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ABSTRACT This paper studies the identification of finite impulse response (FIR) systems whose output
observations are subject to both the binary-valued quantization and the scheduling scheme. By utilizing the
statistical property of the system noise and the scheduling policy, an empirical-measure-based identification
algorithm is proposed. Under periodical inputs, it is proved that the estimation from the algorithm can
converge to the real parameters. The mean-square convergence rate of the estimation error is established,
based on which and the Cramér-Rao lower bound, the asymptotic efficiency of algorithm is proved.
Moreover, the communication rate is derived and the input design problem is discussed. A numerical example
is given to illustrate the main results obtained.

INDEX TERMS Identification, FIR systems, binary-valued quantization, scheduling policy, convergence,
Cramér-Rao lower bound.

I. INTRODUCTION
With the extensive use of digital electronics and microsensors
in cyber-physical systems, networked control systems and
wireless sensor networks, the constraint of communication
resources must be considered, when estimating the system
parameter remotely in a network environment. For example,
in wireless sensor networks, large amounts of sensors often
share a public communication channel and they are powered
by batteries [1]. This causes both the network bandwidth
and sensor energy are limited. The shortage of bandwidth
means nodes cannot transmit a mass of data, meanwhile,
the limitation of sensor energy results in limited times of
transmission. In the highly developed information technology
era, traditional system identification has to face these new
challenges [2]. To overcome the constraints, identification
methods should be improved in both temporal and spatial
context.

The scheduled communication scheme is one of effec-
tive ways to deal with the transmission constrain. More
specifically, the sensor only transmits its sample data to the
remote estimator only when a scheduling condition is sat-
isfied, otherwise, the sensor remains silence. This kind of
schemes reduces the communication obviously, meanwhile,
it has a better performance than just dropping out packets

by a deterministic rule or randomly. Because the not-trigged
condition can be known when there is no communication,
in this way, the remote estimator can get extra information
naturally. It has attracted lots of attention and been exten-
sively introduced to the field of state estimation, feedback
control and system identification [3]–[11]. In [3], a novel
scheduling scheme for estimating system state remotely with
multi-channel transmission was discussed. Reference [4] pro-
posed an optimal communication scheduled remote estima-
tion algorithm over an additive noise channel. References [5]
and [6] investigated the scheduled transmission in networked
control systems. Meanwhile, [7] considered hybrid schedul-
ing and quantized output feedback control. An asymptot-
ically optimal parameter estimation under communication
constraints was addressed by [8]. And [9] proposed an ML
(MaximumLikelihood)-basedmethod to estimate parameters
with scheduled measurements. The parameter estimation of
linear systems is discussed under controlled communication
in [10] and under stochastic packet scheduling in [11].

On the other hand, usually only quantized output obser-
vations are available in modern control systems due to
sensor limitations, signal quantization by analog-to-digital
(A/D) converters, or coding for communications. And
the identification with quantized data has also received
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much research attention, and much fruitful progress has
been made [12]–[20]. Under full rank periodic inputs,
[12] and [13] studied the system identification with binary-
valued outputs, and discussed quantized identification algo-
rithms and their key convergence properties in both
stochastic and deterministic frameworks. In [14], a weighted
Least-Squares approach was proposed for FIR systems.
Reference [15] considered the input design in worst-case
system parameter estimation with quantized observations.
[16] dealt with the approximation problem of fixed-order
FIR systems subjected to quantized input/output observa-
tions. With general quantized inputs and quantized output
observations, [17] gave an asymptotically efficient identifica-
tion algorithm for FIR systems. The interest of research also
expanded to Wiener and Hammerstein systems [18]–[20].

For reducing communication burden while guaranteeing
the system performance, taking both quantization and trans-
mission scheduling into account is an intuitive way. How-
ever, the scheduling policy breaks the completeness of the
observation data, and the quantization makes the relation-
ships between the measured quantized signals and the output
to be essentially nonlinear. All these characteristics bring
difficulties to the design of parameter estimation algorithms
and the analysis of convergence performances, and lead to
less results on system identification with both scheduled and
quantized output observations.

