
Received May 30, 2018, accepted June 24, 2018, date of publication June 29, 2018, date of current version July 30, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2851611

A Blockchain-Based Framework for Data Sharing
With Fine-Grained Access Control in
Decentralized Storage Systems
SHANGPING WANG1, YINGLONG ZHANG 1, AND YALING ZHANG 2
1School of Science, Xi’an University of Technology, Xi’an 710048, China
2School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

Corresponding author: Yinglong Zhang (ylzhang3550@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grants 61572019 and 61173192, and in part
by the Key Project of Natural Science Foundation of Shaanxi Province of China under Grant 2016JZ001.

ABSTRACT In traditional cloud storage systems, attribute-based encryption (ABE) is regarded as an
important technology for solving the problem of data privacy and fine-grained access control. However,
in all ABE schemes, the private key generator has the ability to decrypt all data stored in the cloud server,
which may bring serious problems such as key abuse and privacy data leakage. Meanwhile, the traditional
cloud storage model runs in a centralized storage manner, so single point of failure may leads to the collapse
of system. With the development of blockchain technology, decentralized storage mode has entered the
public view. The decentralized storage approach can solve the problem of single point of failure in traditional
cloud storage systems and enjoy a number of advantages over centralized storage, such as low price and high
throughput. In this paper, we study the data storage and sharing scheme for decentralized storage systems and
propose a framework that combines the decentralized storage system interplanetary file system, the Ethereum
blockchain, and ABE technology. In this framework, the data owner has the ability to distribute secret key for
data users and encrypt shared data by specifying access policy, and the scheme achieves fine-grained access
control over data. At the same time, based on smart contract on the Ethereum blockchain, the keyword search
function on the cipher text of the decentralized storage systems is implemented, which solves the problem
that the cloud server may not return all of the results searched or return wrong results in the traditional cloud
storage systems. Finally, we simulated the scheme in the Linux system and the Ethereum official test network
Rinkeby, and the experimental results show that our scheme is feasible.

INDEX TERMS ABE, Ethereum blockchain, smart contract, IPFS, access control, keyword searchable.

I. INTRODUCTION
With the rapid development of internet technology, cloud
storage has become an important business model in our daily
life. It has provided different kinds of data storage services
for individuals and enterprises, making it possible for users
to access Internet resources and share data at anytime and
anywhere, it has brought great convenience to our lives.
Such cloud storage systems has been very successful and
has gained increasing acceptance, however, as such kind of
systems only depends on a large company with a strong
storage capacity to store and transmit data, in which the large
company is regarded as a trusted third party, it inevitably
inherits the single point of failure drawback of relying on third
party services. Even if cloud storage systems are backed up
for data availability, cloud storage services providers may still

suffer from certain factors of force Majeure (such as political
censorship) lead to users will not be able to access their own
data. In addition, with the development of storage technology,
the cost of storage devices has become smaller and smaller.
The cost of centralized cloud storage services comes mainly
from employee wages, legal costs, and data center rentals, etc.
These fixed costs are unchanged or gradually increased. The
price of the centralized cloud storage services will be higher.

From the above point of view, the future needs a decen-
tralized storage approach to provide people with data storage
and sharing services. It does not need to trust that third parties
will honestly transmit and store data for us, nor does it need
to worry about data being inaccessible. Fortunately, with
the advent of Bitcoin, its underlying technology blockchain
can bring an elegant implementation to such decentralized

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

38437

https://orcid.org/0000-0002-5685-1379
https://orcid.org/0000-0002-1759-6678

S. Wang et al.: Blockchain-Based Framework for Data Sharing With Fine-Grained Access Control

storage systems. The emergence of the blockchain has
enabled us to connect the P2P cryptocurrency with storage
space, bandwidth, CPU power, etc. Imagine that we can lease
free extra hard disk space over the internet and get a return on
cryptocurrency [1]. Users don’t have to worry that they won’t
be able to access their own data, because the availability of
data can be guaranteed by smart contracts deployed on the
blockchain, and they just have to pay a regular fee for the
data they have stored.

In traditional cloud storage systems, if users want to
secretly share data stored in a third-party cloud server, a tech-
nology is needed to achieve access control over data that can
only be accessed and decrypted by a specific user. Driven by
this demand, the attribute-based encryption mechanism [2]
(ABE) was proposed and rapidly developed. Through this
mechanism, the data owner can specifies the data access pol-
icy based on the user’s identity and attributes to achieve fine-
grained access control over data. Almost all ABE encryption
schemes require a trusted private key generator (PKG) to
setup the system and distribute the corresponding secret key
for users [3]. There are a lot of problems with such a system.
Firstly, it is difficult to find a trusted PKG in reality. Secondly,
such a system has the problem of the key abuse, the ownership
of users data is not controlled in their own hands. The PKG
has the ability to decrypt all data in the server, and PKG may
leak users data for reasons such as certain interests or political
censorship, etc. Once the data owner loses its own secret key,
he can’t even decrypt his own data, and PKG can still decrypt
the users data. In practical applications, there are situations
where we need data owner to have the ability to control their
own data and distribute secret key for users. For example,
a data manager in a hospital should be able to distribute secret
key for his doctors and related staff so that they can access
different levels of data according to their position.

To better protect the privacy and availability of data,
we should transfer data storage and sharing from the cen-
tralized cloud storage systems to the decentralized storage
systems, which have a lower prices than traditional cloud stor-
age, the advantage of large data throughput, but also the need
to stop worrying about single point of failure. In the existing
decentralized storage systems, it is very simple to implement
encryption and storage of data, but how to address the secretly
sharing of data is an urgent problem to be solved. In this paper,
we propose a framework that can achieve fine-grained access
control over data in decentralized storage systems, and search
the data based on the interesting keywords.

The contributions of this paper are as follow:
(1) We propose a framework that combines the decen-

tralized storage system IPFS, the Ethereum blockchain, and
attribute-based encryption(ABE) technology to achieve fine-
grained access control over data in decentralized storage
systems. The data owner is the only one who controls his own
data, trusted PKG is not needed in our system, and the data
owner has the ability to distribute secret key for data users,
which is more flexible than the traditional ABE schemes.
At the same time, the Ethereum blockchain is used to manage

the users secret key, the problem of key management in the
traditional ABE schemes is solved. When a user forgets his
own secret key, he only needs to read the corresponding
transactions data from the Ethereum blockchain, and decrypts
it to get its own secret key information.

(2) Through the building of encrypted keyword indexs for
the shared file, the encrypted keyword indexs information is
stored on the Ethereum blockchain, furthermore, the smart
contract is deployed on the Ethereum blockchain to imple-
ment the keyword search in the decentralized storage systems.
Once the smart contract is deployed, it will operate in good
faith and in accordance with the logic of the smart contract,
and only if the users retrieves the correct search results,
the service fee will be paid. The problem that search service
providers may not return search results honestly in traditional
cloud storage is solved in our scheme.

(3) Under the Ubuntu Linux system, a simulation of the
system scheme is carried out through the Ethereum official
test network Rinkeby, and the corresponding performance
and cost were analyzed.

The rest of the paper is organized as follows. Section II
consist of related work, Section III review the preliminaries
used throughout this paper. In Section IV, the system model
is described in detail. A case study is presented in Section V,
and the performance and security analysis is discussed in
Section VI. Finally, the conclusion and future direction is
presented.

II. RELATED WORK
A. BLOCKCHAIN TECHNOLOGY
In recent years, decentralized cryptocurrency (such as Bit-
coin [4], Ethereum [5], Zcash [6], etc.) have become hot, and
the blockchain technology as the underlying technology of
cryptocurrency has been paid to more and more attention.
Nowadays, the blockchain has been playing a major role in
the financial field [7]. In addition, it has been found to be
useful in many other non-financial fields. Such as: decentral-
ized supply chain [8], identity-based PKI [9], decentralized
proof of document existence [10], decentralized IOT [11],
decentralized storage [12]–[14], etc.

In order to allow data owner to own and control their
own data, a personal data management system based on
blockchain technology [15] has been proposed, the sys-
tem can get better protection of the privacy of users data.
In order to solve the problem of data privacy in IOT systems,
a blockchain architecture system for IOT [16] was proposed,
inwhich attribute-based encryption (ABE) technology is used
to implement data access control. For the purpose of solving
the security and privacy issues that hinder the development
of big data, a blockchain-based access control framework
for enhancing the security of big data platforms [17] was
proposed.

