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ABSTRACT Interferences in the form of white Gaussian noise (WGN) are inevitable during long-term
electromyogram (EMG) recordings. Even with the aid of advanced signal denoising techniques, such an
intermittent interference is hardly detected and attenuated in the practical use of EMG-driven control sys-
tems. Hence, a robust pattern recognition scheme that is invariant to noise contamination would potentially
aid the realization of an efficient EMG-based pattern recognition (EMG-PR) control system. To this end,
an EMG-PR scheme driven by sparse representation-based classification (SRC) algorithm and root mean
square (rms) descriptor (RMS-SRC) is proposed in this paper. The accuracy and the robustness of the
proposed scheme were investigated using the high-density surface EMG recordings from 12 traumatic brain-
injured patients and 5 post-stroke survivors. For benchmark comparison, another three different feature sets
and four pattern recognition algorithms were considered. The optimal pattern recognition schemes with
respect to each feature-classifier combination were first selected in the absence of WGN contamination.
Then, six levels of WGN with a signal-to-noise ratio (SNR) ranging from 5 to 30 dB were added into
the EMG recordings, respectively, to mimic the different WGN interferences. Our result showed that the
proposed RMS-SRC scheme could achieve a similar accuracy with the benchmark schemes in the presence
of limited noise contamination (0–15 dB), and significantly outperformed the other schemes when the SNR
of WGN increased (20–30 dB). More notably, the RMS-SRC scheme significantly outperformed the other
pattern recognition schemes when the WGN existed in either training set or testing set only. The findings
proved the comparative advantage of the proposed RMS-SRC pattern recognition scheme over the other
currently used schemes in the myoelectric control. Thus, the proposed scheme would potentially facilitate
the development of EMG-driven rehabilitation robots for accurate and dexterous assistive training for patients
with neurological disorders.

INDEX TERMS Electromyogram, pattern recognition, sparse representation classifier, robustness, white
Gaussian noise.

I. INTRODUCTION
Dozens of recent studies have reiterated the potential of
electromyogram (EMG) pattern recognition (EMG-PR) tech-
nique in providing intuitively dexterous myoelectric control
system that is capable of supporting multiple degrees of free-
dom (DOFs) functions. To that end, EMG-PR based prosthe-
ses control strategy has been extensively investigated in the

last two-three decades with a number advancement reported
in literature [1]–[3]. Due to its promising nature, EMG-PR
techniques have recently been applied to control rehabilita-
tion robots for assistive motor training for patients with motor
impairment resulting from neurological disorders [4]–[11].
It should be noted that during long-term EMG recordings,
interferences in the form of white Gaussian noise (WGN)
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are inevitable due to electromagnetic interference, internal
noise of operational amplifier, and thermal noise of electronic
elements. Moreover, the variation of electromagnetic inter-
ference would lead to the change of WGN, and that’s why
it becomes difficult to be detected in the practical use of
EMG-driven systems. For an EMG-PR system in which the
good repetition of EMG patterns is highly demanding, vary-
ing WGN interference would lead to poor characterization
of the EMG patterns associated with the individual’s limb
motion intent, and thus degrade the performance of myoelec-
tric control system.

To obtain high quality EMG recordings, different sig-
nal denoising techniques have been proposed and applied.
Among these denoising approaches, the conventional IIR and
FIR digital filters are commonly used to attenuate power
line frequency interference as well as DC components in
the EMG recordings [12]. However, these filters are found
to be inappropriate for eliminating WGN that are inevitably
associated with long-term usage of EMG recording systems.
This is because the frequency components of WGN usually
overlap with most of the useful EMG frequency bands.
Other advanced filtering techniques such as adaptive filtering,
nonlinear filtering, and spectral enhancement approaches
have been utilized to optimally preserve the useful
EMG components through maximum attenuation of the
WGN contamination [13]–[16]. Additionally, different vari-
ants of spatial filtering techniques have been utilized
to remove dominant noise components in multi-channel
EMG recordings, thus enhancing the separation property of
EMG signals and improving the performance of EMG-PR
systems [17], [18].

