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ABSTRACT With the advent of robust deep learning, neural machine translation (NMT) has achieved
great progress and recently become the dominant paradigm in machine translation (MT). However, it is
still confronted with the challenge of word ambiguities that force NMT to choose among several translation
candidates that represent different senses of an input word. This research presents a case study using Korean
word sense disambiguation (WSD) to improve NMT performance. First, we constructed a Korean lexical
semantic network (LSN) as a large-scale lexical semantic knowledge base. Then, based on the Korean LSN,
we built a Korean WSD preprocessor that can annotate the correct sense of Korean words in the training
corpus. Finally, we conducted a series of translation experiments using Korean-English, Korean-French,
Korean-Spanish, and Korean-Japanese language pairs. The experimental results show that our Korean
WSD system can significantly improve the translation quality of NMT in terms of the BLEU, TER, and
DLRATIO metrics. On average, it improved the precision by 2.94 BLEU points and improved translation
error prevention by 4.04 TER points and 4.51 DLRATIO points for all the language pairs.

INDEX TERMS Lexical semantic network, neural machine translation, word sense disambiguation.

I. INTRODUCTION
MT systems that can translate text from one language to
another have been a desire since the 1950s. Since then,
various approaches have been investigated to build quality
MT systems, such as dictionary-based, rule-based, example-
based, statistics-based, and neural network-based. In the past
two decades, statistics-based approaches have been used suc-
cessfully to build MT systems. Currently, with the advent
of robust deep learning, NMT has become the dominant
paradigm inMT, with dramatic improvements compared with
statistics-based approaches [1]–[3].

An NMT system first embeds each source word in a con-
tinuous vector (word embedding). Then, the system uses a
recurrent neural network (RNN) to encode a source sentence
(i.e., a sequence of word embeddings) into a single context
vector [4], [5] or a sequence of them [6], [7]. Finally, the sys-
tem uses another RNN to generate a target sentence. Because
the continuous vector is encoded with multiple senses of a
word, the encoder has an implicit weakness in WSD [8], [9].
Ambiguous words cause word choice problems, in which
NMT systems must choose the correct target word from

among several translation candidates that represent different
senses of the input word.

Most languages contain many words with multiple
senses or meanings. The sense of a word in a specific usage
can only be determined by examining its context. For exam-
ple, in the Korean sentence ‘‘bae-leul meog-go bae-leul tass-
deo-ni bae-ga a-pass-da’’ (After eating a pear and getting on
a boat, I had a stomachache), the word ‘‘bae’’ occurs three
times and has three different meanings: a pear, a ship, and a
stomach.

For this research, we built a Korean WSD preprocessor for
NMT systems. The KoreanWSD can annotate distinct sense-
codes to homographic words using their particular context.
The sense-codes are defined in the Standard Korean Lan-
guage Dictionary (SKLD), as the representative of Korean
homographic words. For instance, the sense-codes for the
Korean word ‘‘bae’’ are defined from 01 to 12 to represent
its 12 different senses. Because computers use blank spaces
to separate words, tagging a sense-code to the word ‘‘bae’’
transforms it into a different word (e.g., bae_02). In this way,
NMT systems can overcome the ambiguity of ‘‘bae.’’
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Initially, we constructed an LSN named UWordMap for
Korean. UWordMap consists of a noun network and a pred-
icate network with a hierarchical structure for hyponymy
relations. The noun and verb networks are connected through
subcategorization information. To the best of our knowledge,
UWordMap is currently the biggest and most comprehensive
Korean LSN, containing nearly 500,000 nouns, verbs, adjec-
tives, and adverbs.We then applied UWordMap to build a fast
and accurate Korean WSD system.1

We conducted a series of bi-directional translation
experiments with Korean-English, Korean-French, Korean-
Spanish, and Korean-Japanese language pairs. The
experimental results show that our Korean WSD system
can significantly improve NMT translation quality in terms
of the BLEU, TER, and DLRATIO metrics. On aver-
age, it improved precision by 9.68 and 5.46 BLEU points
for translation from and to Korean, respectively. It also
improved translation error prevention by 8.9 TER points and
8.0 DLRATIO points for all the tested systems.

II. RELATED WORK
Early research tried to prove that WSD could benefit MT, but
Carpuat and Wu [10] reported negative results from integrat-
ing a Chinese WSD system into a Chinese-to-English word-
based statistical MT (SMT) system. Their WSD predicted
Chinese word senses using the HowNet dictionary and then
projected the predicted senses into English glosses.

Instead of predicting the senses of ambiguous source
words, Vickrey et al. [11] reformulated the WSD
task for SMT as predicting possible target translations.
Carpuat and Wu [12] integrated multi-word phrasal
WSD models into a phrase-based SMT. Their experiments
both led to the conclusion that WSD can improve SMT.

Following those successful integrations ofWSD into SMT,
others considered applying WSD systems to MT using sev-
eral methods. Xiong and Zhang [13] proposed a sense-based
SMT model. Su et al. [14] used a graph-based framework
for collective lexical selection. They both experimented on
Chinese-to-English translations and achieved improvements
in translation quality.

In addition to Chinese-English translations, WSD sys-
tems have been successfully integrated into translations
of other language pairs. Using word senses as con-
textual features in maxent-based models enhanced the
quality of an English-Portuguese SMT [15]. A Czech-
English phrase-based SMT was improved using a verb-only
WSD [16]. A WordNet-based WSD was successful in an
English-Slovene SMT [17].