Decentralized storage systems (such as IPFS [13],
Storj [12], Sia [18], etc.) do not rely on a central service
provider, allowing users to store files to storage nodes that
rent out free storage space. These systems use blockchain

38438 VOLUME 6, 2018

S. Wang et al.: Blockchain-Based Framework for Data Sharing With Fine-Grained Access Control

as their core structure. As a content-addressed decentralized
storage platform, IPFS uses Filecoin [14] as an incentive
layer to incent nodes to provide storage and retrieval services.
We noticed that IPFS does not provide a strong privacy cryp-
tographic algorithm interface for user-uploaded files. In con-
trast, the Storj platform provides an end-to-end encryption
approach, and stores cryptographic hash fingerprint of file
on the blockchain while providing a method of verifying file
integrity. The Sia platform combines blockchain technology
with a peer-to-peer storage network, splits the uploaded file
into multiple file segments, and encrypts each segment. The
file ciphertext is sent to the nodes that provide storage service
through smart contracts. The users pays Siacoin for the stor-
age service, and the storage nodes periodically submits a file
proof of storage to prevent the storage node from deleting the
stored file.

B. ATTRIBUTE-BASED ENCRYPTION TECHNOLOGY
In traditional cloud storage, attribute-based encryption tech-
nology [2] can achieve fine-grained access control over
data. In this technique, attributes are used instead of iden-
tities. Data owner can assign the users groups that can
access the data by setting an access policy. Only the users
whose attributes set meet the access policy can access the
data. Since attribute-based encryption technology was pro-
posed, many research works have been done in many ways
driving by actual needs, and have achieved many signifi-
cant research results. For example, in a practical applica-
tion, if the users attributes change, the corresponding users
secret key must also be changed accordingly, so attribute
revocable attribute-based encryption schemes [19]–[22]
are proposed; as access policies may be revealed impor-
tant privacy information of users, attribute-based encryption
schemes with hidden access policy [23], [24] were pro-
posed; in many commercial application scenarios, multiple
attribute authorities are required for attribute distribution and
management, so multi-authority attribute-based encryption
schemes [25]–[27] has been developed. In addition, with
the widespread application of mobile devices with limited
computing and storage resources, outsourced decryption in
attribute-based encryption schemes [28], [29] are proposed.

At present, attribute-based encryption technology has been
well developed and applied in traditional cloud storage sys-
tems, but there is no research project to achieve fine-grained
access control over data in decentralized storage systems.

C. KEYWORD SEARCHABLE TECHNOLOGY IN
DECENTRALIZED STORAGE SYSTEMS
In 2000, Song et al. [30] first proposed a one-to-one
symmetric searchable encryption mechanism. In traditional
cloud storage systems, searchable encryption technology has
obtained a lot of research results. Such as: public key search-
able encryption [31], searchable encryption supporting mul-
tiple keywords [32], [33] and so on.

After the emergence of the blockchain, many scholars
began to study how to transfer the traditional data storage and

sharing to the decentralized storage systems. Li et al. [34]
proposed a searchable symmetric encryption scheme using
the Bitcoin blockchain system. In this scheme, users data
and encrypted keyword indexes are split and stored on the
blockchain, but a large amount of data storage will cause
the expansion of the blockchain, and it cannot achieve fine-
grained access control over data. Cai et al. [35] proposed a
trustworthy and privacy keyword search scheme in encrypted
decentralized storage. The scheme combines an efficient
dynamic searchable encryption scheme with blockchain to
solve the problem of fairness between the client and the
service nodes. Do and Ng et al. [36] proposed a decentralized
storage system using blockchain technology and a privacy
keyword search scheme in the system. Jiang et al. [37] pro-
posed a blockchain-based privacy keyword search scheme in
decentralized storage, which implements oblivious keyword
search in the decentralized storage systems. In these schemes,
the relatively mature decentralized storage systems have not
been used, and these schemes are still in the theoretical stage.
The feasibility and stability have not been validated.

III. PRELIMINARIES
In this section, we review some of the relevant background
knowledge and related knowledge that will be used in this
paper. Table. 1 presents some of the notations used throughout
the paper.

TABLE 1. Notations table.

A. ATTRIBUTE-BASED ENCRYPTION
1) BILINEAR MAPPING
Let G0 and GT be cyclic multiplicative group of big prime
order p, g be a generator ofG0, and we denote the identity of
GT as 1. We call ê : G0 × G0 → GT a bilinear pairing [38]
if ê : G0×G0→ GT is a map with the following properties:
a) Bilinear: ê(ga, gb) = ê(g, g)ab for all a, b ∈ Z∗p.
b) Non-degenerate: There exists g1, g2 ∈ G0, such that

ê(g1, g2) 6= 1.

VOLUME 6, 2018 38439

S. Wang et al.: Blockchain-Based Framework for Data Sharing With Fine-Grained Access Control

c)Computable: There is an efficient algorithm to compute
ê(g1, g2) for all g1, g2 ∈ G0.

2) ACCESS POLICY
An access policy [38] W in ABE is a rule that returns either
0 or 1 given a attributes set L. We say that L satisfies W if
and only if W answers 1 on L. Usually, notation L � W is
used to represent the fact that L satisfies W , and the case
of L does not satisfy W is denoted as L 2 W . In our
construction, we consider AND-gate policy AND∗m. Formally,
given an attribute list L = [L1,L2, · · · ,Ln] and an access
policy W = [W1,W2, · · · ,Wn] = ∧IWWi, where IW is a
subscript index set and IW = {i|1 ≤ i ≤ n,Wi 6= ∗},
we say L � W if Li = Wi or Wi = ∗ for all 1 ≤ i ≤ n
and L 2 W otherwise. It is noted that the wildcard * in
W plays the role of ‘‘don’t care’’ value. For example: if
we have access policy W = [Hospital.A,Doctor, ∗,China],
attribute set L1 = [Hospital.A,Doctor,male,China] and
L2 = [Hospital.A,Nurse,male,China], then L1 � W ,
L2 2 W .

B. BLOCKCHAIN TECHNOLOGY AND ETHEREUM
1) BLOCKCHAIN TECHNOLOGY
In 2009, Bitcoin [4] came into the world as a decentralized
cryptocurrency, its enabler blockchain technology attracting
a lot of attention. In the last few years, academia and industry
have conducted extensive research on it and found that it
not only can be used as a decentralized payment system,
but also can be used in many industries [39] (e.g., financial,
medical, public utilities, identity management, asset reg-
istration, government agencies, etc.) to play an important
role.

FIGURE 1. Blockchain structure.

The blockchain is a distributed database that records all
the transactions that have occurred in the peer-to-peer net-
work. All participants in the network hold the same copy of
the database. In this network, there is no central authority
and there is no single node can control the entire network.
As shown in Fig. 1, the blockchain is essentially a series of
linked data blocks. Blocks are added to the blockchain by
a consensus among most nodes in the system. Each block
contains a block header and a series of transactions, each
block header contains the link pointers of the block headers
of the previous block, the merkle root of the tree-like trans-
action information, and a timestamp. In this way, the blocks
are linked together in chronological order. The cryptography

hash algorithm ensures that the transaction data in each block
is immutable, and the linked blocks in the blockchain cannot
be tampered.

2) ETHEREUM
Ethereum [5], [40], [41] is a new decentralized application
platform of smart contract, and it is developed from Bitcoin.
In the Bitcoin system, the transaction operations are per-
formed by a stack-based non-Turing complete scripting lan-
guage, which can only support simple logic, thus limiting its
application in many fields. Ethereum is usually described as a
Bitcoin-like programmable system with the Turing complete
scripting language. Compared to the Bitcoin system, its inno-
vation is that it is a programmable blockchain. The platform
supports the application of Turing complete, allowing users
to create, deploy and run smart contracts on the blockchain.
Once the contract is deployed, it can be automatically exe-
cuted according to the agreed logic of smart contracts.
Ideally, there is no downtime, censorship, fraud, and
third-party intervention and other issues. We briefly sum-
marize the main elements of the Ethereum platform as
follows:

3) ETHEREUM ACCOUNT
In the Ethereum platform, there are two main types of
accounts: External Owned Accounts (EOA) and Contract
Accounts, both of which are identified by a 20-bytes hexadec-
imal string, such as: 0xe4874f5a6077b6793de633f52b5ff112
aec012de. The EOA is controlled by the external users pri-
vate key. It has a corresponding balance and Nonce field.
It can send a transaction to transfer the ether to another
address or trigger the execution of the contract code. The con-
tract account is controlled by the code stored in the account.
In addition to the balance and Nonce, it also has a code and
storage space associated with it. In this paper, we stored the
encrypted keyword indexs into the contract account’s storage
space.