It is noteworthy that most of the abovementioned signal
preprocessing methods were intended for offline analysis
only due to their large computational cost, and it becomes
challenging for these complex denoising methods to be used
in real-time EMG-PR control systems. Therefore, adopting
a robust pattern recognition scheme that is invariant to noise
contamination might be an alternative way to achieve effi-
cient EMG-PR control system.

According to recent literatures, a couple of efficient
EMG features have been proposed to enhance the robustness
of EMG-PR system [19], e.g., the time-dependent spectral
features invariant to limb position change [20], the frequency-
domain features and temporal-spatial descriptors robust to
different muscle contraction force [21], [22]. However, only
a few studies have investigated the robustness of EMG fea-
tures in terms of their tolerance to noise [23]. On the other
hand, an increasing array of pattern recognition algorithms
such as artificial neural networks (ANN) [24], linear dis-
criminant analysis (LDA) [10], [25], [26], k-nearest neighbor
(KNN) [10], [27], Gaussian mixture model (GMM) [28],
fuzzy logic [29], [30], random forest (RF) [31], [32],
and support vector machine (SVM) [33] were proposed
in the last four decades. It should be noted that most of
these studies focused on the discriminative capability of
the methods with scarce investigation on the robustness

of EMG-PR scheme especially to WGN contamination to
date.

Aiming at developing EMG-PR control system that is
robust to noise with accurate and stable performance, a pat-
tern recognition scheme driven by sparse representation
based classifier (SRC) and root mean square (RMS) fea-
ture denoted as RMS-SRC is proposed in this study. The
SRC has been extensively used for face recognition because
of its high accuracy, which might be attributed to the col-
laborative representation of SRC algorithm [34]. Moreover,
the SRC has been proved to be robust to image occlu-
sion and corrupted data because these factors are often
sparse with respect to the standard (pixel) basis [35]–[37].
In this study, we hypothesize that SRC may also be a
potential pattern recognition algorithm for myoelectric con-
trol systems. For benchmark comparison, the performances
of commonly adopted feature-classifier combinations were
studied under different conditions alongside the proposed
RMS-SRC scheme. More precisely, three different feature
extraction methods in addition to RMS and four widely
applied pattern recognition algorithms including LDA, KNN,
RF, and SVM were considered. To that end, the accu-
racy and stability of the proposed RMS-SRC scheme was
firstly assessed in comparisonwith the other feature-classifier
combinations. Subsequently, the robustness of the proposed
scheme to noise interference was evaluated. The proposed
RMS-SRC scheme may potentially facilitate the realization
of accurate, stable, and robust control systems for EMG-
driven rehabilitation robots to administer effective assistive
training to patients with neurological disorders.

II. METHODS
A. SUBJECTS
A total of 17 mildly-impaired patients consisting of 12 with
traumatic brain injury (TBI) and 5 with stroke (ST) partici-
pated in the study. Overall, there were 3 female and 14 males,
with an average age of 38.5 ± 13.5 years old across all sub-
jects. According to an objective evaluation by a physiothera-
pist, the recruited patients were in the stage IV-VI based on
the Brunnstrom Assessment Scale and got scores of 35-61 on
the Fugl-Meyer Assessment of Sensorimotor Recovery after
stroke, in which a zero score denotes no function and a score
of 66 represents normal function. The subjects reported that it
is their first time to participate in this kind of research study.
After proper explanation of the aim of the study, the subjects
agreed to participate in the study. They further gave written
informed consent and provided permission for the publication
of their photographs and data for scientific and educational
purposes. The study was conducted in accordance with the
protocols approved by the Research Ethics Board of the Shen-
zhen Institutes of Advanced Technology, Chinese Academy
of Sciences.