Recently, Rios et al. [18] proposed a method to improve
WSD in NMT by adding sense to word embeddings and
extracting lexical semantic chains from the training data.
Liu et al. [19] also added context-aware to word embed-
dings. In their experimental results, the NMT system failed
to translate ambiguous words, and their WSD improved the

1http://nlplab.ulsan.ac.kr/doku.php > UTagger

quality of the translation results. Both methods customized
translation models to learn additional information, which
might lead to low performance. In particular, increasing the
size of the training corpus and using more deep layers could
cause performance to diminish exponentially.

In contrast to the previous research, we did not modify
the NMT model. Instead, we propose a fast and accurate
WSD system that can run independently. Our WSD acts as
a preprocessor to annotate Korean texts with sense-codes
before they are input into the NMT system. The sense-
codes are not additional information; instead, they trans-
form ambiguous words. Tagging a single word with different
sense-codes creates new words, and consequently removes
ambiguos words.

III. UWordMap — A KOREAN LSN
Because an LSN is used as an essential and useful knowl-
edge resource in various natural language processing sys-
tems, especially in systems dealing with semantics, many
researchers have tried to construct one for each language;
examples include the Princeton WordNet [20] for English,
EuroWordNet [21] and BalkaNet [22] for various European
languages, and HowNet [23] for Chinese. Several projects
have been conducted to build a Korean LSN, but
most of them are based on existing non-Korean LSNs.
KorLex [24] and the Korean Thesaurus [25] were
based on WordNet, and CoreNet [26] was developed by
mapping the NTT Goidaikei Japanese hierarchical lexical
system to Korean word senses. Some Korean LSNs were
designed for specific tasks; for instance, the ETRI lexical
concept network [27] was designed for question-answering
systems.

The Korean LSN UWordMap was manually con-
structed as a large-scale lexical semantic knowledge base.
In UWordMap, every node corresponds to a certain sense and
has a unique sense-code that represents each distinct sense
of its associated lexicon. The lexicons and their sense-codes
were extracted from SKLD.

To construct UWordMap, we first established a lexi-
cal network for nouns; it has a hierarchical structure for
hyponymy relations. Then, we constructed a lexical network
for predicates, and it not only has a hierarchical structure
for hyponymy relations but also provides subcategorization
information to connect each predicate with the lexical net-
work for nouns. Furthermore, we also defined combination
relations for adverbs and predicates.

UWordMap can be used through its application-
programming interface [28] or our online service.2 In this
research, we used only the lexical network for nouns and
the subcategorization information for predicates to improve
the accuracy of our WSD systems. Hence, we next describe
the structure of the lexical network for nouns and the sub-
categorization information for predicates, which are shown
in FIGURE 1.

2http://nlplab.ulsan.ac.kr/doku.php?id=uwordmap
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FIGURE 1. Overview of lexical network for nouns and predicates in UWordMap.

A. LEXICAL NETWORK FOR NOUNS
The lexical network for nouns (LNN) was designed as a
hierarchical structure network, in which an upper-level node
is a hypernym of lower-level nodes. Each node is connected
to only one upper-level node and to one or more lower-
level nodes through hyponymy relations. In other words, an
LNN node cannot have multiple hypernyms.

In addition to the hyponymy relation, the LNN contains
other relations between nodes: absolute synonymy (same
meaning), partial synonymy (similar meaning), antonymy,
and association relations, which are shown in FIGURE 1
using dashed lines.

We constructed the LNN using the following steps.

1) DETERMINE A SET OF TOP-LEVEL NODES
Top-level nodes have no upper-level node. The set of
top-level nodes is the basic frame of every hierarchical struc-
ture network. Determining the set of top-level nodes is thus
the most important step in constructing an LNN, which needs
to be a balanced and expandable network.We used the follow-
ing principles to select our set of top-level nodes.
• Top-level nodes must be lexicons registered in SKLD.
• Top-level nodes must have clear meanings.
• Top-level nodes must be used frequently.
• No top-level node may share any duplicate concept with
another top-level node.

• The selection of top-level nodes should consider the
composition of the lower-level nodes.

Using those principles, we determined the set of
23 top-level nodes shown in Table 1.

2) HYPONYMY RELATION ESTABLISHMENT
The hyponymy relation is the core of the LNN: lower-
level nodes have an IS-A relation to their upper-level nodes.
We used both top-down and bottom-up strategies to establish
the hyponymy relations based on the following principles.

TABLE 1. Top-level nodes of lexical network for nouns.

• Upper-level nodes and lower-level nodes are connected
by their lexical semantics.

• Upper-level nodes contain information about their
lower-level nodes.

• Lower-level nodes inherit the properties of their upper-
level nodes.

• For single nouns or suffixes that originate from Chinese
characters, the relation relies on the meaning of
those Chinese characters. For instance, the words
‘‘bal-jeon-so’’ (power plant) and ‘‘sa-mu-so’’ (office)’’
are connected to the upper-level node ‘‘jang-so’’ (place)
through the suffix ‘‘so’’ (place).

• For compound nouns, the relation relies on the right
side component, which usually contains the core
meaning.
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• For terminologies, the relation relies on existing termi-
nological classification systems.

After establishing the hyponymy relations, we used the
lexical semantic model of Cruse [29] to examine the LNN
and ensure that its structure observes the IS-A relation.