This paper focuses on FIR systems to study the identi-
fication with scheduled binary-valued observations. Firstly,
the formulation of FIR systems is given with binary-valued
output observations and the per-specified scheduling pol-
icy. By utilizing the statistical property of the system noise,
we introduce an empirical-measure-based identification algo-
rithm. Secondly, by use of Bayes’ Law, total probability for-
mula and the law of large numbers, under periodical input the
strong convergence is proved, the mean-square convergence
rate and the CR (Cramér-Rao) lower bound are established,
and the asymptotic efficiency is also illustrated. Finally,
the communication rate is derived and the input design is
studied for the minimum communication rate.

The coming sections of this paper are arranged as fol-
lows. Section II describes the system set-up and the identi-
fication problem with scheduled binary-valued observations.
Section III proposes an algorithm to identify the system
parameters. Section IV establishes the strong convergence of
the estimates and the mean-square convergence rate of the
estimation error, together with the asymptotic efficiency and
the communication rate. Section V uses a numerical example
to simulate the main theoretical results obtained and show the
the effectiveness of the algorithm. Section VI summarizes the
conclusion of the paper and gives the future works.

II. PROBLEM FORMULATION
Consider an SISO (single-input-single-output) finite impulse
response (FIR) system described by

yk = a1uk + · · · + anuk−n+1 + dk = φTk θ + dk , (1)

where θ = [a1, . . . , an]T ∈ Rn is the unknown parameters,
φk = [uk , . . . , uk−n+1]T is the regression vector, and dk is the
system noise. Here, the symbol T is used to stand for a vector’
(or a matrix’) transpose. The output yk cannot be measured
exactly, but done by a binary-valued sensor whose threshold
is C ∈ (−∞,+∞). We use an indicator function to represent
such binary-valued observation as

sk = I{yk≤C} =

{
1, if yk ≤ C;
0, otherwise.

(2)

FIGURE 1. System set-up.

As shown by Figure 1, sk is transmitted to a remote estima-
tor through a communication channel/network. To reduce the
number of transmission, a scheduling policy is implemented,
that is,

γk = I{|sk−τk |≥δk } =

{
1, if |sk − τk | ≥ δk ;
0, otherwise,

(3)

where {τk} and {δk} are to be designed to balance the system
performance and the communication bandwidth utilization.
When γk = 1, a transmission is triggered and then sk is
transmitted to the receiver. When γk = 0, the estimator can
not receive anything from the channel. As a consequence,
the available information for the estimator is {γksk , γk} at
time k .

For such a system set-up, this paper aims to investigate the
corresponding identification problem. Two essential issues
will be discussed: 1) How to construct algorithms to esti-
mate θ based on the input{uk} and the scheduled binary-
valued observation {γksk , γk}? 2) How {τk} and {δk} (namely,
the scheduling policy) affect the performance of the algorithm
and save the communication resource?
Assumption 1: The noise sequence {dk} follows that: 1)

it is independent and identically distributed (i.i.d.). 2) The
cumulative distribution function and the probability density
function of d1 is denoted by F(·) and f (·). F(·) is invertible
and its inverse function F−1(·) is twice continuously differ-
entiable. f (·) is bounded. 3) The moment generating function
of d1 exists.

III. IDENTIFICATION ALGORITHM
For simplicity of algorithm design and analysis, it is assumed
that the input is n-periodic, that is, uk+n = uk for all k .
This is extensively used in quantized identification and the
advantages can be seen in [13]. For non-periodic signals,
it can still work (see [21, pp. 81-82]).

Suppose that one-period of {uk} is u1 = v1, u2 = v2, . . .,
un = vn, and denote π1 = φT1 , . . . , πn = φTn . Then the
circulant matrix generated by v1, . . . , vn is

8 = [πT1 , . . . , π
T
n ]

T . (4)
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The n-periodic input {uk} is said to be full rank if the
n-dimensional matrix 8 is invertible.
At N (observation length), define

Ni =
LN−1∑
j=0

I{|1−τi+jn|≥δi+jn}

=

∑
j=0,...,LN−1
|1−τi+jn|≥δi+jn

1, i = 1, . . . , n, (5)

where LN = b
N
n c represents the largest integer less

than or equal to N
n . We introduce an algorithm to estimate

θ as follows,

ξi,N =
1
Ni

LN−1∑
j=0

γi+jnsi+jn, (6)

ζi,N = C − F−1(ξi,N ), (7)
θ̂N = 8

−1 (ζ1,N , . . . , ζn,N )T , (8)

where θ̂N denotes the estimate of θ at N . C is the threshold
of the binary-valued sensor in (2). The distribution function
F(·) is given in Assumption 1.

