsz»xaT] o [o], 05, 04 —dP33)"]

Meanwhile, xT is a multiple of pT with pTe = 1, therefore
the original PageRank vector is calculated by pT = [olT , 02T ,
o3 (I —dP33) Vo[, o), 0 (I — dP33)"']e. This completes
the proof of the theorem. g

Theorem 2 shows that to compute the PageRank vector pT
of the original network, we can solve a PageRank problem
on a much smaller network, and then recover the PageRank
vector pT based on (10). Since our focus is the relative
PageRank values rather than the absolute ones, the process
for normalization is usually unnecessary. The nonnormalized
PageRank vector has good potential to make the PageRank
values comparable across networks [41], and is robust to the
changes of network structure [42].

Algorithm 2 depicts the fast PageRank computation based
on Theorem 2. New teleportation vector u! and initial tran-
sition matrix P are first computed based on the network
decomposition result. Then our algorithm solves the smaller
PageRank problem on G by an iterative method. Since the
new network G is much smaller than the original one G, this
process can save a large amount of operations per iteration.
Finally, we recover the full PageRank vector. Except the
iterative computation on new network, other operations are
one-off. Two inverse matrices need to be computed, namely
(I — dPy1)~! and (I — dP33)~!. Since Pj; and P33 are

VOLUME 6, 2018

strictly upper triangle, I — dP11 and I — dP33 are two upper
triangle matrices. Taking R = I —dP; for example, elements
in the inverse matrix R~! can be computed directly by back-
ward substitution as follows,
0 i>j
rR:1=11 . i=j (11)
Cp—1 .
—1/2:i+] Rszkj i<j

Algorithm 2 Fast PageRank Computation
Input: P; d; T
Output: the PageRank vector pT.

1) compute u® and AT;

2) construct matrix P;

3) choose an initial vector 71 > 0 with ||z || = 1;

4) while not converged,

5) update 7T approximate to the true PageRank
vector of P;

6) compute xT with (10);

7) return x T /xTe.

C. ALGORITHM ANALYSIS

The proposed method consists of two different stages in the
whole view. The first one is the network decomposition which
separates all general unreferenced nodes and general dan-
gling nodes, such that the adjacency matrix is formed as (7).
Algorithm 1 assigns the time attributes to achieve this task.
The second one is computing the PageRank vector based on
Theorem 2. By lumping two sub-DAGs into two single nodes,
we transform the PageRank problem on a smaller network.
Our method leads to a large reduction of the iteration cost,
and should be more competitive as the size of sub-DAGs
increases.

As aforementioned, existing lumping methods also decom-
pose part of nodes from the whole network. Compared with
our method, earlier mentioned methods only focus on dan-
gling nodes or weakly dangling nodes, and just one refers
to unreferenced nodes [26]. With the network decompo-
sition, our method takes all general dangling nodes and
general unreferenced nodes into account, to decompose the
DAG structures whose PageRank values can be directly com-
puted. It is the extension of existing lumping methods, and
much more efficient by reducing the original PageRank prob-
lem to a much smaller one.

To a certain extent, our method is also similar to the adap-
tive method for PageRank computation. The adaptive method
indicates that the convergence rates of PageRank values have
a nonuniform distribution, that is, some nodes converge to
their true PageRank quickly, whereas others take a longer
time to converge [19]. In our method, the PageRank values
of general dangling nodes and general unreferenced nodes
are recovered directly by the non-iterative process which are
regarded as the fastest convergence, and others converge to
their truth values by the iterative computation.

41765

IEEE Access

Z.Zhu et al.: Fast PageRank Computation Based on Network Decomposition and DAG Structure

In the following, we analyze the time complexity of our
method. We denote the number of nonzeros in a matrix P
as nnz(P), which is also the number of edges in its corre-
sponding network. The first stage is the network decompo-
sition via algorithm 1. It only needs to traverse all edges
related to general unreferenced nodes and general dangling
nodes. Hence it needs nnz(P) — nnz(P2;) operations. Then,
the PageRank is computed by algorithm 2, containing the
iterative computation on a smaller network (step 3-5) and
some one-off computations for transformation and recovery
(step 1, 2, and 6). The cost of these one-off processes is about
nnz(P) — nnz(P>;) operations, mainly depending on the num-
ber of nonzeros in P11, P13, P13, P23, and P33. Meanwhile, the
PageRank solve on the smaller network requires O(nnz(P>>))
operations with the power method [27]. Since the time cost
of one-off steps is much smaller, the time complexity of
fast PageRank computation is about O(nnz(P2>)). Regarding
the PageRank solve on the original network, it needs about
O(nnz(P)) operations by the power method. Therefore, our
method is much more timesaving and the speedup is nearly
nnz(P)/nnz(Py)).