4) ETHER AND GAS
Ether are the token used in the Ethereum platform.
The Ethereum blockchain implements a smart contract
running environment, known as the Ethereum Virtual
Machine (EVM). When the code in the contract is trig-
gered by a transaction or message, each miner node in the
network (the miner node receives, broadcasts, verifies, and
executes the transactions in the Ethereum network) runs EVM
as part of the block validation protocol. They will verify
each transaction covered in the block and run the code trig-
gered by transaction in EVM, perform the same calculations
and store same values. Each operation in the EVM has a
specific consumption, which is counted by the unit gas.
Gas can be purchased through the ether, and the sender of
the transaction needs to pay for ether for the operations he
wants to perform (computing, data storage, etc.). The actual
transaction cost is calculated as ether = Gas Used * Gas
Price.

38440 VOLUME 6, 2018

S. Wang et al.: Blockchain-Based Framework for Data Sharing With Fine-Grained Access Control

5) TRANSACTIONS AND MESSAGES
An Ethereum transaction is a signed data packet that allows
you to transfer ether from one account to another. In addition
to transferring ether, it is also possible to trigger the execution
of the code in the smart contract through the transaction.
A transaction consists of account Nonce, address of recipient,
Gas price, Gas limit, ether value transferred, sender’s signa-
ture, optional additional data fields.

FIGURE 2. Ethereum transaction data structure .

In the transaction structure shown in Fig. 2, the Data
field can be put into any data that the transaction sender
wants to put. In the scheme, we will attach some key data,
such as the ciphertexts of users attributes secret key and
file location, to the transaction and store it on the Ethereum
blockchain, forming an unchangeable record. These key data
are assembled in JSON format and then encoded as hexadec-
imal embedded into the Data field of the transaction. The
data can be read and parsed through the JSON API interface
eth_getTransactionByHash provided by Ethereum official.

An Ethereum message is similar to Ethereum transaction,
except that the message can only be sent from one contract to
another. Through the sending of a message, it is also possible
to trigger the execution of the relevant code in the receiving
contract account.

6) MINING AND PROOF OF WORK
On the Ethereum blockchain network, mining is a process
that includes new blocks to the blockchain. Miners use proof
of work (POW) algorithms to add blocks to the blockchain
by packaging newly generated transactions. The POW algo-
rithm in the Ethereum is called Ethash (a modified Dagger-
Hashimoto algorithm). The difference between this algorithm
and the POW algorithm in the Bitcoin system is that it is
memory-intensive and largely eliminates the threat of com-
putational power centering. The miner solves a very difficult
cryptography puzzle by constantly trying to assemble blocks
and new random numbers until the correct random number is
found. The miner will broadcast this block to the network,
other nodes will verify the correctness of the block and
the transactions it contains. After the verification is passed,
the block is added to the blockchain. The security of the
Ethereum platform depends on the mining and POW algo-
rithm. Mining has enabled the nodes in the entire Ethereum

network to reach consensus on tamper resistance. None of the
participants can deceive other nodes.

7) SMART CONTRACTS
Smart contracts [5], [41] are a kind of computer protocols
that can be self-executed and self-verified once formulated
and deployed without the need for human intervention. From
a technical point of view, a smart contract can be consid-
ered as a computer program that can autonomously performs
all or part of the contract-related operations and produces
corresponding evidence that can be verified to demonstrate
the effectiveness of the contract operation. Before the smart
contract was deployed, all related logic processes associated
with the contract were already established. In the Ethereum
blockchain, a smart contract is a special account with asso-
ciated code. The deployment process is shown in Fig. 3.
After the smart contract is compiled into EVM byte code and
deployed on the Ethereum blockchain, the contract address
and Application Binary Interface(ABI) need to be recorded,
and we can interact with the contract through the contract
address and ABI. In the scheme, we use smart contracts to
store encrypted keyword indexs and some related data, and
guarantee the fairness of search. In the environment that does
not require a trusted third party, the users deposits the service
fee into the contract, and the smart contract helps users to
retrieve. Only when the correct result is retrieved, the service
fee will be deducted from the contract. It solves the problem
that searcher deliberately not returning the result or returning
the wrong result in order to save resources in traditional cloud
storage schemes.

FIGURE 3. Smart contract deploy process on the Ethereum blockchain.

C. IPFS
Interplanetary File System(IPFS) [13] is a peer-to-peer dis-
tributed file system that seeks to connect all computing
devices with the same system of files. IPFS provides a
high-throughput content-addressed block storagemodel, with
content-addressed hyperlinks. It combines technologies such
as distributed hash tables (DHT), an incentivized block
exchange, and a self-certifying namespaces, etc. At the same
time, IPFS has no single point of failure, and nodes do not
need to trust each other. The advantage of IPFS over existing
cloud storage is that there is no central server, and the data
is distributed and stored in different places of the world.
In some way, the use of IPFS is similar to the way we use the
Web today. Uploading a file to the IPFS system will obtain a

VOLUME 6, 2018 38441

S. Wang et al.: Blockchain-Based Framework for Data Sharing With Fine-Grained Access Control

unique file cryptographic hash string through which file can
be retrieved. The hash string can be understood as a Uniform
Resource Locator (URL) in theWeb.We will refer to the hash
string as the file location in the following. In practical applica-
tions, blockchain are not suitable for storing large files (video,
audio, etc.) due to block bloated and transaction fees. In the
scheme, therefore, we store the encrypted file in the IPFS.
A few metadata are stored on the Ethereum blockchain. Only
when the users attributes set meets the access policy defined
by the data owner, the users will able to read the data from the
Ethereum blockchain and decrypt the file location, download
the encrypted file from the IPFS via the file location, and then
decrypt it.

IV. SYSTEM MODEL
The system consists of the following two entities:
Data owner(DO): DO is a person or organization that owns

a series of files to share.
Data user(DU): DU are DO′s data clients that are autho-

rized to view some of the file.
The miners on the Ethereum blockchain and the storage

nodes in IPFS are not considered here. The double arrow
pointing to the smart contract indicates that the smart contract
is deployed on the blockchain. To illustrate this clearly, draw
it separately. The system framework is shown in Figure 4:

FIGURE 4. System framework.

The corresponding description of each step number in the
Fig. 4 is shown as follows:

1© DO setups the system. The system master key is
encrypted and then it is embedded into an Ethereum trans-
action.

2© DO deploys a smart contract on the Ethereum
blockchain.

3© DU sends a registration request to DO.

4© DO generates secret key for DU , and uses the shared
key to encrypt the secret key and embed the encrypted secret
key into an Ethereum transaction.

5© DO sends the transaction id related to secret key,
smart contract address, smart contract ABI and smart contract
source code to DU through a secure channel.

6© DO selects a keyword set from the shared file, and uses
AES algorithm to encrypt the file and uploads it to IPFS.

7© DO records the file location returned by IPFS.
8© DO uses a selected AES key K to encrypt the file

location, and uses a selected ABE algorithm to encrypt AES
key K . Then selects a AES key K1 to encrypt these informa-
tion and embeds it into an Ethereum transaction.

9©DO records the id of the Ethereum transaction and AES
key K1.

10©DO generates encrypted keyword indexs and stores it to
the smart contract.

11©DU reads transaction data related to secret key from the
Ethereum blockchain.

12©DU uses the shared key to decrypt transaction data, then
gets secret key.

13© DU generates search token and invokes the smart
contract.

14© The smart contract searches according to the token and
returns the relevant results.