3) SYNONYMY RELATION ESTABLISHMENT
Synonymy relations in the LNN are classified into two cat-
egories: absolute synonymy relation (ASR) and partial syn-
onymy relation (PSR). The ASR applies when two or more
words have the same meaning, and the PSR connects words
with similar meanings. For more detail, ASR is divided
into six types: standard absolute synonymy, misused words,
dialect words, North Korean words, archaic words, and short
form–original form words. PSR is divided into eight types:
standard partial synonymy, refining words, aspirated sound
words, honorific words, familiar speech, jargon, terminology,
and designation words.

4) ANTONYM RELATION ESTABLISHMENT
We established the antonym relation for word pairs with
opposite meanings. According to the lexical semantics,
we divided the antonym relation into three kinds: comple-
mentary antonym, gradable antonym, and relative antonym.

B. LEXICAL NETWORK FOR PREDICATES
Korean verbs and adjectives have similar grammatical con-
structions. Korean grammar does not require a verb ‘‘to be’’
(e.g., am, are, is) for an adjective to construct a sentence.
Korean adjectives thus function as stative verbs that play
the predicate role in sentences [30]. Hence, we arranged
verbs and adjectives into a single lexical network for
predicates (LNP).

In addition to having a hierarchical structure for
hyponymy relations, the LNP also contains subcategorization
information about syntactic categories that is construed as
arguments. Each predicate associates with its arguments
in forming a predicate-argument structure that we used to
define connections between predicates and the least common
subsumers (LCS) of the LNN. Subcategorization information
is essential for generating semantic connections between the
LNN and LNP in UWordMap.

We constructed subcategorization information for all pred-
icates registered in SKLD by extracting the arguments from
example sentences of each predicate in SKLD. Based on
the arguments, we connected the predicates with the LCS
of the LNN. For instance, in FIGURE 1, the predicate
‘‘meog-da’’ (to eat) was connected to LCS such as ‘‘eum-sig-
mul’’ (food), ‘‘yag’’ (drug), ‘‘meog-i’’ (feed), and ‘‘aeg-che’’
(liquid) through the sentence pattern ‘‘eul’’ (object case
marker). However, some hyponyms of ‘‘yag’’ cannot be
connected to the verb ‘‘meog-da’’ (i.e., ‘‘ba-leu-neun-yag’’
(liniment), ‘‘ju-sa-yag’’ (injection), and ‘‘but-i-neun-yag’’
(medicated plaster)). We marked those cases with a con-
strained relation [N_OBJ].

The principles for constructing the subcategorization infor-
mation for predicates are as follows.

1- Refer to the example sentences of each predicate
in SKLD to construct predicate-argument structures.
For instance, from the examples of the predicate
‘‘meog-da_0201’’ (to eat) in SKLD, we extracted
the sentence pattern ‘‘eul’’ and combinative argu-
ment nouns: {bab (rice), sul (alcohol), yag (drug),
mul (water), eum-sig (food), mo-i (feed), bo-yag
(analeptic)}.

2- Connect the predicate with the argument noun’s upper-
level nodes in the LNN. For instance, in the LNN,
the upper-level nodes of those argument nouns are
{eum-sig (food), eum-lyo (drink), mul-jil (material),
aeg-che (liquid), eum-sig-mul (food), meog-i (feed),
yag (drug)}, respectively (FIGURE 1). We connected
the predicate to only the upper-level nodes that do not
violate the exceptional cases below.

3- Handle exceptional cases in which the predicate cannot
connect to an upper-level node.
• If the upper-level node has children nodes that are
not suitable with the predicate, connect the pred-
icate with the argument noun itself. For instance,
‘‘mul-jil’’ is the upper-level node of the argu-
ment noun ‘‘yag.’’ But, ‘‘mul-jil’’ also has children
whose meaning cannot be eaten. So, we connected
the predicate ‘‘meog-da_020101’’ directly with the
argument ‘‘yag.’’

• If a predicate has two or more argument nouns
that are in hyponymy relations with each other,
connect the predicate with the upper-level node
of the hypernym. For instance, the argument noun
‘‘eum-sig’’ is a hypernym of the argument noun
‘‘bab’’ (FIGURE 1). Therefore, we connected
‘‘meog-da_0201’’ with ‘‘eum-sig-mul,’’ which is
the upper-level node of ‘‘eum-sig.’’

• If argument nouns are in the same branch of
a similar semantic field, connect the predicate
with the common upper-level node. For instance,
FIGURE 2 illustrates an upper-level node common
to three argument nouns.

• If the argument nouns are homographs, connect
the predicate with upper-level nodes, depending on
their semantics.

• If the argument noun is a top-level node or its
upper-level node is unsuitable for the predicate,
we connect the predicate directly with the argu-
ment noun.

According to the principles, the subcategorization informa-
tion was constructed with the number of predicates and LCS
shown in the last column of Table 2.

C. CURRENT STATUS OF UWordMap
UWordMap now contains more than 474,000 words (nouns,
verbs, adjectives, and adverbs), which is 92.2% of the words
in SKLD. We compared UWordMap and existing Korean
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FIGURE 2. Example of common upper-level node. [Cmn] is the common
upper-level node of the argument nouns [Arg1], [Arg2], [Arg3].

TABLE 2. Comparison of UWordMap and existing Korean word nets.

word nets (KorLex 2.0 [31], CoreNet [26], and the lexi-
cal concept network (LCN) [27]). KorLex was translated
from the English WordNet [20] by the Pusan National Uni-
versity. CoreNet was constructed based on the Japanese
NTT Goidaikei [32] by the Korea Advanced Institute of
Science and Technology. LCN was directly constructed for
only nouns and verbs by the Electronics and Telecommu-
nications Research Institute of Korea (ETRI). As shown
in Table 2, UWordMap is the biggest andmost comprehensive
Korean LSN.