IV. EXPERIMENTS

We perform experiments on different datasets to evaluate the
efficiency of fast PageRank computation. As the extension
of lumping methods, our method is compared with existing
lumping methods firstly. Then, we compare our method with
other state-of-the-art methods for further elaboration. Finally,
we show an application on citation network. Without loss of
generality, we use the uniform vector v, and the convergence
tolerance is set to 10710, Each method is operated 5 times
on each dataset, and the average results are shown in the
paper. All experiments are conducted on a HP computer
with Intel(R) Xeon(R) processer with CPU 3.30GHz, and
RAM 16GB, under the Windows 10 64 bit operating system.

A. COMPARISON WITH LUMPING METHOD
Our method and baselines are implemented with d = 0.85 on
three web graphs, including wb-cs-Stanford matrix, Stanford
matrix, and Wikipedia-20070206 matrix. These datasets are
publicly available from the university of Florida sparse matrix
collection [43]. For each matrix, we set the diagonal ele-
ments to be zero, and the final matrices are listed in Table 1.
Regarding our method, we use the power method to solve
the smaller PageRank problem on G, denoted as Fast. Three
existing lumping methods are implemented as contrast meth-
ods, including Lump2, Reorder, and Lump5. Meanwhile, two
typical methods (Power and Jacobi) are also applied on the
original network. Table 2 summarizes these six methods.
The evaluation metric is the computation time. For Power
and Jacobi, the PageRank is computed only by the iterative
computation on the whole matrix. Regarding other methods,
there are two stages of the PageRank estimation. The first
stage is the node reordering or network decomposition, and its
time cost is #1. The second stage is computing the PageRank
values containing the iterative computation for the smaller

41766

TABLE 1. Experimental web matrices.

Whb-cs- Wikipedia-
Dataset Stnford S 0670206
Nodes 9914 281903 3566907
Edges 35555 2312497 45013315
Average out-degree 3.59 8.20 12.62
General unreferenced nodes 986 788 1146818
General dangling nodes 2822 24017 48415

TABLE 2. Summary of methods in first experiment.

Abbreviation Algorithm Description

Power The power method to compute the PageRank vector [11].

Jacobi The Jacobi method for solving the original problem [44].

Lump2 Lumping algorithm with respect to 2 types of nodes [24].

Reorder The recursively reordering algorithm for PageRank with
dangling nodes [27].

Lump5 Lumping algorithm with respect to 5 types of nodes [26].

Fast Fast PageRank computation combined with the power

method.

system, and the corresponding time is #. Finally the total time
costis t = t; + t, seconds.

We first try to illustrate the reordering strategies or net-
work decomposition in terms of Lump2, Reorder, Lump5,
and Fast. Taking the wb-cs-Stanford matrix for example,
Fig.3 shows the structures of the original matrix and those

2000}
4000

6000;

8000}

2000/
4000}

6000!

8000

0 2000 4000 6000 8000
()

0 2000 4000 6000 8000 0 2000 4000 6000 8000
(d) (e)

FIGURE 3. Structures of the original and reordered wb-cs-Stanford
matrices where the blue nodes are the nonzero elements and white
represents the zero elements.

VOLUME 6, 2018

Z.Zhu et al.: Fast PageRank Computation Based on Network Decomposition and DAG Structure

IEEE Access

being reordered by these four methods. We observe that much
more nodes whose PageRank values can be directly com-
puted, are decomposed from the original matrix (the blank
in the left and bottom in each figure). Indeed, the size of the
original matrix is 9914, hence Power and Jacobi have to solve
a system of size 9914 x9914. If the matrix is lumped based on
Lump2, one needs to iteratively solve a 6951x6951 system
for PageRank. Similarly, Reorder needs to iteratively solve
a 6391x6391 system, and Lump5 needs to iteratively solve
a 6341x6341 system. As the extension of these methods,
Fast computes the result by solving a PageRank problem
on a much smaller network with 6108 nodes, which can
significantly reduce the iteration time.