15© DU reads relevant transaction data based on search
results returned by smart contracts;

16© DU decrypts the transaction data.
17© DU downloads encrypted file from IPFS.
18© DU decrypts the encrypted file.
In our work, the system model consists of six algorithms

given below:
• Setup(1λ) → (PK ,MK): The system setup algo-
rithm is run by DO. It takes as input security param-
eter λ. It outputs system public parameter PK and
system master key MK . Since PK is public, DO can
publish it on media(e.g., website or public database).
DO encrypts the system master key, and embeds it into
an Ethereum transaction. DO deploys a smart contract
on the Ethereum blockchain. The contract is used to
store encrypted keyword indexs and provide search ser-
vice for DU . As shown in step 1© 2© of the Fig. 4 of
system framework.
When DU sends a registration request to DO, DO first
authenticates the identity of DU . After the identity is
satisfied, DU is assigned the corresponding attributes
set S. The DU ′s Ethereum account address is added
as an authorized user in the smart contract. Then, DO
generates secret key for as follows:

• UserRegistration(MK ,S) → (SKs, SKd): The user
registration algorithm is run by DO. It takes as inputs
system master keyMK andDU ′s attributes set S. It out-
puts secret key SKs and SKd . The DU ′s secret key
is encrypted using AES algorithm and embedded into
an Ethereum transaction (where the encryption key is
the shared key generated by the Diffie-Hellman key

38442 VOLUME 6, 2018

S. Wang et al.: Blockchain-Based Framework for Data Sharing With Fine-Grained Access Control

exchange protocol [42]), then DO sends the transaction
id and smart contract address, smart contract ABI, smart
contract source code to DU through a secure chan-
nel. As shown in step 3© 4© 5©of the Fig. 4 of system
framework.

• Encrypt: The encrypt algorithm is run byDO. It consists
of the following three sub-algorithms.
1) FileEncrypt(F) → (CTF ,K , kw): The file

encrypt algorithm takes as input the shared file F .
It outputs file ciphertext CTF , file encryption key
K and a keyword set kw. DO selects a keyword set
kw from the file, selects AES key K from the key
space, encrypts the file F , uploads the ciphertext
CTF to IPFS, and records the file location hlocation
returned by IPFS. As shown in step 6© 7© of the
Fig. 4 of system framework.

2) KeyEncrypt(PK ,K , hlocation,P) → CTmd : The
key encrypt algorithm takes as input system pub-
lic parameters PK , file encryption key K , file
location hlocation and access policy P . It outputs
ciphertext CTmd . DO uses K to encrypt hlocation
as CTl , and uses a selected ABE algorithm to
encrypt file encryption key K , that is, it uses
system public parameters PK and access policy
P to encrypt K as CTk . DO randomly selects
AES key K1 from key space to encrypt CTl and
CTk as CTmd , embed these encrypted information
into an Ethereum transaction, record the transac-
tion id and K1 after the transaction was approved.
As shown in step 8© 9© of the Fig. 4 of system
framework.

3) IndexGen(kw,MK) → index: The index gener-
ation algorithm takes as input a keyword set kw
and system master key MK . It outputs encrypted
keyword indexs index. DO builds encrypted key-
word indexs index based on the keyword set kw,
and stores index to the smart contract. As shown in
step 10© of the Fig. 4 of system framework.

• TokenGen(k̃w, SKs) → token: The token generation
algorithm is run by DU . It takes as input a keyword k̃w
and secret key SKs. It outputs search token token. DU
reads the transaction data associated with its own secret
key from the Ethereum blockchain, and decrypts it to
obtain secret key SKs and SKd . DU generates search
token token based on the keyword of interested k̃w,
and invokes smart contract to search. As shown in step
11© 12© 13© of the Fig. 4 of system framework.

• Test(token, index) → result: The match test algorithm
is run by smart contract. It takes as input search token
token and encrypted keyword indexs index. It outputs
matched result result . The smart contract will match
according to the DU passing arguments token. If the
match is success, the set of relevant transactions id and
the set of corresponding key matching the success will
be returned. As shown in step 14© of the Fig. 4 of system
framework.

• Decrypt(CTl,CTk , SKd ,PK) → F : The decrypt algo-
rithm is run by DU . It takes as input file location
ciphertext CTl , key’s ABE ciphertext CTk , DU ′s secret
key SKd , the system public parameter PK . It outputs
original file F .DU reads relevant transactions data from
the Ethereum blockchain based on the search result
returned by the smart contract and decrypts it to obtain
CTl and CTk . If the attributes set meets the access policy
P , DU decrypts CTk to recovery the key K , and uses K
to decrypt CTl recovery file location hlocation, and down-
loads the encrypted file CTF from the IPFS based on
hlocation, and usesK to decryptCTF to obtain the original
fileF . As shown in step 15© 16© 17© 18© of the Fig. 4 of system
framework.

V. CASE STUDY
Our proposed framework can be directly used by combin-
ing with most symmetric searchable encryption schemes
and ABE schemes to achieve fine-grained access control
in decentralized data storage and sharing. Since there is
a corresponding cost for storing data on the Ethereum
blockchain, it should be noted that the ABE ciphertext of
the scheme should be as short as possible when selecting the
ABE scheme, which can reduce corresponding costs. In the
keyword search function, in order to make smart contracts
perform as few calculations as possible, most symmetric
searchable encryption schemes with less computation can be
used, such as the searchable encryption scheme of inverted
index type used in [43].

In the case study, in order to prevent anyone from being
able to call smart contracts for search, we have added a set of
authorized users in the smart contracts. Unauthorized user’s
search requests will be rejected by smart contracts. In order to
verify the feasibility of the scheme, we modified the scheme
of in [38] to test. The scheme in [38] supports the AND gate
access policy for multiple attribute values and wildcards, and
the ciphertext length is a constant size. At the same time, our
scheme is designed to ensure the fairness of search by the
smart contract to execute search process. At present, as the
cost of bilinear pairing operation in the smart contract is
very expensive, therefore, the search in the smart contract
is more practical to choose less calculation of symmetric
searchable encryption algorithm. For a simple testing, our
keyword search algorithm is built with an inverted index for
keyword.

A. CONCRETE CONSTRUCTION
• Setup(1λ)→ (PK ,MK): Let G0 and GT be two cyclic
multiplicative groups of big prime order p. Suppose g is
a generator of G0 and ê : G0 × G0 → GT is a bilinear
map. Assume there are n attributes in universe and the
attribute set is U = {ω1, ω2, · · · , ωn}. Each attribute has
multiple values, and suppose Si = {vi,1, vi,2, · · · , vi,ni}
is the multi-value set for ωi and |Si| = ni. Define two
collision-resistant hash functionsH0 : Z∗p×{0, 1}log2n×
{0, 1}log2m → Z∗p and H1 : Z∗p → G0. Define

VOLUME 6, 2018 38443

S. Wang et al.: Blockchain-Based Framework for Data Sharing With Fine-Grained Access Control

a pseudorandom function F : { 0,1 }* × { 0,1 }λ →
{0, 1}l . Also, DO chooses x, y ∈R Z∗p, and com-
putes Xi,ki = g−H0(x||i||ki),Yi,ki = ê(g, g)H0(y||i||ki)

for 1 ≤ i ≤ n and 1 ≤ ki ≤ ni. Finally,
the system public parameter is published as PK =

<p, g, {Xi,ki ,Yi,ki}1≤i≤n,1≤ki≤ni>, and the master key is
MK = <x, y>. DO encrypts the system master key
MK =< x, y > by using its own Ethereum account pub-
lic key, and embed it into transaction TXmk , then broad-
cast TXmk to the Ethereum blockchain. When TXmk are
included in the Ethereum blockchain block, DO com-
piles and deploys a smart contract for storing encrypted
keyword indexs and performing search operations. After
the contract is successfully deployed, record the contract
account address and the ABI of the contract.

• UserRegistration(MK ,S)→ (SKs, SKd):When a user
sends a registration request, he need to submit his own
Ethereum account public key. The DO authenticates the
user’s identity and assigns appropriate attributes set S
for the user, then adding the user’s account address to the
set of authorized users the smart contract. DO chooses
sk ∈R Z∗p for the user. Then for 1 ≤ i ≤ n, suppose
Si = vi,ki , DO computes:

σ̂i = σi,ki = gH0(y||i||ki)H1(sk)H0(x||i||ki),

Finally, the corresponding attribute secret key is SKd =
<sk, {̂σi}1≤i≤n>, search secret key is SKs = <Ks>,
Ks ∈ Z∗p, Ks is same for different user. DO calcu-
lates the shared key based on the Ethereum account
public key submitted by the user(Diffle-Hellman key
exchange protocol [42]), and obtains CTusk by using
AES algorithm to encrypt SKd and SKs. DO embeds
CTusk into the transaction TXusk , and broadcasts TXusk
to the Ethereum blockchain. DO transmits his Ethereum
account public key, transaction id, user’s attributes set,
smart contract address, smart contract ABI and smart
contract source code to user through a secure channel.
User can verify the smart contract that deployed on
the Ethereum blockchain(Verification through theVerify
Contract Code provided by Ethers can [44]).