IV. KOREAN WORD SENSE DISAMBIGUATION
In this section, we propose a hybrid method for building a
Korean WSD system that combines a corpus-based approach
and a knowledge-based approach. First, we use the corpus-
based approach to make statistics for the training corpus.
However, the capacity of the training corpus is always limited,
which causes the lack of data problem. Therefore, we also
use the knowledge-based approach, specifically UWordMap,
to expand the training corpus and improve WSD accuracy.

A. CORPUS-BASED WSD
The corpus-based WSD approach to Korean ordinarily
involves two main stages [33]. The first stage generates
candidates for each eojeol3 using a morphological analysis
and sense-code tagging. The second stage selects the most
appropriate candidate based on its context.

In the first stage, we used the fast and accurate Corpus-
based Korean Morphological Analysis (CKMA) method [34]
to analyze the morphemes of each eojeol. CKMA first

3Eojeol is the Korean token unit delimited by a white space. An eojeol
consists a content word and one or more function words, such as postposi-
tions, endings, auxiliaries, and predicates.

constructed a pre-analyzed partial eojeol dictionary based
on the Sejong corpus to analyze eojeols and determine their
morpheme compositions. Then, the morphemes were tagged
with the part-of-speech (POS) using a hidden Markov model.
CKMA was trained on 90% of the Sejong corpus and tested
on the 10% remainder. The accuracy and recall of CKMA
were 96.8% and 99.1%, respectively. The CKMA processed
approximately 48,000 eojeol(s) per second on a CPU core
i7 860 (2.8 GHz). Subsequently, we tagged the morphemes
with all possible sense-codes from the SKLD to generate
candidates.

In the second stage, the candidate selection for an eojeol
is used to identify the correct sense for that eojeol (so-called
WSD process). The examination of all eojeols in a sentence is
infeasible because of low recall and high time consumption;
therefore we examine only the two contiguous eojeols on
the left and right and select a candidate that maximizes the
conditional probability function:

WSD (wi) = argmax j P(ci,j|wi−1,wi,wi+1) (1)

where,

P(ci,j|wi−1,wi,wi+1) ' P(ci,j|wi−1,wi)× P(ci,j|wi,wi+1)

PLeft = P(ci,j|wi−1,wi)

PRight = P(ci,j|wi,wi+1)

So,

WSD (wi) = argmax j (PLeft × PRight ) (2)

where wi is the i-th eojeol (current eojeol) in a sen-
tence w1w2 . . .wn, and ci,j is the j-th candidate of the
i-th eojeol. The probability P(ci,j|wi−1,wi) depends on
the left-contiguous eojeol wi−1, so it is denoted as PLeft .
P(ci,j|wi,wi+1) is calculated based on the right-contiguous
eojeol wi+1 and is denoted as PRight .

Table 3 gives an example of candidate generation for
the eojeol ‘‘sa-gwa-leul,’’ which appears in the sentence
‘‘mas-iss-neun sa-gwa-leul meog-eoss-da’’ (I ate a deli-
cious apple). In this case, CKMA analyzed ‘‘sa-gwa-leul’’
into two morphemes ‘‘sa-gwa’’ and ‘‘leul’’ and POS-tagged
‘‘sa-gwa’’ as NNG (common noun) and ‘‘leul’’ as
JKO (object marker). Subsequently, we looked up the
probable sense-codes of the morphemes in SKLD and
tagged two sense-codes ‘‘08’’ and ‘‘05’’ for ‘‘sa-gwa,’’
which generated two candidates: c2,1, ‘‘sa-gwa_05/
NNG + leu/JKO’’ and c2,2, ‘‘sa-gwa_08/NNG +

leul/JKO.’’ Furthermore, we assumed that the sense of the
current eojeol can be identified based on the first two syllables
of the contiguous eojeols. In the Korean writing system,
an eojeol is a sequence of one ormore syllables. Among them,
the first syllables contain the meaning, and the last syllables
often comprise one or more function words that reflect gram-
matical or structural relationships. For instance, in the phrases
‘‘sa-gwa-leul meog-eoss-ji-man’’ (I ate an apple, but) and
‘‘sa-gwa-leul meog-eoss-da’’ (I ate an apple), the function
words ‘‘ji-man’’ (but) and ‘‘da’’ (sentence ending) are added
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TABLE 3. An example of candidate generation.

to the content word ‘‘meog-eoss’’ (ate). According to this
assumption, the sense of ‘‘sa-gwa’’ can be identified based on
the first two syllables of the following eojeol ‘‘meog-eoss.’’
This assumption considers only the surface form of the

eojeols. Hence, the conditional probability PRight is denoted
as PRight_Surf and counted using Equation (3) based on
the entire current eojeol and the first two syllables of the
right-contiguous eojeol.

PRight_Surf = P(ci,j|wi, si+1,1, si+1,2) (3)

where sx,y is the y-th syllable of the x-th eojeol.
Likewise, the conditional probability PLeft is denoted as

PLeft_Surf and calculated by Equation (4) based on the entire
left-contiguous eojeol and the first two syllables of the current
eojeol.