Table 3 shows the experimental results of these six methods
on each dataset, including the number of iterations and time
cost of each method. The best result for each dataset is in bold.
Comparing Power with Jacobi, we find that the convergence
rates are different for these two methods. The power method
is superior to the Jacobi method for wb-cs-Stanford and
Wikipedia-20070206 matrices, whereas the Jacobi method is
better on the Stanford matrix.

TABLE 3. Results in terms of relevant computation time in first
experiment (seconds).

Whb-cs- Wikipedia-

Stanford Stanford 20070206

Power iterations 93 104 81
t 3518 124.499 1265.141

Jacobi iterations 105 100 103
t 3.890 115.245 1464.079

Lump2 iterations 106 100 103
t 0.009 0.223 3.156

15} 2.909 105.419 1438.524

t 2918 105.642 1441.680

Reorder iterations 106 100 103
t 0.024 0418 4.364

b 2.691 101.984 1454.039

t 2.715 102.402 1458.403

Lump5 iterations 106 100 103
4 0.022 0.434 13.437

) 2.818 104.809 1073.257

t 2.840 105.243 1086.694

Fast iterations 93 104 81
t 0.038 0.465 17.756

15} 2.302 101.618 887.539

t 2.340 102.083 905.295

Then we analyze the results of Lump2, Reorder,
Lump5 and Fast, since they have similar procedures. Accord-
ing to 1, the iteration cost of Fast is the smallest, since the
problem it solves is much smaller than others. Meanwhile,
these four methods have better performance than Jacobi,
although they need to reorder nodes firstly. For wb-cs-
Stanford and Wikipedia-20070206 matrices, our method has
the best performance with 2.340s and 905.295s respectively,
against the second best method by a large margin. Regarding
Stanford matrix, our method and Reorder have almost the
same time cost. The reason is that, there are less general
unreferenced nodes in this network, and the cost required

VOLUME 6, 2018

by the reordering step may offset the decrease in the size of
problem solved by iterative computation.

Finally, we observe that our method is better than the
power method. Due to the great reduction of the network size
of PageRank problem, the time cost per iteration has been
reduced significantly. Hence, although our method consists
of two stages, the time for iterative computation is reduced
too much such that the time for other one-off steps can be
ignored. The speedup between Fast and Power is calculated
by s = t,/tr, where t, and t are the total time cost of Power
and Fast. The results for three matrices are 1.50, 1.22 and
1.40 respectively.

B. FURTHER COMPARISION

Our method is a framework for fast PageRank computa-
tion, which transforms the original PageRank problem into
a much smaller one. In fact, this smaller PageRank problem
has flexible solutions, and many advanced methods can be
applied to reduce the iteration cost, besides the power method
used in the above part. For further elaboration, we conduct
experiments on the same datasets in Table 1, by combining
our framework with other state-of-the-art methods including
Extra, PET, In-Out, PIO, and MPIO. Meanwhile, we also
implement these five methods on the whole matrices as base-
lines. Table 4 illustrates the experimental methods.

TABLE 4. Summary of methods in second experiment.

Abbreviation Algorithm Description
Extra The extrapolation method for PageRank computation [18].
PET The power method with the extrapolation process based
on trace [45].
In-Out The inner-outer stationary method for PageRank [22].
PIO A two-step matrix splitting iteration method [23].
MPIO Multi-step power-inner-outer computation method [46].
Fast+Extra Fast PageRank framework combined with Extra.
Fast+PET Fast PageRank framework combined with PET.
Fast+In-Out Fast PageRank framework combined with In-Out.
Fast+PIO Fast PageRank framework combined with PIO.
Fast+MPIO Fast PageRank framework combined with MPIO.

Table 5 lists the total computation time of these methods.
The best result for each dataset is in bold. Comparing with
the methods directly solving problems on the whole matri-

TABLE 5. Time cost of ten methods in second experiment (seconds).