• Encrypt:
1) FileEncrypt(F) → (CTF ,K , kw): DO selects a

keyword set kw from the file F , randomly selects
AES key K from the key space, computes CTF =
EncK (F), whereEncK (F) denotes usingAES algo-
rithm to encrypt F , the encryption key is K . DO
uploads the ciphertext CTF to IPFS, records the
file location hlocation returned by IPFS.

2) KeyEncrypt(PK ,K , hlocation,P) → CTmd : DO
computes CTl = EncK (hlocation). In order to
encrypt the AES key K under the access policy P ,
DO computes

<XP ,YP> = <
∏
i∈IP

X̂i,
∏
i∈IP

Ŷi>,

where<X̂i, Ŷi> = <Xi.ki ,Yi,ki>, IP is a subscript
set of P . Then, DO randomly selects s∈RZ∗p, com-
putes CTK = <P,C0,C1,C2>, where C0 = K ·
Y sP ,C1 = gs,C2 = X sP .DO randomly selects AES
key K1, computes CTmd = EncK1 (CTK ,CTl),
embedsCTmd into transaction TXct , and broadcasts
TXct to the Ethereum blockchain. when transaction
has been approved, record the transaction id txid
and corresponding key K1. The length of txid and
K1 is l.

3) IndexGen(kw,MK)→ index: DO computes hi =
F(kwi||0,Ks), di = F(kwi||1,Ks), txidi = di ⊕
txid , K1i = di ⊕ K1 for kwi ∈ kw. DO stores
index = (hi, txidi,K1i) to smart contract.

• TokenGen(k̃w, SKs)→ token:DU computes the shared
key based on DO′s Ethereum public key. DU reads
transaction data from Ethereum blockchain, decrypts it
to obtain secret key SKs and SKd , then computes token =
F(k̃w||0,Ks). DU invokes smart contract with token as
arguments.

• Test(token, index) → result: The smart contract first
judges whether the user is an authorized user, and if not,
rejects the search; otherwise, the search result result =
(Stxid , Sk1) is performed according to the token, here
Stxid is encrypted txid set and Sk1 is corresponding
encrypted K1 set. Return result to user.

• Decrypt(CTl,CTk , SKd ,PK) → F : DU computes
d = F(k̃w||1,Ks), computes txidj = d ⊕ t̃xidj, K1j =

d ⊕ K̃1j for t̃xidj ∈ Stxid , K̃1j ∈ Sk1. DU reads
transaction txidj data from the Ethereum blockchain,
and computes (CTK ,CTl) = DecK1j

(CTmd), where
DecK1j

(CTmd) denotes using AES algorithm to decrypt
CTmd , the decryption key is K1j . DU first checks
whether his attributes set S � P , and if not, returns
⊥ and reads the next transaction data; otherwise, DU
computes σP =

∏
i∈IP

σ̂i, then AES key K is recovered as

computes

K =
C0

ê(σP ,C1) · ê(H1(sk),C2)
,

where σ̂i = σi,ki = gH0(y||i||ki)H1(sk)H0(x||i||ki). DU
computes hlocation = DecK (CTl), then downloads CTF
from IPFS based on hlocation, computesF = DecK (CTF)
to recovery original file F .

The security proof and correctness verification of the ABE
scheme please refer to literature [38].

B. SMART CONTRACT DESIGN
In this section we mainly introduce the smart contract related
interface and algorithm logic used in this paper. In the
Ethereum smart contract is programmed by solidity lan-
guage [45], there are special variables and functions which
always exist in the global namespace and are mainly used to
provide information about the blockchain.

38444 VOLUME 6, 2018

S. Wang et al.: Blockchain-Based Framework for Data Sharing With Fine-Grained Access Control

In this paper, we mainly use the following special
variables:
msg.sender: sender of the message or transaction (current

call). When the smart contract is deployed, it is the address
of the contract creator, and when the smart contract is called,
it is the address of the smart contract caller.
msg.value: number of wei sent with the message. For

subsequent use we use $msg.value to represent the number
of wei attached to a message and $cost to represents a fixed
number of wei. 1 ether = 1018 wei.
tx.origin: sender of the transaction (full call chain). When

an external own account EOA calls the smart contract and
another smart contract is called in the smart contract, a call
chain is formed, saying that the EOA is tx.origin.

1) DATASHARING CONTRACT
The smart contract is deployed by DO and we call it the
dataSharing contract.
dataSharing Contract Initialization: This process defines

some variables of the contract when the contract is created.
1) The dataOwner variable of address types, which

defines the address of the DO.
2) The authorizedUsers variable of mapping types, which

defines a mapping collection from authorized user
address to a bool value. the DO can add, modify, delete
the collection through the relevant function interfaces
of the contract.

3) The Index variable of mapping types, which defines
a mapping collection from encrypted keyword indexs
to related information. the DO can add, modify, delete
the collection, and the authorized user can read the
collection through relevant function interfaces of the
smart contract.

The dataSharing contract mainly provides the following
seven function interfaces:
addUser(newUserAddress): This function can only be exe-

cuted by the contract’s creator(DO). Each time the user sends
a registration request to DO along with his identity certifi-
cate(this can be done with a secure out-of-band channel),
after authenticating the user’s identity, the user’s EOA is
authorized through this function.

Algorithm 1 addUser
Input: newUserAddress
Output: bool

1 if msg.sender is not dataOwner then
2 throw;
3 end
4 if newUserAddress has exist then
5 return false;
6 else
7 authorizeUsers[newUserAddress]⇐ true;
8 return true;
9 end

removeUser(oldUserAddress): This function can only be
executed by the contract’s creator(DO). When the system
needs to remove a user, DO remove the user from the autho-
rized set by passing the user’s EOA to the function.

Algorithm 2 removeUser
Input: oldUserAddress
Output: bool

1 if msg.sender is not dataOwner then
2 throw;
3 end
4 if oldUserAddress hasn’t exist then
5 return false;
6 else
7 authorizeUsers[oldUserAddress]⇐ false;
8 return true;
9 end

addIndex(keywordIndex,txid,key1): This function can only
be executed by the contract’s creator(DO). When DO newly
uploads some files to IPFS, he selects a keyword set from
each file and builds the corresponding encrypted keyword
indexs, storing it to the smart contract. The first arguments of
the function is the encrypted keyword indexs keywordIndex,
the second arguments is the transaction id txid, and the third
arguments is the encryption key key1.
deleteFile(keywordIndex, txid): This function can only be

executed by the contract’s creator(DO). When it is necessary
to delete a certain file, the encrypted keyword indexs key-
wordIndex of the file and the transaction id txid associated
with the file are passed.

Algorithm 3 addIndex
Input: keywordIndex, txid, key1
Output: bool

1 if msg.sender is not dataOwner then
2 throw;
3 end
4 mapping keywordIndex to (txid, key1), and add it to
Index variable collection

5 return true;

deleteKeyword(keywordIndex): This function can only be
executed by the contract’s creator(DO). When it is necessary
to delete all file corresponding to a keyword, the function
passes in the encrypted keyword indexs keywordIndex.
search(keywordIndex): This function can only be executed

by the user in the authorized set and the creator(DO) of the
contract. The function passes the encrypted keyword indexs
keywordIndex and returns transactions id set and key set
associated with the keywordIndex.
withdraw(): This function can only be executed by the

contract’s creator(DO). DO withdraws the search service fee
paid by the user.

VOLUME 6, 2018 38445

S. Wang et al.: Blockchain-Based Framework for Data Sharing With Fine-Grained Access Control

Algorithm 4 deleteFile
Input: keywordIndex, txid
Output: null

1 if msg.sender is not dataOwner then
2 throw;
3 end
4 get Index[keywordIndex] array’s length len
5 if len equal 0 then
6 return;
7 else
8 for i⇐ 0 to len-1 do
9 if Index[keywordIndex][i].txid equal txid then
10 for j⇐ i+1 to len-1 do
11 Index[keywordIndex][j-1]⇐

Index[keywordIndex][j]
12 end
13 delete Index[keywordIndex][len-1]
14 break;
15 end
16 end
17 end

Algorithm 5 deleteKeyword
Input: keywordIndex
Output: null

1 if msg.sender is not dataOwner then
2 throw;
3 end
4 get Index[keywordIndex] array’s length len
5 if len equal 0 then
6 return;
7 else
8 delete Index[keywordIndex]
9 end

2) DATAUser CONTRACT
In the Ethereum smart contract, the return value of the non-
constant function can only be obtained through logs event.
Therefore, in the above dataSharing contract, the search
results returned by the search function can only be obtained
through events. However, if data users directly use events
to obtain search results, there are security risks. Ethereum
events are viewable by anyone, so someone can listen to
events and effortlessly get some results. To address this prob-
lem, we designed another smart contract. The contract was
deployed by a data user. the data user invoked the search
function of the dataSharing contract, and saved the search
results in the contract. Only the data user have the right to
view search results, thus solving this problem. We call this
contract the dataUser contract.
dataUser CONTRACT INITIALIZATION: This process

defines some variables of the contract when the contract is
created.