PLeft_Surf = P
(
mi,j,1 |wi−1, si,1, si,2

)U
× P(ci,j|wi) (4)

where mi,j,1 is the first morpheme (including the tagged
POS and sense-code) in the j-th candidate of the i-th eojeol.
For instance, in the example in Table 3, m2,1,1 =

‘‘sa-gwa_05/NNG’’ and M2,2,1 = ‘‘sa-gwa_08/NNG.’’ U is
a weight of PLeft to measure the relative importance of PLeft
and PRight . Because only the first two syllables of the current
eojeol are involved in Equation (4), only the probability
of the first morpheme in the current eojeol is calculated.
The remaining morphemes are not considered. Therefore,
we multiply the probability of the first morpheme by the
probability of the current candidate given the entire current
eojeol, P(ci,j|wi), to make the probabilityPLeft_Surf .
Using the surface form of eojeols can improve the com-

putational speed of these conditional probabilities, but it
must deal with the data missing from the training corpus,
which causes the low-recall problem in Korean WSD sys-
tems. In Korean sentences, the surface forms of verbs and
adjectives are often constituted by adding function words to
the word stems or transforming the original forms. Because
of the many kinds of function words and many regular and
irregular transformations, the training corpus cannot cover
all the possible surface forms of each verb and adjective.
For instance, when identifying the meaning of ‘‘sa-gwa’’
in the phrase ‘‘sa-gwa-leul meog-ja-myeon,’’ we cannot use
Equation (4) because the pair of ‘‘sa-gwa-leul’’ and the
first two syllables ‘‘meog-ja’’ do not exist in the training
corpus. However, the pair of ‘‘sa-gwa-leul’’ and the verb

‘‘meog_02/VV’’ occurs many times in the training corpus.
The verb ‘‘meog_02/VV’’ is the word stem for the eojeol
‘‘meog-ja-myeon.’’ Based on the word stem of the verbs and
adjectives, we can somewhat solve the missing data problem
and determine the correct sense of the contiguous nouns.

A surface form of a verb or adjective can be analyzed into
several kinds of word stems. For instance, the surface form
‘‘gan-da’’ is analyzed into four kinds of word stems, as shown
in Table 4. In that case, PRight is denoted as PRight_Stem and
calculated by selecting a word stem from the right-contiguous
eojeol that maximizes the conditional probability:

PRight_Stem = argmaxk P(ci,j|wi, vi+1,k ) (5)

where vi+1,k is the k-th word stem of the right-contiguous
eojeol (i.e., i-th = current eojeol, i+1-th = right-contiguous
eojeol). k can be mapped to 1, 2, 3, and 4 for the example
in Table 4.

TABLE 4. Analyzing surface form of the Eojeol ‘‘gan-da’’ into word stems.

Likewise, when using word stems, the conditional prob-
ability PLeft is denoted as PLeft_Stem and calculated by
Equation (6) by selecting a word stem for the current eojeol
that maximizes the conditional probability:

PLeft_Stem = argmaxk (P
(
mi,j,1 |wi−1, vi,k

)U
× P(ci,j|wi))

(6)

This is equivalent to using the surface form in Equation (4),
in which a word stem is always contained in the first mor-
pheme of an eojeol. Therefore, only the first morphememi,j,1
is calculated, and the other morphemes are not considered.
We have to calculate the further probability of the candidate
given entire current eojeol, P(ci,j|wi).
In this research, we aim to build a fast and accurate

WSD system, so we prioritize the surface form over the word
stem of verbs and adjectives.We use the word stem to identify
the word sense only if we fail to do that using the surface
form. Generally, PLeft and PRight are adjusted based on the
use of surface forms or word stems as follows:

PRight =

{
PRight_Surf , if PRight_Surf > 0
PRight_Stem, if PRight_Surf = 0

(7)

PLeft =

{
PLeft_Surf , if PLeft_Surf > 0
PLeft_Stem, if PLeft_Surf = 0

(8)

Even using the word stem of predicates (including verbs
and adjectives), the corpus-based approach must still deal
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with the data missing from the training corpus. Each noun
can combine with many different predicates to make up
sentences. Given all the possible combinations of nouns
and predicates, the training corpus cannot contain them
all. That lack of data in the training corpus is one of
the main challenges faced by the corpus-based approach
to WSD.

B. KNOWLEDGE-BASED WSD
To address that problem, we propose a knowledge-based
method using the UWordMap LSN. UWordMap contains
a hierarchical structure network for nouns and subcatego-
rization information for predicates. In the subcategoriza-
tion information, predicates are connected with the LCS
of the hierarchical noun network through sentence patterns.
Table 5 gives an example of the subcategorization informa-
tion in UWordMap. Based on those connections, we can
determine the correct sense for nouns and predicates.

TABLE 5. Example of subcategorization information in UWordMap.

Thus, UWordMap provides a way to complement the
training corpus by generating sentences from the subcat-
egorization information. From the subcategorization infor-
mation, we extract the LCS (i.e., nouns), predicates, and
sentence-patterns and then arrange them according to Korean
sentence structure to generate sentences [35]. For instance,
from the subcategorization information in Table 5, we can
generate the following sentences to supplement the training
corpus.
gil_0101/NNG eul/JKO geod-da_02/VV.
geoli_0101/NNG eul/JKO geod-da_02/VV.
gong-won_03/NNG eul/JKO geod-da_02/VV.
baeg-seong_0001/NNG e-ge-seo/SRC geod-da_04/VV.
si-heom-jang_0001/NNG e-seo/LOC geod-da_04/VV.
. . .