Wikipedia-

Wb-cs-Stanford Stanford 20070206

Extra 3.443 122912 1203.984
Fast+Extra 2.342 96.370 827.829
PET 3.148 107.916 1161.729
Fast+PET 2.650 102.457 912.823
In-Out 2.834 111.133 1195.987
Fast+In-Out 1.848 103.327 1023.113
PIO 1.452 65.344 867.805
Fast+PIO 0.974 61.690 654.361
MPIO 0.737 36.593 542.441
Fast+MPIO 0.526 34.292 446.630

41767

IEEE Access

Z.Zhu et al.: Fast PageRank Computation Based on Network Decomposition and DAG Structure

ces, we observe that methods combined with fast PageRank
computation have significantly better performance. Taking
MPIO for example, there are critical improvements for wb-cs-
Stanford and Wikipedia-20070206 after being combined with
our framework. Even for the Stanford matrix, Fast+MPIO
can also be of much less time-consuming than MPIO. More-
over, since MPIO is superior to the Power method, the Jacobi
method, Extra, PET, In-Out, and PIO, Fast+MPIO obtains
the best results among all methods in Table 3 and 5. Com-
pared with the power method, it provides the speedup of
about a factor of 6.69, 3.63 and 2.83 for three matrices
respectively.

One point to be aware of is that, although PET outperforms
Extra in Table 5, Fast+PET is not better than Fast+Extra.
The reason is related to PET method, which is designed
based on the condition that copious dangling nodes exist in
a network [45]. Since there are many dangling nodes in the
original networks, PET is superior to Extra on the whole
matrices, which is in accordance with [45]. However, when
we combine PET with fast PageRank, our method trans-
forms the original PageRank problem into a new one on a
smaller network firstly. This new network contains only one
dangling node, which invalidates PET. Therefore, Fast+PET
becomes inferior to Fast+Extra. In order to avoid the above
case, we should take the characteristics of the state-of-the-
art method into consideration, when combining it with our
proposed framework for the better performance.

The results demonstrate that our method outperforms
baselines as the extension of lumping methods. It is pow-
erful for the PageRank computation by transforming the
original problem into a smaller one. Furthermore, fast
PageRank can be combined with other advanced methods
for further acceleration, and is more competitive for the
network whose ratio between nnz(P) and nnz(P>) is much
bigger.

C. APPLICATION ON CITATION NETWORK

Our method is able to contribute to the advancement of
many applications, such as the citation analysis in Academia.
The real paper citation network is nearly acyclic with sev-
eral cycles [47]. To show the applicability of our method,
we collect the data during the period January 1988 to
April 2014 from the Physical Review Journals. The raw data
containing 387977 papers are downloaded from the Web of
Science TM Core Collection in May 2014 and trimmed by
following preprocessing. We remove all papers that contain
attributes of false format or incomplete content. The citations
pointing to papers outside the dataset are also removed, that
is, we reserve only citations from Physical Review papers
to Physical Review papers. The final paper network contains
349022 nodes together with 3029754 directed edges.

To illustrate the cycles in the paper network, we achieve
the network decomposition by algorithm 1. There are
174695 general unreferenced nodes and 53135 general dan-
gling nodes, that is, there exist several cycles in this net-
work. This process requires about 3.424 seconds. Then,

41768

we compute PageRank on the citation networks with cycles
and without cycles by removing several relevant citations.
Comparing these two results, we find that the top-1000 papers
of two ranks are completely different. It demonstrates
that removing these citations has significant effect on the
final rank of papers, especially for the papers with bigger
PageRank values. Hence, these citations should be considered
during the PageRank computation.

Finally, we compute PageRank for the paper network with
different damping factors, and six methods including Power,
PIO, MPIO, Fast, Fast+PIO, and Fast+MPIO. Fig.4 shows
the total time of each method. In addition to modifying
the transition matrix of PageRank to overcome some possi-
ble problems, the damping factor also controls the conver-
gence rate of the iterative computation [13]. As the damping
factor increases, six methods cost much more time to com-
pute PageRank. Moreover, Fast+MPIO has the better perfor-
mance than MPIO except when the damping factor is equal
to0 0.15. The reason is MPIO converges so fast whend = 0.15,
that the cost required by other one-off steps offsets the cost
decrease of the iterative computation on the smaller network.
With regard to other methods, Fast is superior to Power
among all damping factors, and Fast+PIO outperforms PIO
as well. Hence, our method can be a good option for the
bibliometrics research in citation analysis.

Power ®Fast ®WPIO m®Fast+tPIO ®mMPIO mFast+MPIO
160
140
120
100
80
60
40

o ||I | T T e ———

0.85 0.7 0.5 0.3 0.15
damping factor d

time/s

FIGURE 4. Time cost of citation network with different damping factors.