B. EXPERIMENT AND DATA PREPROCESSING
During the experiment, each subject was asked to perform
21 different forearm and hand movements in addition to the
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no movement limb task as described in FIGURE 1. The
number of observed movements for each subject varied due
to their different levels of motor ability/impairment. Each
movement was maintained for about 6 s with a moderate
muscle contraction force (50%-70% of the maximum con-
traction force) and repeated 6 times per trial, and a rest period
of about 8 s was observed between two successive isometric
contractions in trial.

FIGURE 1. 21 Forearm and hand movements.

The High-density EMG (HD-EMG) acquisition system
(Refa-128, TMS International BV, Netherlands) was used
to record the EMG signals with the former 56 monopolar
electrodes each having a diameter of 5mm. The electrode
placement on the forearm and hand of each subject is shown
in FIGURE 2. After pre-examining the arms of the subjects,
48 of the 56 HD-EMG electrodes were placed on subjects’
forearm muscles in an 8 × 6 grid, specifically, located from
1cm proximal to elbow crease to 1/3 distal to wrist joint with
an inter-electrode distance of around 2 cm. Meanwhile the
remaining eight electrodes were placed on the hand muscles
with two electrodes on the first dorsal interosseous, three
on the thenar muscles, and three on the hypothenar mus-
cles. Afterwards, a reference electrode was fixed on a nylon
bracelet and worn on each subject’s wrist. Subsequently,
the myoelectric signals corresponding to all classes of move-
ments were recorded at a sampling rate of 1024 Hz, 22 bits
ADC for all the subjects.

FIGURE 2. Placement of HD-EMG electrodes.

To remove the motion artifact and power-line interference,
the recorded EMG signals were digitally filtered with a five-
order Butterworth high-pass filter at 60 Hz. Afterwards, the
active EMG data corresponding to each muscle contraction

was segmented manually considering the fact that neurolog-
ically disordered subjects could not follow the prompt cues
punctually in the data acquisition experiment.

C. PERFORMANCE EVALUATION PROTOCOL
To evaluate the performance of the proposed RMS-SRC
scheme in terms of its accuracy and stability for limb move-
ment intent decoding, three additional time-domain feature
sets aside RMS, and four widely applied pattern recognition
algorithms including LDA, KNN, RF, and SVM were con-
sidered. By including different levels of WGN (with signal
noise ratio (SNR) of 5dB, 10dB, 15dB, 20dB, and 25dB,
and 30dB) into the EMG recordings, the robustness of the
proposed RMS-SRC scheme was assessed with respect to the
optimal feature-classifier combinations obtained in the study.

1) FEATURE EXTRACTION
Before feature extraction, a shifting analysis window with
a time length of 150 ms and an increment of 100 ms
(50 ms overlapping) was used to segment the preprocessed
EMG signals into a series of analysis windows, then each
EMG feature was extracted from these segments to obtain a
feature matrix for each feature extractionmethod. Four differ-
ent previously proposed time-domain feature sets abbreviated
as RMS, TD2, TD4, and TDAR were used to characterize the
EMG signal patterns in each analysis window.
• RMS: is a one-dimension feature set with only RMS.
• TD2: is a two-dimension feature set including the abso-
lute vale of the summation of square root and the abso-
lute value of the summation of the expth root of the data
in a given analysis window and its mean [38].

• TD4: is themost commonly used four-dimension feature
set, including the mean absolute value, zero crossing,
wave length and slope sign changes [39].

• TDAR: the combination of RMS and the latter
seven coefficients of seven order autoregressive model
coefficients [40].

2) NOISE CONTAMINATION
To assess the robustness of the proposed RMS-SRC to noise
contamination, two noise contamination schemes were con-
sidered in current study. In the first scheme, we assumed that
the WGN persistently existed, so WGN with a SNR of 5 dB,
10 dB, 15 dB, 20 dB, 25 dB, and 30 dB were added to both
the training EMG recordings and the testing EMG recordings.
Meanwhile, to mimic the intermittent occurrence of WGN in
practical settings, the training and testing EMG recordings
were separately contaminated with WGN of 5 dB, 10 dB,
15 dB, 20 dB, 25 dB, and 30 dB SNR in the second scheme.