Algorithm 6 Search
Input: keywordIndex
Output: searchResult

1 if tx.origin is not dataOwner and $msg.value < $cost
then

2 throw;
3 end
4 get Index[keywordIndex] array’s length len;
5 if tx.origin is not dataOwner then
6 if len equal 0 then
7 send $msg.value to msg.sender;
8 searchResult⇐ null;
9 else

10 send $cost to dataSharing contract address;
11 send $msg.value − $cost to msg.sender;
12 searchResult⇐ Index[keywordIndex];
13 end
14 else
15 searchResult⇐ Index[keywordIndex];
16 end
17 return searchResult;

Algorithm 7 Withdraw
Input: null
Output: null

1 if msg.sender is not dataOwner then
2 throw;
3 end
4 if contract’s balance > 0 ether then
5 send contract’s balance to msg.sender;
6 end

1) In the dataUser contract, the search function of the
dataSharing contract needs to been invoked. Therefore,
a dataSharing contract object instance needs to be ini-
tialized.

2) The owner variable of address types, which defines the
address of the DU .

3) The searchResult variable of struct types, which saves
the search result.

The dataUser contract mainly provides the following three
function interfaces:
Deposit(Value): This function is used to deposit ether into

the dataUser contract. The smart contract balance are used to
pay for the cost of invoking the dataSharing contract search
function.
dataSearch(keywordIndex): This function can only be exe-

cuted by the contract creator(DU). It passes the encrypted
keyword indexs keywordIndex as the function argument.
getResult(): This function is identified by the keyword

view, indicating that the function only performs readonly
operations, does not change the state of the blockchain,
and therefore will not be recorded on the blockchain.

38446 VOLUME 6, 2018

S. Wang et al.: Blockchain-Based Framework for Data Sharing With Fine-Grained Access Control

TABLE 2. ABE program cost test (gasprice = 2 Gwei , 1 ether = 416 USD).

Algorithm 8 Deposit
Input: deposite value
Output: null

1 if msg.value not equal deposite value then
2 throw;
3 end
4 send $value to dataUser contract address

Algorithm 9 dataSearch
Input: keywordIndex
Output: null

1 if msg.sender is not owner then
2 throw;
3 end
4 call dataSharing contract’s search();
5 save search result to struct searchResult;

Algorithm 10 getResult
Input: null
Output: searchResult

1 if msg.sender is not owner then
2 throw;
3 end
4 return searchResult;

This function can only be executed by the contract
creatr(DU). Through this function, the DU can be called
locally to obtain the results of the search, and others cannot
see this process.

VI. PERFORMANCE AND SECURITY ANALYSIS
A. PERFORMANCE TEST
We implemented a prototype to analyze feasibility and per-
formance of the scheme. The specific configuration of exper-
imental platform and experimental environment is: intel core
i7-4790@3.60GHz processor, 4GB RAM, and the system is
ubuntu 16.04LTS. The programming language is C++ and
solidity.

In the ABE program, we use the cryptography library
Miracl [46]. The selected curve is Cocks-Pinch curve,
the security level is AES-80, the number of user attributes
is 3, the hash function H0 and H1 is the function in Miracl
library, and the pseudorandom function F is SHA256. When
we conducted the experiment, the gasPrice was set to 2Gwei,
where 1Gwei = 109wei = 10−9ether .

In our scheme, the time complexity of the search algorithm
is O(1), which depends on the block generation time. There-
fore, we mainly discuss the space cost of the algorithm.

In order to make data readable, we used BASE64 encoding
and converting each part to the data field in the json format
string, so the data was somewhat more bloated than the actual
data. As shown in Table. 2, the system master key size are
constant, and will not increase with the number of attributes.
The size in the experiment is 208 bytes. The cost is $0.236.
The size of the user’s secret key is the largest. With the
increase of the number of attributes, the size of the user’s
secret key will increase. Fortunately, the process only needs
to be performed once for each user. When the number of
attributes is 3, we measured the user’s secret key size is
1088 bytes and the cost is $0.0791, the price is acceptable.
Since we chose the ABE scheme with a constant ciphertext
size, even if the number of attributes increases, the size of
the ABE ciphertext will not increase, which is approximately
710 bytes and costs $0.0577.

The system master key only need to be distributed once.
The user secret key needs to be distributed once for each
data user. For each shared file, the ABE ciphertext needs to
be stored once. We can charge a fixed fee from each user
who successfully searched for the corresponding result in
the dataSharing contract to help the data owner pay for the
relevant storage fees. For the smart contracts used to store
encrypted keyword indexs and search, we deployed it on the
Ethereum official test network Rinkeby.

TABLE 3. Smart contract cost test (gasprice = 2 Gwei ,1 ether = 416 USD).

Some of the smart contracts costs measured by the experi-
ment are shown in Table. 3 and Table. 4 below:

In Table. 3, the costs of some operations of the smart con-
tract are listed, and multiple executions costs of these opera-
tions is almost unchanged. The dataSharing contract creation
and dataUser contract creation operations are performed only
once and the costs is $0.9541 and $0.4410, respectively.
When a user joins the system, an addUser operation needs
to be performed; when a user is removed from the authorized
set, the removeUser operation needs to be performed. The two
operations performed costed $0.0370 and $0.0119, respec-
tively. When the search operation was successfully executed,

VOLUME 6, 2018 38447

S. Wang et al.: Blockchain-Based Framework for Data Sharing With Fine-Grained Access Control

TABLE 4. Smart contract cost test under different number of files(gasprice = 2 Gwei ,1 ether = 416 USD).

the user need to pay a fixed $cost to the dataSharing contract.
In the experiment, we set $cost as 0.01 ether . Once in a while,
the dataSharing contract creator can check the balance of
the dataSharing contract. If it is greater than 0, the balance
in the contract can be transferred to creator’s EOA with
the withdraw operation. In addition to the above operations,
the costs of some operations will vary with the number of
files, so we tested some of the costs under different number
of files and listed in Table. 4.

FIGURE 5. Smart contract operation costs under different number of files .

We built the encrypted keyword indexs for five different
keywords and add number of files 1, 5, 10, 15, and 20, respec-
tively. The addIndex, search, deleteFile, and deleteKeyword
operations were tested and the results in Table. 4 and Fig. 5
were obtained. As can be seen from Table. 4 and Fig. 5, with
the increase of the number of files, the costs of these four
operations increase accordingly. Among them, the addIndex
operation increases almost linearly with the increase of the
number of files, and the costs for adding five files for one
keyword is about $0.2424. The search operation increases
as the number of files corresponding to the search keyword
increases, and the costs of returning the five search results is

approximately $0.2303. When we test the deleteFile opera-
tion, we delete the first file record under different keywords.
At this time, the smart contract needs to perform the most
operations. That is, delete the first file record under each
keyword at this time. The costs is the largest. When the
number of files is 5, the costs of deleting the first file record
is approximately $0.0579. With the increase in the number of
files, the costs of the deleteKeyword operation increases, and
deleting a keyword with 5 file records costs about $0.0293.

B. SECURITY AND PRIVACY ANALYSIS
In our paper, combining the Ethereum blockchain, the decen-
tralized storage system IPFS, attribute-based encryp-
tion (ABE) mechanism, and smart contract technology,
we gain more benefits than data storage and sharing in
traditional cloud storage systems. In this section, we will
discuss the benefits, security, and privacy of this scheme.

1) DATA OWNERS CONTROL THEIR OWN DATA
In our solution, there is no need for a trusted PKG, and data
owners have the ability to distribute keys for users as needed
to achieve fine-grained access control. In the traditional ABE
scheme, we need to assume that the cloud storage server will
perform operations such as storage, transmission, and search
honestly to ensure the availability of data. In a decentralized
storage system, there is no need to trust storage nodes, and
the reliability and availability of data is guaranteed by smart
contracts, etc.