V. CONCLUSION
In this paper, we proposed a fast PageRank computation
method, which combines a network decomposition and a
transformation of the PageRank problem. According to the
decomposition resulting in one general sub-network and two
sub-DAGs, we demonstrated that the original PageRank prob-
lem can be directly transformed into a smaller one by a
similarity transformation. It can be regarded as lumping two
sub-DAGs into two single nodes respectively. With attention
to all general unreferenced nodes and general dangling nodes,
our method transforms the PageRank problem into a new one
as small as possible, such that largely reducing the time cost
of iterative computation.

Empirical experiments on real datasets are conducted to
evaluate the proposed method. The results demonstrate that

VOLUME 6, 2018

Z.Zhu et al.: Fast PageRank Computation Based on Network Decomposition and DAG Structure

IEEE Access

fast PageRank outperforms the existing alternatives by a
large margin, which provides a significant speedup com-
pared with baselines. The efficiency of our method mainly
relates to the size of two sub-DAGs, thus it would become
more competitive as the size of two sub-DAGs increases.
As shown in the case study on citation network, our method
allows many applications to be implemented more effi-
ciently. Furthermore, many advanced computation meth-
ods can also be embedded in our framework for further
improvement.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Y. Jing and S. Baluja, ““VisualRank: Applying PageRank to large-scale
image search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11,
pp. 1877-1890, Nov. 2008.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the Web,”” Dept. Comput. Sci., Stanford Infolab,
Stanford, CA, USA, Tech. Rep., 1999. [Online]. Available:
http://ilpubs.stanford.edu:8090/422/

U. Senanayake, M. Piraveenan, and A. Zomaya, “The PageRank-
index: Going beyond citation counts in quantifying scientific impact of
researchers,” PLoS ONE, vol. 10, no. 8, p. e0134794, 2015.

Z. Li, Q. Peng, and C. Liu, “Two citation-based indicators to mea-
sure latent referential value of papers,” Scientometrics, vol. 108, no. 3,
pp. 1299-1313, 2016.

C. Gao, Z. Wang, X. Li, Z. Zhang, and W. Zeng, “PR-index: Using the
h-index and PageRank for determining true impact,” PLoS ONE, vol. 11,
no. 9, p. e0161755, 2016.

S. J. Yu, “The dynamic competitive recommendation algorithm in social
network services,” Inf. Sci., vol. 187, pp. 1-14, Mar. 2012.

J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
J. ACM , vol. 46, no. 5, pp. 604-632, 1999.

J. Bjelland, M. Burgess, G. Canright, and K. Engg-Monsen, “Eigenvec-
tors of directed graphs and importance scores: Dominance, T-Rank, and
sink remedies,” Data Mining Knowl. Discovery, vol. 20, pp. 98-151,
Jan. 2010.

H. H. Bi, J. Wang, and D. K. J. Lin, “Comprehensive citation index
for research networks,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 8,
pp. 1274-1278, Aug. 2011.

J. Liu et al., “A new method to construct co-author networks,” Phys. A,
Stat. Mech. Appl., vol. 419, pp. 29-39, Feb. 2015.

P. Berkhin, “A survey on PageRank computing,” Internet Math., vol. 2,
no. 1, pp. 73-120, 2005.

M. Bianchini, M. Gori, and F. Scarselli, “Inside PageRank,” ACM Trans.
Internet Technol., vol. 5, no. 1, pp. 92—128, 2005.

A. N. Langville and C. D. Meyer, “Deeper inside PageRank,” Internet
Math., vol. 1, no. 3, pp. 335-380, 2004.

F. Chung, “A brief survey of PageRank algorithms,” IEEE Trans. Netw.
Sci. Eng., vol. 1, no. 1, pp. 3842, Jan. 2014.

A. Arasu, J. Novak, A. Tomkins, and J. Tomlin, “PageRank com-
putation and the structure of the Web: Experiments and algorithms,”
in Proc. 11th Int. World Wide Web Conf., Poster Track, 2002,
pp. 107-117.

A. Sidi, “Vector extrapolation methods with applications to solution of
large systems of equations and to PageRank computations,” Comput.
Math. Appl., vol. 56, no. 1, pp. 1-24, 2008.

H. Migallén, V. Migallén, J. A. Palomino, and J. Penadés, “A heuristic
relaxed extrapolated algorithm for accelerating PageRank,” Adv. Eng.
Softw., vol. 120, pp. 88-95, Jun. 2018.