IV. CONVERGENCE PERFORMANCE
This section will establish the strong convergence of the algo-
rithm. The mean-square convergence rate of the estimation
error will be given, together with the CR lower bound. Then
it will be shown that the algorithm is asymptotically efficient.
Moreover, the communication rate will be obtained.

A. CONVERGENCE AND CONVERGENCE RATE
Theorem 2: Consider system (1) with binary-valued

observations (2) and scheduling mechanism (3) under
Assumption 1. If the input {uk} is full rank and
min1≤i≤n Ni → ∞ as N → ∞ (Ni is the one in (5)), then
the parameter estimate θ̂N provided by algorithm (6)-(8) can
strongly converge to the real value θ , i.e.,

θ̂N → θ, w.p.1. as N →∞.
Proof: If rk = 0, then we have γksk = 0. If rk = 1 and

|1−τk | < δk , then it indicates that sk = 0 by (3), and we also
have γksk = 0. Therefore, it is known that

γksk = 0 if |1− τk | < δk . (9)

According to Bayes’ law and (3), one can have

Pr (γk = 1, sk = 1) = Pr (sk = 1)Pr (|1− τk | ≥ δk |sk = 1) .

Considering that Pr (sk = 1) = Pr(yk ≤ C) = F(C − φTk θ ),
it can be seen that

Eγksk = Pr (γk = 1, sk = 1) = F(C − φTk θ )

if |1− τk | ≥ δk . (10)

Noticing that φTi+jn = πi for any positive integer j, which
and (10) can give

Eγi+jnsi+jn = F(C − πiθ )
if |1− τi+jn| ≥ δi+jn, i = 1, . . . , n. (11)

Due to (6) and (9), it can be derived that

ξi,N =
1
Ni

∑
j=0,...,LN−1
|1−τi+jn|≥δi+jn

γi+jnsi+jn

+
1
Ni

∑
j=0,...,LN−1
|1−τi+jn|<δi+jn

γi+jnsi+jn

=
1
Ni

∑
j=0,...,LN−1
|1−τi+jn|≥δi+jn

γi+jnsi+jn. (12)

Since min1≤i≤n Ni → ∞ if and only if Ni → ∞ for i =
1, . . . , n, under hypothesis and by the law of large numbers,
(11) and (12) can yield that ξi,N → F(C−πiθ ), which implies
that

ζi,N → πiθ, w.p.1 as N →∞, i = 1, . . . , n. (13)

By (7), (8), (13) and (4), we can know that

θ̂N → 8−1

π1...
πn

 θ = θ, w.p.1. as N →∞.

Hence, the theorem is proved. �
Let 6(N ; θ ) represents the covariance matrix of the esti-

mation error of θ̂N , i.e.,

6(N ; θ ) = E(θ̂N − θ )(θ̂N − θ )T ,

and denote σi =
F(C−πiθ )(1−F(C−πiθ ))

f 2(C−πiθ )
for i = 1, . . . , n, where

E(·) is the expectation.
Theorem 3: Under the condition of Theorem 2, if

Ni/N → λi as N →∞, i = 1, . . . , n, (14)

then the mean-square convergence rate of the estimate θ̂N
given by (8) is

N6(N ; θ )→ 8−1diag
(
σ1

λ1
, . . . ,

σn

λn

)
8−T as N →∞.

(15)
Proof: Denoting ζ̃i,N = ζi,N − πiθ , from [13] and (13)

we can have NiE ζ̃ 2i,N → σi,
√
NiE ζ̃i,N → 0, i = 1, . . . , n,

which together with (14) implies that

NE
[
(̃ζ1,N , . . . , ζ̃n,N )T (̃ζ1,N , . . . , ζ̃n,N )

]
→ diag

(
σ1

λ1
, . . . ,

σn

λn

)
as N →∞. (16)

By (4), it can be verified that θ = 8−1(π1θ, . . . , πnθ )T ,
which together with (8) and (16) can lead to

N6(N ; θ )

= N8−1E
[
(̃ζ1,N , . . . , ζ̃n,N )T (̃ζ1,N , . . . , ζ̃n,N )

]
8−T

→ 8−1diag
(
σ1

λ1
, . . . ,

σn

λn

)
8−T as N →∞.