Furthermore, the training corpus can be expanded into
hyponyms of the LCS on the LSN. The LCS’s were replaced
with their hyponyms to generate a series of sentences with
the same predicates. FIGURE 3 gives a hierarchical network
of the noun ‘‘gil_0101’’ (street, road). In the subcatego-
rization information (Table 5), ‘‘gil_0101’’ is directly con-
nected to the verb ‘‘geod-da_02’’ (to walk). However, its
hyponyms (i.e., mo-laes-gil_01, san-gil_02, mi-lo_0101, and

FIGURE 3. Hierarchical network of the noun ‘‘gil_0101’’ in UWordMap.

na-mus-gil_01. . . in FIGURE 3) are not connected to the verb
‘‘geod-da_02’’. We can still generate a series of sentences by
connecting the verb ‘‘geod-da_02’’ and the hyponyms such
as
mo-laes-gil_01/NNG eul/JKO geod-da_02/VV.
san_gil_02/NNG eul/JKO geod-da_02/VV.
na-mus-gil_01/NNG eul/JKO geod-da_02/VV.
. . .

The noun ‘‘gil_0101’’ has 421 direct hyponyms (level 1
hyponyms), each of which has other hyponyms in level 2.
Therefore, the number of sentences generated is large.
Expanding the training corpus in this way will make it
huge and cause low performance, reducing the system’s
practicality.

Instead of generating sentences to complement the training
corpus, we replace the noun with its hypernym while the sen-
tence is examining.When using both the surface form and the
stemword of an eojeol fails to identify its sense, the hypernym
will be looked up and used instead. If the hypernyms still
cannot identify the sense of an eojeol, we continue looking
up the hypernym of the hypernym in a looping process that
continues until the sense is identified or the hypernym is the
top-level node (FIGURE 4).

To improve the performance of the loop process, we make
paths (hypernym paths) from each noun to a top-level node.
Because each noun has only one hypernym, each noun has
only one hypernym path. The average length of the hypernym
paths is 10, and the maximum length is 17. For example,
‘‘na-mus-gil_01 > san-gil_02 > gil_0101 > gong-
gan_0502’’ is a hypernym path created from the hierarchical
network shown in FIGURE 3. Storing the hypernym paths in
the database could reduce the volume of the training corpus
and reduce the complexity of looking up hypernyms in the
loop process. All processes we have proposed for determining
word sense are shown in FIGURE 4.

C. EXPERIMENTS AND RESULTS
We conducted our experiments on the Sejong corpus [36]
and LSN UWordMap. The Sejong corpus includes 11 million
eojeols tagged with POS and sense-codes that are identical to
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FIGURE 4. WSD system architecture. Morphological analysis and
sense-code tagging processes generate candidates. PLeft_Surf and
PLeft_Stem are the probability of the candidates based on the surface
form and the stem word of the left-contiguous eojeol, respectively.
Likewise, PRight_Surf and PRight_Stem are the probability of candidates
given the right-contiguous eojeol.

those in SKLD. We also used the sense-codes from SKLD to
construct UWordMap, so the sense-codes of UWordMap and
the Sejong corpus are consistent.

To measure the weight U in Equations (4) and (6), we ini-
tialized U to 0.5 and increased its value to maximize the
system accuracy. The accuracy increased as U increased
from 0.5 to 1.5, and then it decreased as U increased from
1.5 to 2.5. Therefore, we used the weight U = 1.5 for all
following experiments.

We used about 90% of the Sejong corpus for training and
10% for testing our systems. The testing dataset includes
1,108,204 eojeols extracted from the Sejong corpus by select-
ing sentences with orders divisible by 10. The rest of the
corpus was used as the training dataset.

To evaluate both accuracy and performance, we set the
same experiment environments and tested four systems using
the following methods:
• PPWD: pre-analyzed partial word-phrase dictionary
method [33].

• HMM: hidden Markov model method [37].
• Proposed corpus-based: our proposedmethod using only
the corpus-based approach.

• Proposed associated UWordMap: our proposed method
using a combination of the corpus-based approach and
UWordMap.

The accuracy and time consumption of those systems in
our testing using the dataset of 1,108,204 eojeols are shown
in Table 6. The PPWD method consumed the least time but
was not accurate enough to be a real system. Combining the

TABLE 6. Korean WSD results comparison.

corpus-based approach and UWordMap improved the accu-
racy by 0.1% compared with using only the corpus-based
approach. Our proposed method significantly reduced the
time consumed and achieved a higher accuracy compared
with the HMM method.

We also compared the accuracy of our proposed method
with the accuracies of recent machine learning methods:
embedded word space (EWS) [38] and bidirectional recurrent
neural network (BRNN) [39]. Both the EWS and BRNN
methods used the Sejong corpus to train and evaluate their
systems. The EWS method limited the training data to three
POS: nouns, verbs, and adjectives. On the other hand, the
BRNN method used all kinds of POS and extended the train-
ing data by adding corpora from Wikipedia and Namuwiki.
As shown in Table 6, the proposedmethod outperformed both
the EWS and BRNN methods.

V. NEURAL MACHINE TRANSLATION
NMT is the use of neural networks on parallel corpora to
train a statistical model for machine translation that can
regenerate a target sentence y by maximizing the conditional
probability of y given a source sentence x. The use of neural
networks to train translation models was first proposed in
the 1990s [40], [41]. However, at that time, the hardware did
not have enough power to handle the computational complex-
ity, which caused the results to be unreasonable. Therefore,
this method stalled for almost two decades.