T. Haveliwala, A. Kamvar, K. Dan, C. Manning, and G. Golub,
“Computing PageRank using power extrapolation,” Dept. Comput. Sci.,
Stanford Univ., Stanford, CA, USA, Tech. Rep., 2003. [Online]. Available:
http://ilpubs.stanford.edu:8090/605/

S. Kamvar, T. Haveliwala, and G. Golub, “Adaptive methods for the
computation of PageRank,” Linear Algebra Appl., vol. 386, pp. 51-65,
Jul. 2004.

H. Ishii and R. Tempo, “Distributed randomized algorithms for the
PageRank computation,” IEEE Trans. Autom. Control, vol. 55, no. 9,
pp. 1987-2002, Sep. 2010.

VOLUME 6, 2018

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]
(43]
[44]
[45]

(46]

H. Ishii, R. Tempo, and E. W. Bai, “A Web aggregation approach for dis-
tributed randomized PageRank algorithms,” IEEE Trans. Autom. Control,
vol. 57, no. 11, pp. 2703-2717, Nov. 2012.

D. F. Gleich, A. P. Gray, C. Greif, and T. Lau, “An inner-outer iteration for
computing PageRank,” SIAM J. Sci. Comput., vol. 32, no. 1, pp. 349-371,
2010.

C. Q. Gu, F. Xie, and K. Zhang, “A two-step matrix splitting iteration
for computing PageRank,” J. Comput. Appl. Math., vol. 278, pp. 19-28,
Apr. 2015.

I. C. F Ipsen and T. M. Selee, “PageRank computation, with special
attention to dangling nodes,” SIAM J. Matrix Anal. Appl., vol. 29, no. 4,
pp. 1281-1296, 2007.

Y. Q. Lin, X. H. Shi, and Y. M. Wei, “On computing PageRank via lumping
the Google matrix,” J. Comput. Appl. Math., vol. 224, no. 2, pp. 702-708,
2009.

Q. Yu, Z. K. Miao, G. Wu, and Y. Wei, “Lumping algorithms for comput-
ing Google’s PageRank and its derivative, with attention to unreferenced
nodes,” Inf. Retr., vol. 15, no. 6, pp. 503-526, 2012.

A. N. Langville and C. D. Meyer, “A reordering for the PageR-
ank problem,” SIAM J. Sci. Comput., vol. 27, no. 6, pp. 2112-2120,
2006.

Y.-M. Bu and T.-Z. Huang, “An adaptive reordered method for computing
PageRank,” J. Appl. Math., vol. 2013, Jul. 2013, Art. no. 507915.

S. Allesina and M. Pascual, “Googling food Webs: Can an eigenvector
measure species’ importance for coextinctions,” PLoS Comput Biol, vol. 5,
no. 9, p. ¢1000494, 2009.

D. Wang, J. A. Wang, M. Lu, F. Song, and Q. Cui, “Inferring the
human microRNA functional similarity and functional network based
on microRNA-associated diseases,” Bioinformatics, vol. 26, no. 13,
pp. 1644-1650, 2010.

P.J. Ding,J. W. Luo, Q. Xiao, and X. T. Chen, “A path-based measurement
for human miRNA functional similarities using miRNA-disease associa-
tions,” Sci. Rep., vol. 6, p. 32533, Sep. 2016.

S. Fortunato and A. Flammini, “Random walks on directed networks: The
case of PageRank,” Int. J. Bifurcation Chaos, vol. 17, pp. 2343-2353,
Jul. 2007.

T. H. Haveliwala, “Topic-sensitive PageRank: A context-sensitive ranking
algorithm for Web search,” IEEE Trans. Knowl. Data Eng., vol. 15, no. 4,
pp. 784-796, Jul. 2003.

J. H. Kim, K. S. Candan, and M. L. Sapino, ‘“Locality-sensitive and
re-use promoting personalized PageRank computations,” Knowl. Inf. Syst.,
vol. 47, no. 2, pp. 261-299, 2016.

M. Pirouz and J. Zhan, “Toward efficient hub-less real time personalized
PageRank,” IEEE Access, vol. 5, pp. 26364-26375, 2017.

G. Ivan and V. Grolmusz, “When the Web meets the cell: Using personal-
ized PageRank for analyzing protein interaction networks,” Bioinformat-
ics, vol. 27, no. 3, pp. 405-407, 2011.

M. Shrestha and C. Moore, ‘“Message-passing approach for threshold
models of behavior in networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 89, no. 2, p. 022805, 2014.