The variation of EMG recordings after adding different
levels ofWGNand that withoutWGNwas described by EMG
topographic maps, which were plotted by firstly computing
the average RMS obtained from all segmented windows of
the 48 EMG channels distributed over the forearm muscles.
Afterwards, the spline interpolation algorithm was utilized to
form the contours in the topographic maps.
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3) PATTERN RECOGNITION
The SRC can be considered as a generalization of popular
classifiers such as the nearest neighbor (NN) and nearest
subspace (NS). In NN classifies, the test sample is based
on the best representation in terms of a single training
sample, whereas NS classifies are based on the best lin-
ear representation in terms of all the training samples in
each class. The fundamental principle of SRC is to code
a testing sample as a sparse linear combination of all the
training samples, and then classify the testing sample by
evaluating which class leads to the minimum representa-
tion error. The operational process of SRC is described as
follows:

Supposing Ai(i = 1, 2, . . .C) represent the matrix formed
by the training samples of the ith class, then, Ai =[
xi1 xi2 . . . . . . xiNi

]
∈ Rd×Ni . And the matrix A denote the

total training set with C number of classes by concatenation
each class, A = [A1,A2, . . .AC ] ∈ Rd×N ,N is the sum of
Ni samples corresponding to each class. If a test sample y
belongs to the ith class, it can be approximately represented
as a linear combination of the training samples in the corre-
sponding class, that is,

y =
∑Ni

j=1
xijµij = Aiµi (1)

Thus, the linear representation of y can be rewritten in
terms of A as y = Aµ, where µ = [0, 0, . . . µi, . . .
0, . . . 0] ∈ RN is the coefficient vector whose entries are
zero except those associated with the ith class (current class).
Hence, the goal of the sparse representation involves solving
the following optimization problem:(

l1
)
µ̂1 = argmin ‖µ‖1 , s.t. y = Aµ. (2)

In the current study, the basis pursuit denoising algorithm
(BPDN) was utilized to obtained the sparest solution µ̂1.
Afterwards, the test sample y was reconstructed as
follows:

ŷi = Aδi(µ̂1) (3)

Where δi(µ̂1) is a vector whose non-zero entries are
the entries in µ that are associated with the current class
(class i).
Subsequently, the SRC decision rule is constructed to min-

imize the residual error which is mathematically expressed
as:

γi (y) =
∥∥y− ŷi∥∥2 = ∥∥y− Aδi(µ̂1)

∥∥
2 (4)

Note that: If γk (y) = miniγi (y) , y is assigned to class k .
In addition to the proposed SRC, four other classification

algorithms abbreviated as LDA, KNN, RF, and SVM were
considered for benchmark comparison, which have been used
for EMG-PR analysis in previous studies [10], [25]–[27],
[31], [41], [42]. Among various previously adopted classi-
fiers, LDA is the most applied because it exhibits a simple
computational structure and yield classification results that
are comparable to that of other complex classifiers such

as ANN or SVM. The KNN classifier has been reported
to have good tolerance for arbitrary data distribution [27],
and the RF is an ensemble classifier that consist of many
decision trees and outputs the class that is the mode of the
classes output by individual trees [43]. RF classifier has been
applied in many fields for its high accuracy and the capabil-
ity to handle bad data [31], [32], [44], [45]. In the current
study, the computations of RF classifier were performed with
the RF-Matlab package developed by Abhishek Jaiantilal
(https://github.com/jrderuiter/randomforest-matlab). As for
SVM, the LIBSVM toolbox developed by Lin et al. was
adopted in the current study [46], and the linear kernel
function was selected based on the results of a preliminary
evaluation, where the linear kernel function achieved similar
classification accuracy to that of the RBF kernel function,
while it require a significantly lesser computational time to
build the SVM classifier.