Recently, with the development of hardware and deep
learning technology, NMT has achieved state-of-the-art per-
formance. Most NMT models are based on a sequence-to-
sequence framework [4], [5] that uses two RNNs to encode
a source sentence into a vector and then decode the vector
into a target sentence. Attention mechanisms [7], [42], [43]
were introduced to improve the translation results by dynam-
ically customizing the RNN. For instance, Zhang et al. [44]
altered the RNN to assemble history and future context into
source sentences; Su et al. [45] segmented a source sentence
into a word-clause-sentence hierarchical structure and then
modified both the RNN encoder and decoder to input and
translate the structure. The attention NMT architecture has
now become the dominant paradigm.

Here, we describe the encoder–decoder from the attention
NMT architecture proposed by Bahdanau et al. [7], upon
which we built our MT system.
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A. ENCODER
The encoder is a bi-directional RNN (i.e., forward and back-
ward RNNs) that reads a source sentence into a sequence
of context vectors. The source sentence is a sequence
of 1-of-K coded word vectors x =

(
x1, x2, . . . , xTx

)
,

xi ∈ RKx , where Tx is the length of the source sentence, and
Kx is the vocabulary of the source language.

The forward RNN reads the source sentence from left to
right and computes forward hidden states (Eh1, Eh2, . . . , EhTx ).
The backward RNN reads the source sentence in the
reverse order and produces backward hidden states
(
←

h1,
←

h2, . . . ,
←

hTx ).
The forward hidden state at time t is calculated by

Eht =

{
(1− Ez1) ◦ Eht−1 + Ez1 ◦ Eht , if t > 0
0, if t = 0

(9)

where

Eht = tanh( EWĒxt + EU [Ert ◦ Eht−1]) (10)
Ezt = σ ( EWzĒxt + EUzEht−1) (11)
Ert = σ ( EWr Ēxt + EUr Eht−1) (12)

Ē is a word-embedding matrix of the source language that
is shared forward and backward, and EW∗ and EU∗ are weight
matrices. σ denotes a logistic sigmoid function. The calcula-
tion of hidden backward states is similar to that for forward
states.

The forward and backward hidden states are concatenated
to have the source annotations

(
h1, h2, . . . , hTx

)
with

hi =
[
EhTi ;

←

h
T

i

]T
.

B. DECODER
A decoder is a forward RNN to generate the target sentence
y =

(
y1, y2, . . . , yTy

)
, yi ∈ RKy , where Ty is the length

of target sentence, and Ky is the vocabulary of the target
language. Word yi is calculated by the conditional probability

p (yi | {y1, . . . ,yi−1} , x) = g(yi−1, si, ci) (13)

The hidden state is first initialized with s0 = tanh(Wsh1)
and then calculated for each time i by

si = (1− zi) ◦ si−1 + zi ◦ s̃i (14)

where

s̃i = tanh (WEyi−1 + U [ri ◦ si−1]+ Cci) (15)
zi = σ (WzEyi−1 + Uzsi−1 + Czci) (16)
ri = σ (WrEyi−1 + Ursi−1 + Crci) (17)

E is the word-embeddingmatrix of the target language, and
W∗, U∗, and C∗ are weight matrices.
The context vector ci is calculated based on the source

annotations by

ci =
∑Tx

j=1

exp
(
eij
)∑Tx

k=1 exp (eik)
hj (18)

eij = vTa tanh(Wasi−1 + Uahj) (19)

where eij is an attention mechanism to measure how well hj
and yi match, and vTa ,Wa, and Ua are weight matrices.

VI. EXPERIMENTS AND RESULTS
To evaluate the effectiveness of our Korean WSD method
in improving NMT results, we conducted a series of exper-
iments using bi-directional translation between Korean and
English, French, Spanish, and Japanese.

A. DATASETS
We built parallel corpora by extracting the definition state-
ments of each word from the National Institute of Korean
Language’s Learner Dictionary.4 After collecting the corpora,
we normalized and preprocessed the sentences of each col-
lected language. All sentences longer than 80 words were
discarded. All alphabetical characters were lowercased for all
languages. The corpora were basically tokenized using the
Moses tokenizer5 for Korean, English, French, and Spanish
and the Mecab tokenizer6 for Japanese.
In the end, we obtained 69,833 sentences for each lan-

guage. These corpora are too small to build commercial MT
systems, but they are large enough to allow us to evaluate
the effectiveness of our Korean WSD method with NMT.
We randomly extracted 1,000 sentences from each language
to use as testing sets. The remainder of the corpora were used
as training sets. Details of the corpora are shown in Table 7.

TABLE 7. Training and testing datasets.

B. INTEGRATING KOREAN WSD INTO THE CORPORA
By using the Korean WSD system described in section IV.
The Korean words in both the training and testing sets were
tagged with the sense-codes before they were input into the
NMT systems. The Korean WSD system thus works as a
preprocessor for MT systems. Table 8 gives an example of
a Korean sentence tagged with the sense-codes. Because
MT systems delimit words by the white spaces between them,
the sense-code tagging transforms homographic words into
distinct words, eliminating the ambiguous words from the
Korean dataset.

The Korean WSD system changed the sizes of the tokens
and vocabulary (i.e., the types of tokens) in the Korean
dataset, as shown in Table 9. As explained in detail above,
the Korean WSD includes two steps. The first step analyzes

4https://krdict.korean.go.kr
5http://www.statmt.org/moses
6http://taku910.github.io/mecab
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TABLE 8. An example of a sense-code tagged sentence.

TABLE 9. Korean data set after applying WSD.

the morphology into which a Korean word (eojeol) is seg-
mented and then recovers it to the original form. The second
step tags homographic words with the appropriate sense-
codes. The morpheme segmentation increased the token size.
The original form recovery reduced the vocabulary size. Tag-
ging different sense-codes to the same homographic words
increased the vocabulary size.