J. Heidemann, M. Klier, and F. Probst, “Identifying key users in
online social networks: A PageRank based approach,” in Proc. ICIS,
2010, pp. 1-21.

K. Weiand, F. Kneif)l, W. Lobacz, T. Furche, and F. Bry, “PEST: Fast
approximate keyword search in semantic data using eigenvector-based
term propagation,” Inf. Syst., vol. 37, no. 4, pp. 372-390, 2012.

X. H. Li, J. Kurths, C. Gao, J. W. Zhang, Z. Wang, and Z. L. Zhang,
“A hybrid algorithm for estimating origin-destination flows,” IEEE
Access, vol. 6, 2018.

K. Berberich, S. Bedathur, G. Weikum, and M. Vazirgiannis, “Comparing
apples and oranges: Normalized PageRank for evolving graphs,” in Proc.
16th Int. Conf. World Wide Web, 2007, pp. 1145-1146.

C. Engstrom and S. Silvestrov. (2013). ““PageRank for evolving link struc-
tures.” [Online]. Available: https://arxiv.org/abs/1401.6092

T. A. Davis and Y. F. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, 2011, Art. no. 1.

C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia,
PA, USA: SIAM, 2000.

X. Y. Tan, “A new extrapolation method for PageRank computations,”
J. Comput. Appl. Math., vol. 313, pp. 383-392, Mar. 2017.

C. Wen, T.-Z. Huang, and Z.-L. Shen, “A note on the two-step matrix
splitting iteration for computing PageRank,” J. Comput. Appl. Math.,
vol. 315, pp. 87-97, May 2017.

41769

IEEE Access

Z. Zhuetal.

: Fast PageRank Computation Based on Network Decomposition and DAG Structure

[47] J. D. West, I. Wesley-Smith, and C. T. Bergstrom, “A recommenda-
tion system based on hierarchical clustering of an article-level cita-
tion network,” IEEE Trans. Big Data, vol. 2, no. 2, pp. 113-123,
Jun. 2016.

ZHIBO ZHU received the B.Sc. degree in automa-
tion science and technology from Xi’an Jiaotong
University, China, in 2013, where he is currently
pursuing the Ph.D. degree with the Systems Engi-
neering Institute. His current research interests
include time series analysis, network analysis, and
deep learning for these areas.

QINKE PENG received the B.Sc. degree in math-
ematics and the M.Sc. and Ph.D. degrees in sys-
tems engineering from Xi’an Jiaotong University,
China, in 1983, 1986, and 1990, respectively. He
was with the CIMS Research Center, Xi’an Jiao-
tong University, before 1994. He is currently the
Director of the Department of Automation Sci-
ence and Technology and a Faculty Member with
the Systems Engineering Institute, Xi’an Jiaotong
University. His research interests focus on mining,

modeling, and analysis of big data with the application of online public
opinion monitoring, biological, network, and financial information analysis,

and so on.

—
1

41770

Z

ZHI LI received the B.Sc. degree in automation
science and technology and the M.Sc. degree in
systems engineering from Xi’an Jiaotong Univer-
sity, China, in 2013 and 2016, respectively. His
M.Sc. research area was citation network analysis
and recommendation algorithm for the literature.
He is currently a Manager Candidate with Works
Applications China Company Ltd.

XINYU GUAN received the B.Sc. degree in
automation science and technology from Xi’an
Jiaotong University, China, in 2013, where he
is currently pursuing the Ph.D. degree with the
Systems Engineering Institute. His major research
interests are recommender systems and natural
language processing.

OWAIS MUHAMMAD received the B.Sc. degree
in electronics engineering from Dawood-UET
Karachi, Pakistan, in 2015. He is currently pursu-
ing the M.Sc. degree with the Systems Engineering
Institute, Xi’an Jiaotong University, China. His
research interests include network data analysis
and deep learning.

VOLUME 6, 2018

	INTRODUCTION
	PRELIMINARIES
	FAST PAGERANK
	NETWORK DECOMPOSITION
	FAST PAGERANK COMPUTATION
	ALGORITHM ANALYSIS

	EXPERIMENTS
	COMPARISON WITH LUMPING METHOD
	FURTHER COMPARISION
	APPLICATION ON CITATION NETWORK

	CONCLUSION
	REFERENCES
	Biographies
	ZHIBO ZHU
	QINKE PENG
	ZHI LI
	XINYU GUAN
	OWAIS MUHAMMAD