4) CROSS VALIDATION AND PERFORMANCE METRIC
To validate the results obtained via each pattern recogni-
tion schemes investigated in this study, a five-fold cross
validation data partitioning technique was adopted during
the motion classification. That is, all EMG recordings were
divided into five consecutive parts with equal length, one of
the five parts was used as the test set while the remaining
four parts were used to build the classification model in
each fold. The classification accuracy commonly defined as
the percentage of correctly classified samples to the total
number of testing samples was computed in each fold, and
the average classification accuracy over all the five folds was
used as the performance metric as expressed in the following
equation.

Classification Accuracy

=
Number of correctly classified samples

Total number of testing samples
× 100% (5)

5) STATISTICAL ANALYSIS
To examine if there is an interaction effect of feature set and
classifier, the two-way ANOVA was conducted in terms of
mean classification accuracy using, and the SPSS Statistical
Modeling Software (SPSS 21.0 IBM Corp., Chicago, IL).
If the interaction effect was insignificant, the main effects
of classifiers and feature set were further examined. Further-
more, the difference among all the selected optimal feature-
classifier combinations were analyzed at each specific noise
level by applying a one-way ANOVA statistical technique,
and a post-hoc analysis was carried out in cases where
significant difference was observed among the compared
means. For each selected optimal feature-classifier combi-
nation, the variation of classification performance between
two noise levels was assessed with the paired-t statistical test.
In the current study, the level of statistical significancewas set
to p-value < 0.05. And all post-hoc comparisons and t-test
were made using a Bonferroni correction factor to determine
the level of significance.
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III. RESULTS
A. VISUALIZATION OF THE CONTAMINATED
EMG RECORDINGS
To investigate the impact of noise contamination on the clas-
sification performance of the proposed scheme, the variation
of EMG recordings before and after noise contamination was
assessed. FIGURE 3(A) illustrates the topographic map of
EMG recordings at different levels of noise contamination
(0-30 dB) for ST05 who was suffering from muscular weak-
ness, the red color denotes higher RMS of EMG and the
blue color denotes lower RMS of EMG.While FIGURE 3(B)
shows the variation of EMG signal amplitude from a selected
representative channel. By carefully analyzing the maps,
it is found that the spatial distribution of EMG topographic
map was relatively consistent when the SNR of WGN is
within 15 dB, but changed considerably at noise levels greater
than 20 dB. Importantly, it became difficult to discriminate
the onset and offset of a movement (three repetitions of active
EMG) from ‘‘nomovement’’ when the SNR ofWGN reached
20 dB.

B. SELECTION OF OPTIMAL FEATURE-CLASSIFIER
COMBINATIONS
In the absence of WGN interference, the classification accu-
racy when using each of the feature-classifier combina-
tions (RMS/TD2/TD4/TDAR - LDA/KNN/RF /SVM/SRC)
was computed on individual subject basis. The statistical
results with two-way ANOVA suggest that there is no evi-
dence of interaction effect of the feature set and classifier
(p-value = 0.91), while the following post-hoc analysis with
Bonferroni correction indicates that the classifier has main
effect on the classification accuracy (p-value < 0.01) but the
feature set does not have (p-value = 0.38).
FIGURE 4 shows the average classification accuracy

across all subjects for each feature-classifier combination.
It can be seen that in comparison to other classifiers, the SRC
performed the best, with the average classification accuracy
of 96.94 ± 3.10% (standard deviation), 96.53 ± 3.84%,
97.51 ± 3.16%, and 97.36 ± 2.87% when using RMS,
TD2, TD4, and TDAR feature sets, respectively. Moreover,
the standard deviation of classification accuracy for SRC
fluctuated within a small range. These outcomes suggest that
the SRC has merits of high accuracy combined with each
feature set.