The proof is obtained. �
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6CR(N ; θ ) =

8T diag
(
N1

σ1
, . . . ,

Nn
σn

)
8+

∑
k=nLN+1,...,N
|1−τk |≥δk

φk f 2(C − φTk θ )φ
T
k

F(C − φTk θ )(1− F(C − φ
T
k θ ))


−1

. (17)

B. ASYMPTOTICALLY EFFICIENCY
Lemma 4: Based on {γksk : 1 ≤ k ≤ N }, the CR lower

bound for estimating θ is [see (17) at the top of this page].
Proof: Let zk be some possible sample value of γksk . In

view of (9), it is known that zk = 0 for k ∈ {ι : 1 ≤ ι ≤

N , |1 − τι| < δι}. From this and (10), the likelihood func-
tion of γ1s1, . . . , γN sN taking values z1, . . . , zN conditioned
on θ is

`(z1, . . . , zN ; θ )
= Pr (γ1s1 = z1, . . . , γN sN = zN ; θ)
=

∏
k=1,...,N
|1−τk |≥δk

F zk (C − φTk θ )(1− F(C − φ
T
k θ ))

1−zk

=

n∏
i=1

∏
j∈�i

F zi+jn (C − πiθ )(1− F(C − πiθ ))1−zi+jn

+

∏
k∈ϒ

F zk (C − φTk θ )(1− F(C − φ
T
k θ ))

1−zk ,

where �i = {ι : 0 ≤ ι ≤ LN − 1, |1 − τi+ιn| ≥ δi+ιn} and
ϒ = {ι : nLN + 1 ≤ ι ≤ N , |1− τι| ≥ δι}.

Replace the particular realizations zk by their correspond-
ing random variables γksk , and denote the resulting quantity
by ` = `(γ1s1, . . . , γN sN ; θ ). Let χi,j = γi+jnsi+jn. Then,
we have

` =

n∏
i=1

∏
j∈�i

Fχi,j (C − πiθ )(1− F(C − πiθ ))1−χi,j

+

∏
k∈ϒ

Fγk sk (C − φTk θ )(1− F(C − φ
T
k θ ))

1−γk sk ,

which results in

log ` =
n∑
i=1

∑
j∈�i

(
χi,j logF(C − πiθ )

+(1− χi,j) log(1− F(C − πiθ ))
)

+

∑
k∈ϒ

(
γksk logF(C − φTk θ )

+(1− γksk ) log(1− F(C − φTk θ ))
)

and

∂ log `
∂θ

=

n∑
i=1

∑
j∈�i

(
−χi,jπ

T
i
f (C − πiθ )
F(C − πiθ )

+(1− χi,j)πTi
f (C − πiθ )

1− F(C − πiθ )

)
+

∑
k∈ϒ

(
−γkskφk

f (C − φTk θ )

F(C − φTk θ )

+(1− γksk )φk
f (C − φTk θ )

(1− F(C − φTk θ ))

)
.

In terms of (10), (5) and (4), it follows that

E
∂2 log `
∂θ2

= −

n∑
i=1

∑
j∈�i

πTi πi

σi

−

∑
k∈ϒ

φk f (C − φTk θ )φ
T
k

F(C − φTk θ )(1− F(C − φ
T
k θ ))

= −8T diag
(
N1

σ1
, . . . ,

Nn
σn

)
8

−

∑
k∈ϒ

φk f 2(C − φTk θ )φ
T
k

F(C − φTk θ )(1− F(C − φ
T
k θ ))

.

Hence, the lemma is proved. �
Theorem 5: Under the condition of Theorem 3, the asymp-

totic efficiency of the estimate θ̂N from (8) can be given by

N6(N ; θ )− N6CR(N ; θ )→ 0 as N →∞.
Proof: By virtue of Lemma 4, one can have

N6CR(N ; θ ) =
(
I1,N + I2,N

)−1
, (18)

where I1,N =
1
N8

T diag
(
N1
σ1
, . . . , Nn

σn

)
8 and I2,N =

1
N

∑
k∈ϒ

φk f 2(C−φTk θ )φ
T
k

F(C−φTk θ )(1−F(C−φ
T
k θ ))

. By (14), it can be seen that

I1,N → 8T diag
(
λ1

σ1
, . . . ,

λn

σn

)
8 as N →∞. (19)

FromAssumption 1, we know that f (·) is bounded and then
there exists a real number M such that f (z) ≤ M for x ∈ R.
Note that ‖φk‖ ≤ ρ and C − φTk θ ∈ [−η, η], where ρ =
nmax1≤i≤n |vi| and η = C + ρ‖θ‖2 are two constants, and
‖ · ‖ is the Euclidean norm of a vector or the Frobenius norm
of a matrix. As a result, it can be concluded that∥∥∥∥∥ φk f 2(C − φTk θ )φ

T
k

F(C − φTk θ )(1− F(C − φ
T
k θ ))

∥∥∥∥∥ ≤ ρ2M2

F(−η)(1− F(η))
< ∞.