2) AVOID SINGLE POINT OF FAILURE
In our solution, compared with the traditional cloud storage,
the decentralized storage system IPFS that we adopted can
solve the single point of failure problem. Its redundancy
backup technology Erasure coding, Proof of Replication and
Filecoin incentives ensure data reliability and availability.
At the same time, IPFS is running in the peer-to-peer manner,

38448 VOLUME 6, 2018

S. Wang et al.: Blockchain-Based Framework for Data Sharing With Fine-Grained Access Control

using DHT routing technology and BitTorrent technology,
with higher data throughput and lower prices.

3) SEARCH FAIRNESS
In traditional scheme, we need to rely on cloud service
providers to honestly perform search operations and return
corresponding results. However, cloud service providers may
return erroneous results or do not return results to save
resources, etc., resulting in users paying for services but
unable to enjoy services. In this paper, we proposed scheme
to ensure the fairness of the search process through smart
contracts. Smart contracts can perform search operations hon-
estly and according to predefined logic, and return corre-
sponding results.

4) SECURITY AND PRIVACY
In the IPFS, large files are chunked and stored on different
storage nodes. The files we want to share are encrypted using
AES algorithm and stored in IPFS storage nodes. The storage
nodes can only see a part of ciphertexts and cannot obtain
any information of the files. The encryption key of the file is
first encrypted by the ABE algorithm, then encrypted with the
AES algorithm together with other information (file location
hash ciphertext) and stored on the blockchain. After encryp-
tion by the ABE algorithm and AES algorithm, although
anyone can see the ciphertext information, a user whose
attribute does not meet the access policy cannot decrypt the
file encryption key, and cannot download the encrypted file
from IPFS. So we achieved fine-grained access control over
data. It can be said that as long as the Ethereum blockchain
network and the ABE scheme are safe, the proposed scheme
is safe.

VII. CONCLUSION AND FUTURE WORK
At present, traditional cloud storage may cause users data
to be unavailable due to force majeure factors (such as nat-
ural disasters, government censors, etc.). The ABE technol-
ogy and searchable encryption technology on ciphertext are
important technologies for solving data privacy and fine-
grained access control problems. However, the traditional
ABE solution always requires the existence of a trusted
private key generator(PKG). The private key generated by
the PKG for the users is not flexible enough, and may
result in key abuse, disclosure of users data, etc. Traditional
searchable encryption schemes require the cloud server to
perform search operations honestly, but in actual applications,
the cloud server may return incorrect results or even no results
to save resources.

The decentralized storage approach can solve single point
of failure in traditional cloud storage systems. At the same
time, compared to centralized storage, it also has a series of
advantages such as low price and high throughput. In this
paper, we study the data storage and sharing problems in
decentralized storage systems and propose a framework that
combines the decentralized storage system IPFS, Ethereum
blockchain, and attribute-based encryption (ABE) technolo-
gies. In this framework, no trusted PKG is needed. The data

owner has the ability to distribute secret key for users, and
encrypts his data under specified access policy to achieve
fine-grained access control over data. At the same time, based
on the smart contract on the Ethereum blockchain, the key-
word search function in the ciphertext of the decentralized
storage system is implemented, and the problem that the
cloud server does not return results or return wrong results in
the traditional cloud storage is solved. In addition, we provide
a test case study. Through experimental simulations, we ana-
lyze experimental data and demonstrate the rationality and
feasibility of the scheme.

However, our scheme does not implement the functions of
user’s attribute revocation and access policy update. This is
our next research direction.

APPENDICES
The dataSharing contract and the dataUser contract was
deployed on the Rinkeby Testnet of Ethereum with the fol-
lowing address:
DO account address: 0x92a840C7f4AAb93418eE035F

94B719CfA93ea049
DU account address: 0x11969FdCC5eEF405a51F57EC

6d9Ce9eDe7716bcF
dataSharing contract address: 0x3ca4b656E24D45Fc1A

5f408BF5Ac1b9F3EF05F1F
dataUser contract address: 0xafdBCe7575143ddff0e348

74bc95812EA620EccD
Using these address, the transactions can be seen at:

https://rinkeby.etherscan.io/.

ACKNOWLEDGMENT
Thanks also go to the anonymous reviewer for their useful
comments.

REFERENCES
[1] C. Gray. (2014). Storj Vs. Dropbox: Why Decentralized Storage is the

Future. [Online]. Available: https://bitcoinmagazine.com/articles/storj-vs-
dropbox-decentralized-storage-future-1408177107

[2] A. Sahai and B.Waters, ‘‘Fuzzy identity-based encryption,’’ in Proc. Annu.
Int. Conf. Theory Appl. Cryptograph. Techn. Berlin, Germany: Springer,
2005, pp. 457–473.

[3] J. Zhang, X. A. Wang, and J. Ma, ‘‘Data owner based attribute based
encryption,’’ in Proc. Int. Conf. Intell. Netw. Collaborative Syst. (INCOS),
Sep. 2015, pp. 144–148.

[4] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: https://bitco.in/pdf/bitcoin.pdf

[5] G. Wood, ‘‘Ethereum: A secure decentralised generalised transaction
ledger,’’ Yellow Paper. Accessed: Mar. 25, 2018. [Online]. Available:
https://ethereum.github.io/yellowpaper/paper.pdf

[6] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, ‘‘Zcash protocol
specification,’’ Zerocoin Electric Coin Company, Oakland, CA, USA,
Tech. Rep. 2016-1.10, 2016.

[7] Blockchain for Financial Services. Accessed: Mar. 25, 2018. [Online].
Available: https://www.ibm.com/blockchain/financial-services

[8] Blockchain for Supply Chain. Accessed: Mar. 25, 2018. [Online]. Avail-
able: https://www.ibm.com/blockchain/supply-chain

[9] C. Fromknecht and D. Velicanu. (2014). A Decentralized Public
Key Infrastructure With Identity Retention. [Online]. Available:
https://eprint.iacr.org/2014/803.pdf

[10] Proof of Existence. Accessed: Mar. 25, 2018. [Online]. Available:
https://proofofexistence.com

[11] A Decentralized Network for Internet of Things. Accessed: Mar. 25, 2018.
[Online]. Available: https://iotex.io

VOLUME 6, 2018 38449

S. Wang et al.: Blockchain-Based Framework for Data Sharing With Fine-Grained Access Control

[12] S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, ‘‘Storj a peer-
to-peer cloud storage network,’’ White Paper. Accessed: Mar. 25, 2018.
[Online]. Available: https://storj.io/storj.pdf

[13] J. Benet. (2014). ‘‘IPFS-content addressed, versioned, P2P file system.’’
[Online]. Available: https://arxiv.org/abs/1407.3561

[14] P. Labs. (2018). Filecoin: A Decentralized Storage Network. [Online].
Available: https://filecoin.io/filecoin.pdf

[15] G. Zyskind, O. Nathan, and A. S. Pentland, ‘‘Decentralizing privacy:
Using blockchain to protect personal data,’’ in Proc. Secur. Privacy Work-
shops (SPW), May 2015, pp. 180–184.

[16] Y. Rahulamathavan, R. C.-W. Phan, M. Rajarajan, S. Misra, and
A. Kondoz, ‘‘Privacy-preserving blockchain based IoT ecosystem using
attribute-based encryption,’’ in Proc. IEEE Int. Conf. Adv. Netw. Telecom-
mun. Syst., Dec. 2017, pp. 1–6.

[17] H. Es-Samaali, A. Outchakoucht, and J. P. Leroy, ‘‘A blockchain-based
access control for big data,’’ Int. J. Comput. Netw. Commun. Secur., vol. 5,
no. 7, pp. 137–147, 2017.

[18] D. Vorick and L. Champine. (2014). Sia: Simple Decentralized Stor-
age. [Online]. Available: https://prod.coss.io/documents/white-papers/
siacoin.pdf

[19] L. Zu, Z. Liu, and J. Li, ‘‘New ciphertext-policy attribute-based encryption
with efficient revocation,’’ in Proc. IEEE Int. Conf. Comput. Inf. Tech-
nol. (CIT), Sep. 2014, pp. 281–287.

[20] P. Zhang, Z. Chen, K. Liang, S. Wang, and T. Wang, ‘‘A cloud-based
access control scheme with user revocation and attribute update,’’ in Proc.
Australas. Conf. Inf. Secur. Privacy. Berlin, Germany: Springer, 2016,
pp. 525–540.