According to the average cost time to make decision for
all the SRC-based pattern recognition schemes (TABLE 1),
it is found that the lower the dimensionality of the feature
set is, the shorter the time consumption (computation time)
would be. In particular, in comparison to TDAR-SRC, the
RMS-SRC scheme achieved slightly lower classification
accuracy (with decrease of 0.42%), but the average cost
time for RMS-SRC is 21.72 ± 5.00 s, 15.8 s shorter
than that TDAR-SRC, and the difference is significant
(p-value < 0.05) according to the one-way ANOVA and
pairwise comparison in terms of the cost time. Hence,
the RMS-SRC was selected as one of the optimal feature-

FIGURE 3. Visualization of the EMG at different noise levels. (A) Variation
of EMG topographic map, the former 48 channels of pre-processed EMG
signals corresponding to ‘‘hand close’’ for ST05 were used. (B) EMG
amplitude variation, the 46th channel of preprocessed EMG signals
corresponding to ‘‘hand close’’ for ST05 were considered.

classifier combinations in the following context to assess
their tolerance to WGN interference in the subsequent
analyses. Another four optimal feature-classifier combina-
tions including the LDA-TDAR, KNN-TD4, RF-TD4, and
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FIGURE 4. Classification performance of all feature-classifier
combinations in the absence of WGN corruption.

TABLE 1. Average cost time for SRC when using different feature sets.

SVM-TD4 were selected due to their highest classification
accuracies among all the other feature sets for each classifier.
Noting among all the five optimal feature-classifier combi-
nations, the average classification accuracy of the proposed
RMS-SRC scheme is 96.94%, only 0.33% lower than that
when using TD4-SVM, but significantly higher than those
of the TDAR-LDA, TD4-KNN, and TD4-RF according to
the paired t-test (p-value < 0.05), with increased accuracy
of 1.72%, 5.44%, and 4.72%, respectively.

C. CLASSIFICATION PERFORMANCE WITH NOISE
ON ALL EMG RECORDINGS
The tolerance of the proposed RMS-SRC scheme and the
other optimal feature-classifier combinations was then ana-
lyzed by introducing varying levels of WGN into the entire
EMG recordings (FIGURE 5). It can be observed that the
classification accuracy of all the five examined feature-
classifier combinations was stable when the SNR of addi-
tive WGN was less than or equal to 15 dB (<=15 dB),
which suggest that all the pattern-recognition schemes are
robust to noise contaminations within a limited range. How-
ever, when the SNR of the additive WGN level increased to
20 dB, the classification accuracy was significantly reduced
for all pattern-recognition schemes except for the TD4-KNN
(p-value < 0.01). And the classification accuracy continued
to reduce dramatically when the SNR level increased to 25dB

FIGURE 5. Classification performance of five optimal feature-classifier
combinations with noise on all EMG recordings.

and 30dB (p-value < 0.01). Noting the TD4-SVM and
RMS-SRC achieved consistently higher average classifica-
tion accuracy than the other three pattern recognition schemes
with respect to each noise level, and the RMS-SRC began to
outperform TD4-SVMwhen the SNR of noise reached 20 dB
with higher and concentrated classification accuracy. These
findings indicate that the proposed RMS-SRC scheme would
be more robust to WGN contamination that are inevitably
inherent in most EMG recordings.

The classification performance of all the SRC-based
pattern-recognition schemes were also included for compar-
ison (FIGURE 6). Their classification accuracies reduced
dramatically when the SNR level increased to 25dB and 30dB
(p-value < 0.01). It is noteworthy that the RMS-SRC kept
high classification accuracy, only slightly lower than that of
the TD4-SRC and TDAR-SRC (p-value > 0.05).

FIGURE 6. Classification performance of all SRC-based feature-classifier
combinations with noise on all EMG recordings.

D. CLASSIFICATION PERFORMANCE WITH NOISE ON
PARTIAL EMG RECORDINGS
By introducingWGN of varying levels into either the training
EMG or the testing data, the robustness of the five pattern
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FIGURE 7. Classification performance of five optimal feature-classifier
combinations with noise on partial EMG recordings. The WGN was
added to training set (A) and testing set (B), respectively.

recognition schemes were assessed. FIGURE 7 demonstrates
the average classification accuracy (mean± standard devia-
tion) among all subjects when the training set (80% of the
EMG recordings, FIGURE 7(A)) and testing set (20% of the
EMG recordings, FIGURE 7(B)) were corrupted by WGN,
respectively, the five optimal feature-classifier combinations
were considered.