Together with
∑

k∈ϒ 1 < n, the above gives rise to

‖I2,N‖ ≤
1
N

nρ2M2

F(−η)(1− F(η))
→ 0 as N →∞. (20)

Combining (18)-(20), we have

N6CR(N ; θ ) →
(
8T diag

(
λ1

σ1
, . . . ,

λn

σn

)
8

)−1
= 8−1diag

(
σ1

λ1
, . . . ,

σn

λn

)
8−T

as N →∞,

which and (15) complete the proof. �
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Eγi+jn = Pr(γi+jn = 1)
= Pr

(
|si+jn − τi+jn| ≥ δi+jn

)
= Pr

(
|si+jn − τi+jn| ≥ δi+jn|si+jn = 1

)
Pr
(
si+jn = 1

)
+Pr

(
|si+jn − τi+jn| ≥ δi+jn|si+jn = 0

)
Pr
(
si+jn = 0

)
= I{|1−τi+jn|≥δi+jn}F(C − πiθ )+ I{|τi+jn|≥δi+jn}(1− F(C − πiθ )). (24)

lim
N→∞

1
LN

LN−1∑
j=0

γi+jn = lim
N→∞

1
LN

LN−1∑
j=0

(
I{|1−τi+jn|≥δi+jn}F(C − πiθ )+ I{|τi+jn|≥δi+jn}(1− F(C − πiθ ))

)
=

(
lim
N→∞

Ni
LN

)
F(C − πiθ )+

 lim
N→∞

1
LN

LN−1∑
j=0

I{|τi+jn|≥δi+jn}

 (1− F(C − πiθ ))

= nλiF(C − πiθ )+ nµi(1− F(C − πiθ )). (25)

C. COMMUNICATION RATE
To describe the capacity of the scheduling mechanism in
saving the communication resources, we define the commu-
nication rate as

γ = lim
N→∞

1
N

N∑
k=1

γk . (21)

Theorem 6: Under the condition of Theorem 3, if

1
N

LN−1∑
j=0

I{|τi+jn|≥δi+jn}→ µi, i = 1, . . . , n, (22)

then the communication rate γ from (21) can be given by

γ =

n∑
i=1

(λiF(C − πiθ )+ µi(1− F(C − πiθ ))) . (23)

Proof: By (3) and the law of total probability, it can be
seen that [see (24) at the top of this page].

Note that limN→∞ N/LN = n. By (5), (24) and the law of
large numbers, we have [see (25) at the top of this page],

which implies that

lim
N→∞

1
N

LN−1∑
j=0

γi+jn = lim
N→∞

LN
N
·
1
LN

LN−1∑
j=0

γi+jn

= λiF(C − πiθ )+ µi(1− F(C − πiθ )).
(26)

Considering 1
N

∑N
i=1 γi =

1
N

∑nLN
i=1 γi +

1
N

∑N
i=nLN+1 γi

and 1
N

∑N
i=nLN+1 γi→ 0 as N →∞, from (26) we have

γ = lim
N→∞

1
N

nLN∑
i=1

γi

= lim
N→∞

1
N

n∑
i=1

LN−1∑
j=0

γi+jn

=

n∑
i=1

 lim
N→∞

1
N

LN−1∑
j=0

γi+jn


=

n∑
i=1

(λiF(C − πiθ )+ µi(1− F(C − πiθ ))) .

The theorem is obtained. �

For a given scheduling policy, by (23) we know that γ is
a function of the system input, which can be represented by
γ = γ (π1, . . . , πn). Then an interesting problem is how to
design the input such that γ (π1, . . . , πn) achieves a minimum
value, which can be stated as a constrained minimization
problem

minπ1,...,πn γ (π1, . . . , πn)

s.t. 8 is full rank,

where ‘‘s.t.’’ denotes ‘‘subject to’’.
By (23) again, it can be derived that

γ =

n∑
i=1

((λi − µi)F(C − πiθ )+ µi) . (27)

If λi ≥ µi, then we can have minπi{(λi − µi)F(C − πiθ ) +
µi} = µi. If λi < µi, then it follows that minπi{(λi − µi)F
(C − πiθ )+µi} = λi. As a consequence, by (27) it is known
that

min
π1,...,πn

γ ≥
∑

i=1,...,n
λi≥µi

µi +
∑

i=1,...,n
λi<µi

λi.