[21] J. Li, Y. Shi, and Y. Zhang, ‘‘Searchable ciphertext-policy attribute-based
encryptionwith revocation in cloud storage,’’ Int. J. Commun. Syst., vol. 30,
no. 1, p. e2942, 2017.

[22] J. Li, W. Yao, J. Han, Y. Zhang, and J. Shen, ‘‘User collusion avoidance
CP-ABE with efficient attribute revocation for cloud storage,’’ IEEE Syst.
J., vol. 12, no. 2, pp. 1767–1777, Jun. 2018.

[23] A. Kapadia, P. P. Tsang, and S. W. Smith, ‘‘Attribute-based publishing
with hidden credentials and hidden policies,’’ in Proc. NDSS, vol. 7, 2007,
pp. 179–192.

[24] Y. Zhang, X. Chen, J. Li, D. S. Wong, H. Li, and I. You, ‘‘Ensuring
attribute privacy protection and fast decryption for outsourced data security
in mobile cloud computing,’’ Inf. Sci., vol. 379, pp. 42–61, Feb. 2017.

[25] M. Chase, ‘‘Multi-authority attribute based encryption,’’ in Proc. Theory
Cryptogr. Conf. Berlin, Germany: Springer, 2007, pp. 515–534.

[26] H. Qian, J. Li, Y. Zhang, and J. Han, ‘‘Privacy-preserving personal health
record using multi-authority attribute-based encryption with revocation,’’
Int. J. Inf. Secur., vol. 14, no. 6, pp. 487–497, 2015.

[27] H. S. G. Pussewalage and V. A. Oleshchuk, ‘‘A distributed multi-authority
attribute based encryption scheme for secure sharing of personal health
records,’’ inProc. 22nd ACMSymp. Access ControlModels Technol., 2017,
pp. 255–262.

[28] J. Li, Y. Wang, Y. Zhang, and J. Han, ‘‘Full verifiability for outsourced
decryption in attribute based encryption,’’ IEEE Trans. Services Comput.,
to be published.

[29] J. Li, X. Lin, Y. Zhang, and J. Han, ‘‘KSF-OABE: Outsourced attribute-
based encryption with keyword search function for cloud storage,’’ IEEE
Trans. Services Comput., vol. 10, no. 5, pp. 715–725, Sep./Oct. 2017.

[30] D. X. Song, D. Wagner, and A. Perrig, ‘‘Practical techniques for searches
on encrypted data,’’ in Proc. IEEE Symp. Secur. Privacy, May 2000,
pp. 44–55.

[31] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, ‘‘Public
key encryption with keyword search,’’ in Proc. Int. Conf. Theory Appl.
Cryptograph. Techn. Berlin, Germany: Springer, 2004, pp. 506–522.

[32] D. Boneh and B. Waters, ‘‘Conjunctive, subset, and range queries on
encrypted data,’’ in Proc. Theory Cryptogr. Conf. Berlin, Germany:
Springer, 2007, pp. 535–554.

[33] Z. Wan and R. H. Deng, ‘‘VPSearch: Achieving verifiability for privacy-
preserving multi-keyword search over encrypted cloud data,’’ IEEE Trans.
Dependable Secure Comput., to be published.

[34] H. Li, F. Zhang, J. He, and H. Tian. (2017). ‘‘A searchable sym-
metric encryption scheme using blockchain.’’ [Online]. Available:
https://arxiv.org/abs/1711.01030

[35] C. Cai, X. Yuan, and C. Wang, ‘‘Towards trustworthy and private keyword
search in encrypted decentralized storage,’’ in Proc. IEEE Int. Conf. Com-
mun. (ICC), May 2017, pp. 1–7.

[36] H. G. Do and W. K. Ng, ‘‘Blockchain-based system for secure data
storage with private keyword search,’’ in Proc. IEEE World Congr.
Services (SERVICES), Jun. 2017, pp. 90–93.

[37] P. Jiang, F. Guo, K. Liang, J. Lai, and Q. Wen, ‘‘Searchain:
Blockchain-based private keyword search in decentralized storage,’’
Future Gener. Comput. Syst., to be published. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X17318630,
doi: 10.1016/j.future.2017.08.036.

[38] Y. Zhang, D. Zheng, X. Chen, J. Li, and H. Li, ‘‘Computationally efficient
ciphertext-policy attribute-based encryption with constant-size cipher-
texts,’’ in Proc. Int. Conf. Provable Secur., vol. 8782. Springer, 2014,
pp. 259–273, doi: 10.1007/978-3-319-12475-9_18.

[39] M. Crosby, P. Pattanayak, S. Verma, and V. Kalyanaraman, ‘‘Blockchain
technology: Beyond bitcoin,’’ Appl. Innov., vol. 2, pp. 6–10, Jun. 2016.

[40] Ethereum Homestead Documentation. Accessed: Mar. 25, 2018. [Online].
Available: https://readthedocs.org/projects/ethereum-homestead

[41] Ethereum Blockchain App Platform. Accessed: Mar. 25, 2018. [Online].
Available: https://www.ethereum.org

[42] Diffie-Hellman Key Exchange. Accessed: Mar. 25, 2018.
[Online]. Available: https://en.wikipedia.org/wiki/Diffie%E2%80%
93Hellman_key_exchange

[43] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren.
(2018). Searching an Encrypted Cloud Meets Blockchain: A
Decentralized, Reliable and Fair Realization. [Online]. Available:
http://nisplab.whu.edu.cn/paper/infocom_2018_1.pdf

[44] Verify Contract Code. Accessed: Mar. 25, 2018. [Online]. Available:
https://etherscan.io/verifyContract

[45] Units and Globally Available Variables. Accessed: Mar. 25, 2018.
[Online]. Available: http://solidity.readthedocs.io/en/latest/units-and-
global-variables.html

[46] MIRACL. Accessed: Mar. 25, 2018. [Online]. Available:
https://www.miracl.com

SHANGPING WANG received the B.S. degree in
mathematics from the Xi’an University of Tech-
nology, Xi’an, China, in 1982, the M.S. degree
in applied mathematics from Xi’an Jiaotong Uni-
versity, Xi’an, in 1989, and the Ph.D. degree in
cryptology from Xidian University, Xi’an. He is
currently a Professor with the Xi’an University
of Technology. His current research interests are
cryptography and information security.

YINGLONG ZHANG received the B.S. degree
from the School of Science, Xi’an University
of Technology, Xi’an, China, in 2015, where
he is currently pursuing the M.S. degree. His
research interests include information security and
blockchain technology.

YALING ZHANG received the B.S. degree in com-
puter science from Northwest University, Xi’an,
China, in 1988, and the M.S. degree in com-
puter science and the Ph.D. degree in mechanism
electron engineering from the Xi’an University of
Technology, Xi’an, in 2001 and 2008, respectively.
She is currently a Professor with the Xi’an Univer-
sity of Technology. Her current research interests
include cryptography and network security.

38450 VOLUME 6, 2018

http://dx.doi.org/10.1016/j.future.2017.08.036
http://dx.doi.org/10.1007/978-3-319-12475-9_18

	INTRODUCTION
	RELATED WORK
	BLOCKCHAIN TECHNOLOGY
	ATTRIBUTE-BASED ENCRYPTION TECHNOLOGY
	KEYWORD SEARCHABLE TECHNOLOGY IN DECENTRALIZED STORAGE SYSTEMS

	PRELIMINARIES
	ATTRIBUTE-BASED ENCRYPTION
	BILINEAR MAPPING
	ACCESS POLICY

	BLOCKCHAIN TECHNOLOGY AND ETHEREUM
	BLOCKCHAIN TECHNOLOGY
	ETHEREUM
	ETHEREUM ACCOUNT
	ETHER AND GAS
	TRANSACTIONS AND MESSAGES
	MINING AND PROOF OF WORK
	SMART CONTRACTS

	IPFS

	SYSTEM MODEL
	CASE STUDY
	CONCRETE CONSTRUCTION
	SMART CONTRACT DESIGN
	DATASHARING CONTRACT
	DATAUser CONTRACT

	PERFORMANCE AND SECURITY ANALYSIS
	PERFORMANCE TEST
	SECURITY AND PRIVACY ANALYSIS
	DATA OWNERS CONTROL THEIR OWN DATA
	AVOID SINGLE POINT OF FAILURE
	SEARCH FAIRNESS
	SECURITY AND PRIVACY

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	SHANGPING WANG
	YINGLONG ZHANG
	YALING ZHANG