It is found that for both contamination cases, the par-
tial noise degraded the classification performance dramat-
ically when using TDAR-LDA, TD4-KNN, TD4-RF, and
TD4-SVM (p-value < 0.01). However, the classification
accuracy of the proposed RMS-SRC scheme retained high
mean accuracywhichwas above 92%when the SNR ofWGN
reached 20 dB. Moreover, the statistical analysis indicates
that the proposed RMS-SRC scheme significantly outper-
formed the other four pattern recognition schemes irrespec-
tive of the SNR of WGN (p-value < 0.01). Specifically,
when the SNR of WGN was within 20 dB, the differ-
ence value between the average classification accuracy of

TD4-SVM and that of RMS-SRC ranged from 12.60% to
16.96% when the training set was contaminated, and from
18.24% to 34.79% when the testing set was contaminated.

We further explored the robustness of all SRC-based
feature-classifier combinations in the presence of partial
WGN interference (FIGURE 8). It is observed that the RMS
outperformed the other feature sets regardless of the level
of WGN when 20% of the EMG recordings were contami-
nated (FIGURE 8(B)). And in the case of 80% contaminated
EMG recordings, the RMS-SRC achieved almost the same
accuracy with that of TDAR-SRC (FIGURE 8(A)). These
outcomes suggest that the RMSwith only one dimensionality
is sufficient for the SRC to bring a high and robust classifica-
tion performance.

FIGURE 8. Classification performance of all four SRC-based feature-
classifier combinations with noise on partial EMG recordings. The
WGN was added to training set (A) and testing set (B), respectively.

IV. DISCUSSION AND CONCLUSIONS
Surface EMG signals are often contaminated by WGN
and such noise would inevitably influence the perfor-
mance of EMG-PR system. The intermittent characteristic of
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WGN during long-term EMG recordings makes it difficult
to attenuate the noise in real-time by means of the currently
available denoising approaches. Aiming at providing an accu-
rate, stable, and robust EMG-PR system that is highly invari-
ant to the interference of WGN, a RMS-SRC based pattern
recognition scheme is proposed in this study. The results
show that in comparison to the other four pattern recogni-
tion schemes including TDAR-LDA, TD4-KNN, TD4-RF,
and TD4-SVM, the RMS-SRC achieved similar classifica-
tion accuracy in the presence of limited noise contamination
(0-15 dB) on all EMG recordings, and significantly out-
performed the abovementioned schemes as the SNR of
WGN increased (20-30 dB). Moreover, the proposed
RMS-SRC scheme significantly outperformed the other
four examined pattern recognition schemes when the WGN
existed in either training set or testing set only. These out-
comes suggest the comparative advantage of the proposed
RMS-SRC scheme over the other commonly used pattern
recognition schemes in myoelectric control.

In current study, the optimal feature-classifier combina-
tions were selected in terms of classification accuracy and
the required time to make decision. The average cost time for
the proposed RMS-SRC scheme was observed to be approxi-
mately 21.7 ms, which is significantly longer than the values
obtainedwhen using the other feature-classifier combinations
(excluding that with SRC). With the development of the
CPU or GPU, we believe that the consumption cost of
the optimum SRC algorithms will be sharply decreased in the
future.