C. SETUP
We implemented our NMT systems on the open framework
OpenNMT [46], which is a sequence-to-sequence model
described in section V. The systems were set with the follow-
ing parameters: word-embedding dimension = 500, hidden
layer = 2x500 RNNs, input feed = 13 epochs.

We used those NMT systems for bi-directional translation
of the following language pairs: Korean-English, Korean-
French, Korean-Japanese, and Korean-Spanish. To separately
evaluate the effectiveness of our morphological analysis and
sense-code tagging, we used three systems (Baseline, Mor-
phology, and WSD) for each direction. The Baseline sys-
tems were trained with the originally collected corpora given
in Table 7. The Morphology systems were trained with the
Korean corpus that had beenmorphologically analyzed. In the
WSD systems, the Korean training corpus was both morpho-
logically analyzed and tagged with sense-codes. Altogether,
we had 24 translation systems, as shown in Table 10.

D. RESULTS
We used the BLEU, TER, and DLRATIO evaluation met-
rics to measure the translation quality. BLEU (Bi-Lingual
Evaluation Understudy) [47] measures the precision of an
MT system by comparing the n-grams of a candidate transla-
tion with those in the corresponding reference and counting
the number of matches. In this research, we use the BLEU
metric with 4-grams. TER (Translation Error Rate) [48] is
an error metric for MT that measures the number of edits
required to change a system output into one of the references.
DLRATIO [49] (Damerau-Levenshtein edit distance) mea-
sures the edit distance between two sequences.

TABLE 10. Translation results.

Table 10 shows the results of the 24 systems in terms of
their BLEU, TER, and DLRATIO scores. All three metrics
demonstrate that both the Morphology and WSD systems
improved the translation quality for all four language pairs
and both translation directions.

The Morphology systems improved the results of the
Baseline systems for all the language pairs by an average
of 6.41 and 2.85 BLEU points for translation from and
to Korean, respectively. Morphological complexity causes
a critical data sparsity problem when translating into or
from Korean [50]. The data sparsity increases the number of
out-of-vocabulary words and reduces the probability of the
occurrence of each word in the training corpus. For instance,
NMT systems treat the morphologies of the Korean verb
‘‘to go’’ as completely different words: ‘‘ga-da,’’ ‘‘gan-da,’’
‘‘ga-yo,’’ and ‘‘gab-ni-da.’’ Hence, the Korean morpholog-
ical analysis can improve the translation results. The dis-
proportionate improvement of results in different translation
directions occurred because we applied the morphological
analysis only to the Korean side. Therefore, the improvement
of translations from Korean is more significant than that in
the reverse direction.
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The Korean sense-code tagging helped the NMT systems
correctly align words in the parallel corpus as well as choose
correct words for an input sentence. Therefore, the perfor-
mance of the WSD systems further improved by an average
of 3.27 and 2.61 BLEU points for all the language pairs
when translating from and toKorean, respectively. In compar-
ison with the Baseline systems, the WSD systems improved
the translated results for all language pairs by an average
of 9.68 and 5.46 BLEU points for translations from and
to Korean, respectively. In summary, the proposed Korean
WSD can remarkably improve the translation quality of
NMT systems.

The TER and DLRATIO metrics provide more evidence
that the proposed Korean WSD system can improve the
translation quality of NMT. The results in Table 10 show
that the proposed Korean WSD system improved the NMT
performance by an average of 9.1 TER and 9.8 DLRATIO
error points when translating from Korean to the four differ-
ent languages. In the reverse direction, the proposed Korean
WSD improved the performance by an average of 8.8 TER
and 6.3 DLRATIO error points for all NMT systems. Partic-
ularly, the Korean sense-code tagging improved translation
error prevention by 4.04 TER points and 4.51 DLRATIO
points for all the language pairs. In short, the proposedKorean
WSD can considerably reduce NMT errors.

Furthermore, we examined some well-known MT systems
to see how they handle the Korean WSD problem. We input
the sentence used in Section I, ‘‘bae-leul meog-go bae-
leul tass-deo-ni bae-ga a-pass-da’’ into Google Translate,
Microsoft Bing Translator, and Naver Papago. The translated
results are shown in Table 11. Google Translate correctly
translated the second and third ‘‘bae’’ but incorrectly trans-
lated the first ‘‘bae.’’ Microsoft Translator could not distin-
guish the different meanings of ‘‘bae,’’ and it missed a clause.
Papago also could not distinguish the different meaning of
‘‘bae’’ in this sentence. None of them translated this sentence
correctly.

TABLE 11. Korean-to-English translation examples.

VII. CONCLUSION
In this research, we have presented the following three
accomplishments:
• We constructed the biggest and most comprehensive
LSN for the Korean language — UWordMap, which

is not only useful for MT, but also for various fields
in Korean language processing, such as information
retrieval and semantic webs.

• We proposed a method for building a fast and accurate
Korean WSD system based on UWordMap.

• The experimental results from bi-directional transla-
tion between language pairs (Korean-English, Korean-
French, Korean-Spanish, and Korean-Japanese) demon-
strate that the proposed Korean WSD system signifi-
cantly improved NMT results.

In the future, we plan to complete UWordMap with all
the words contained in SKLD. We further intend to insert
neologisms into UWordMap because adding more words will
make the proposed Korean WSD system more accurate.

Because the quality of an NMT system depends on the
training corpus, we also plan to collect more data related to
Korean. Additionally, we intend to study the application of a
syntactic and parsing attentional model to NMT system.
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