The above provides a lower bound of the minimum commu-
nication rate that can be achieved by the input design.
Remark 7: In light of (5), (14) and (22), one can see that

Ni, λi and µi are all generated by the scheduled sequences
{τk} and {δk}. Therefore, min1≤i≤n Ni → ∞ in Theorem 2,
(14) in Theorem 3 and (22) in Theorem 6, in fact, present the
conditions that should be met by the scheduling policy (3) to
ensure the strong convergence and the asymptotic efficiency
of the identification algorithm (6)-(8) and the existence of the
communication rate (21).

V. NUMERICAL SIMULATION
Consider an FIR system yk = a1 uk + a2 uk−1 + dk =
φTk θ + dk , where the parameter θ = [7, 3]T is unknown,
but within the range of 2 = {(x, y) : 0 ≤ x ≤ 18, 0 ≤
y ≤ 5}. {dk} is i.i.d. with zero mean and standard deviation
σ = 80. The binary-valued observation sk = I{yk≤C}, where
the threshold C = 8. The input signal {uk} is 2-periodic with
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one period [v1, v2] = [23, 11]. The scheduling transmission
mechanism is

γk = I{|sk−τk |≥δk } =

{
1, if |sk − τk | ≥ δk ;
0, otherwise,

(28)

where τk = F(C − φTk θ̄ ) with θ̄ = [9, 2.5]T , δk = 0.4Mk +

0.3, and {Mk} is a maximum length sequence (the coefficients
of its feedback function are 0010101001001 and its initial
values are 0010010101011).

For the observation length N = 3000, the identifica-
tion algorithm (6)-(8) is employed to generate the estimate
θ̂N of θ . Fig. 2 displays a trajectory of θ̂N , where θ̂N can
indeed converge to the real value and this is accord with

FIGURE 2. Convergence of θ̂N .

FIGURE 3. A realization of γk on the horizon [500,530].

FIGURE 4. Communication rate (The blue solid line represents
1
N
∑N

k=1 γk , and the black dotted line does
∑n

i=1
(Ni

N F (C − πi θ)+
1
N
∑LN−1

j=0 I{|τi+jn|≥δi+jn}
(1− F (C − πi θ))

)
.

FIGURE 5. Asymptotic efficiency of θ̂N : The blue solid line is the average
of 200 trajectories of ‖N(θ̂N − θ)(θ̂N − θ)T ‖ and the black dash one is
‖N6CR (N; θ)‖, where ‖ · ‖ is the Frobenius norm.

Theorem 2. The transmission time is demonstrated in Fig. 3.
It can be seen that only 13 measurements are send to the
remote estimator in the interval [500, 530], which indicates
the ability of (28) to reduce the communication consump-
tion. Fig. 4 shows 1

N

∑N
k=1 γk and

∑n
i=1(

Ni
N F(C − πiθ ) +

1
N

∑LN−1
j=0 I{|τi+jn|≥δi+jn}(1 − F(C − πiθ ))) with respect to N ,

where their limits are the same and this is consistent with
(23) by (5) and (22). Fig. 5 gives the relationship between the
covariance matrix of the estimation error and the CR lower
bound, which illustrates the asymptotic efficiency of θ̂N and
Theorem 5.

VI. CONCLUDING REMARKS
As the wide applications of networked control systems in
the information field, how to save communication resources
brings new challenges to the conventional system identi-
fication. This paper proposes an identification method for
FIR systems with scheduled binary-valued observations. By
use of the statistical property of the system noise and the
scheduling policy, an empirical-measure-based off-line iden-
tification algorithm is provided and proved to be conver-
gent under a periodical input sequence. The convergence
rate of the estimation error and the asymptotically effi-
ciency are also obtained.Moreover, the communication rate is
discussed.

For the future study, extending the proposed algorithm into
multi-level quantized observations, nonlinear models, and
systems with structural uncertainties are all interesting issues.
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