In the absence of WGN, we further examined if there is
interaction effect of feature set and classifier by means of
two-way ANOVA statistical analysis, and the results showed
that the classification accuracy was significantly affected by
classifiers (p-value < 0.01) rather than the four different
feature sets (p-value = 0.38). According to FIGURE 4,
however, the average classification accuracy of LDA seems
closely related with the selection of feature sets, while the
other classifiers were not highly sensitive to the selection
of feature sets (with difference value of about 2% between
the highest and the lowest classification accuracy). These
outcomes may be attributed to the different principles upon
which the classification schemes were built. Specifically,
the LDA is to determine a subspace projection that maximizes
the distance between class data clusters while minimizing the
scatter of each cluster, and appropriate increase of the dimen-
sionality of feature matrix would make the clusters affiliated
to different classes more separable in the high-dimensional
space. Therefore, the increased dimensionality of the fea-
ture matrix (from 1 to 2, 4, and 8, respectively) resulted
in higher classification accuracy in the current study. When
using KNN, the similarity between the observed data and
training set was measured with Euclidean distance metric,
which maybe insufficient to discriminate two close clusters
in a high-dimensional space, thus its classification accuracies
with respect to the RMS, TD2, TD4, and TDAR feature
were approximately the same. When using SVM, the RMS

feature matrix obtained from HD-EMG may be sufficient to
obtain support hyper-planes with maximum distance so as to
properly discriminate a specific class from the other classes.
Meanwhile, the SRC which is based on the concept that
patterns from the same class lie on a sparse linear subspace,
and the RMS feature matrix that has same dimensionality to
the HD-EMGmight be sufficient to span a subspace for accu-
rate projection of the test vector, and thus the dimensionality
variation of patterns would not affect the projection accuracy
significantly [34], [36].

By comparing the results in FIGURE 4 and FIGURE 7,
it is found that the KNN began to outperform RF in the pres-
ence of partial WGN interference, while RF was better than
KNN in the absence of WGN. The incapability of Euclidean
distance metric to discriminate two clusters when using KNN
might account for this result. Specifically, the zero crossing,
wave length, and slope sign changes in TD4 feature set are
sensitive to changes in EMG waveform according to their
definitions. And for this reason, the higher the SNR of WGN
is, the more difference there would be between the training
set and the testing set when either set was contaminated by
WGN.However, the Euclidean distancemetric of KNNmight
be insufficient to identify the contaminated cluster from the
clean cluster even though which belong to the same class.

An important finding in the current study is that the pro-
posed RMS-SRC pattern recognition scheme was highly tol-
erant to WGN interferences (FIGURE 5-FIGURE 8), partic-
ularly in the condition of a small part of WGN contamination
(FIGURE 7(B) and FIGURE 8 (B)). There might be two
main reasons accounting for this outcome. First, the RMS
is robust to noise interference due to its lowest dimension-
ality (FIGURE 8 (B)). The dimensional increase of EMG
features when using other more complex feature sets could
provide more information for characterizing EMG patterns,
and thereby leading to higher classification accuracy for
LDA (FIGURE 4). However, for a specific motion that was
contaminated in either the training stage or testing stage,
the disparities of the corresponding EMG patterns would be
increased if higher dimensional feature sets are utilized. In
contrast, the RMS feature with only one dimensionality has
the advantage of tolerance to the disparities. The second pos-
sible reason accounting for the significantly better classifica-
tion performance of the proposed RMS-SRC scheme is that
the SRC algorithm has better robustness to noise corruption in
comparison to the other classical classifiers. That is, the errors
due to noise contamination are sparse with respect to the
standard basis (raw HD-EMG recordings), and the theory of
sparse representation could handle such errors well [35], [36].

With the aim of developing a simple and robust practical
myoelectric control paradigm for the robot-based neurore-
habilitation system, this study provides a promising pattern
recognition scheme, RMS-SRC for myoelectric controlled
systems. This proposed scheme has an obvious compara-
tive advantage to the commonly used classification schemes
in terms of classification accuracy. More notably, the uti-
lization of the RMS-SRC could improve the robustness of
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EMG-PR system against intermittent noises associated with
long-term practical use in real life. In the future, we hope to
further improve the computation speed of the SRC algorithm
by utilizing other optimization algorithms to solve the optimal
L1-minimization problem. Additionally, our future study will
focus on integrating the proposed RMS-SRC scheme into
a real-time EMG-PR platform to examine its reliability in
real-time, and its robustness to untrained effect of electrode
shift, variation of muscle contraction force, and limb position
variation.
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