
Received May 14, 2018, accepted June 22, 2018, date of publication June 28, 2018, date of current version July 30, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2851223

Comparison of PD, PID and Sliding-Mode Position
Controllers for V–Tail Quadcopter Stability
JOSÉ J. CASTILLO-ZAMORA1, KARLA A. CAMARILLO-GÓMEZ2,
GERARDO I. PÉREZ-SOTO3, (Member, IEEE), AND
JUVENAL RODRÍGUEZ-RESÉNDIZ 3, (Senior Member, IEEE)
1Mechatronics Engineering Department, Tecnológico Nacional de México en Celaya, Celaya 38010, Mexico
2Mechanical Engineering Department, Tecnológico Nacional de México en Celaya, Celaya 38010, Mexico
3Faculty of Engineering, Universidad Autónoma de Querétaro, Santiago de Queretaro 76010, Mexico

Corresponding author: Juvenal Rodríguez-Reséndiz (juvenal@ieee.org)

This work was supported in part by CONACyT of Mexico and in part by PRODEP of Mexico.

ABSTRACT In this paper, a comparison of PD, PID, and SMC position controllers for a V-tail quadcopter
is presented. First, a customized design of the V-tail quadcopter is shown to know the parameters of
this structure and compare them with the commonly × structure quadcopter used in most papers. Then,
the dynamic analysis of the V-tail quadcopter using the Newton–Euler formulation is presented. The
main contribution of this paper remains in the design and Lyapunov stability analysis of the PD, PID,
and SMC position controllers for the V-tail quadcopter because the robot manipulator methodology was
used, treating the V-tail quadcopter as a robot manipulator. The simulation results validate the proposed
controllers and algorithms for the V-tail quadcopter when the three controllers reach the desired position.
Also, a non-conventional variable is introduced to study the stability analysis of unmanned aerial vehicles
when controlled by PID position controller. Finally, a comparison between the three designed controllers
for the V-tail quadcopter is presented, where the differences between each can be appreciated. So that, for
the first time, three controllers for the V-tail quadcopter designed using the robot manipulator theory is
presented.

INDEX TERMS V-tail quadcopter, PID controller, PD controller, sliding-mode controller, Lyapunov
stability analysis.

I. INTRODUCTION
In the last decade, interest in unmanned aerial vehicles
(UAVs) and their design and control has exponentially
increased, due to their capability to carry out several complex
tasks, in addition to their low–cost production and relatively
simple operation [1].

Quadcopters have captured the attention of researchers
because of their reduced dimensions, light–weight,
mechanical structure, autonomy and their outstanding ability
to efficiently complete assigned tasks. This kind of UAVs is
classified as vertical take–off and landing, VTOL, due to their
operation method [1], [2].

Several areas of science, as well as specific techniques
and theories, are being adapted explicitly to quadcopters,
resulting in a widely expanding research activity. To mention
some areas of research involved in the manufacture and the
development of aerial vehicles, we could cite aerodynamics,
materials science, control theory, computer science, mechan-
ical design, fluid dynamics, and microprocessors [1].

An observation can infer, quadcopter has a simple mechan-
ical structure, but the control theory is not simple, due to
the non–linear dynamics of the vehicle. It has 6 degrees of
freedom (DOF) and only four actuators, which makes it a
complex system to study and control [3].

It is important to obtain its dynamic model to study
the vehicle. For this, two formulations are used: the
Newton–Euler formulation [2]–[11], [21] and the
Euler–Lagrange formulation [12]. The former is most com-
monly used to obtain the dynamic model of quadcopters, due
to the simplicity of its equations, but this is not the case for
a robot manipulators, where the Euler–Lagrange formulation
is more convenient to implement.

The basic tasks of these UAVs are to reach stability and to
follow the desired trajectory even if it is a single quadrotor
task [11] or a multiple quadrotor task [21], so that is why
there are many documented studies about these two main
topics. Regarding the first one, algorithms to stabilize the
orientation of a quadcopter keeping a predefined distance

38086
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-8598-5600


J. J. Castillo-Zamora et al.: Comparison of PD, PID and Sliding-Mode Position Controllers

from the ground have been developed by Khatoon et al. [7],
Jeong and Jung [9], Jithu and Jayasree [12], Yang et al. [13],
Walid et al. [14], Fernando et al. [15], and Lee et al. [16],
also, altitude stabilization has been explained in [2], [3], [8],
and [17]. In most of the studies taken as references for
this paper, algorithms to stabilize the orientation of the
vehicle are presented due to their direct formulation, and
they give a dynamic model for the UAV. To execute this
task, several and different methodologies have been adopted
including sliding–mode control (SMC) [17] and even the
well–known PD (proportional–derivative) [12], [14] and
PID (proportional–integral–derivative) [2]–[4], [7], [8], [13]
controllers. The latter is the most commonly used for stability
analysis. All these techniques have been applied to typical
cross–structure quadcopters (× structure) but not for V–tail
quadcopters [6] as shown in this paper. Many techniques have
been used to design PID controllers [2]–[4], [7], [8], [13], and
each of them has their advantages and disadvantages.

In this paper, the dynamic analysis using Newton-Euler
formulation for customized design of a V–tail quadcopter
is presented to know the parameters of this structure and
compare them with the × structure quadcopter used in most
papers. The main contribution of this paper remains in the
design and Lyapunov stability analysis of the PD, PID and
SMC position controllers for the V–tail quadcopter because
the robot manipulator methodology was used for that pur-
poses [18]. The simulation results validate the proposed con-
trollers and algorithms for the V–tail quadcopter when the
three controllers reach the desired position. Also, a non-
conventional variable is introduced to study the stability
analysis of unmanned aerial vehicles when controlled by
PID position controller. Finally, a comparison between the
three designed controllers for a V–tail quadcopter is pre-
sented, where the differences between each can be appre-
ciated. It is important to mention that in previous studies
reviewed by the authors and given in the References section,
this particular theory has never been implemented for
UAV control.

II. COORDINATE REFERENCE FRAMES AND GEOMETRIC
DESCRIPTION OF THE V–TAIL QUADCOPTER
In this section, a description of a V–tail quadcopter is given.
Also, a description of each geometric parameter as well as
the coordinate reference frames, which are important for
understanding the dynamics of the vehicle, are given.

In mobile robotics, two different coordinate reference
frames are needed to control the robot. The first reference
frame is the so–called earth–fixed reference frame (OXYZ ),
which is considered to be inertial and its origin stays fixed
to a specific point in space. The second one is a mobile
reference frame (OX ′Y ′Z ′), and its origin is fixed to the
center of mass of the vehicle (Fig. 1), which implies that
this reference frame moves with the quadcopter. It is used
to determine the position and orientation of the V–tail in
space [4]. The position of the quadcopter is described in the
earth–fixed reference frame by the vector ξ = [x y z]T ∈ IR3.

The orientation is fully described by the Euler angles con-
tained in the vector η = [φ θ ψ]T ∈ IR3, also known as roll,
pitch and yaw angles, respectively [4], [5].

Figure 1 shows a V–tail quadcopter. It is named because
its rear links can be adapted so that they form a ‘‘V’’ [6],
with β being the angle of orientation of the links. All the
geometric parameters considered in the further analysis are
shown in Fig. 2 and 3, which represent the rear view and the
top view, respectively. Descriptions of these parameters are
introduced in Table 1.

Figure 1. Coordinate reference frames.

Figure 2. Rear view of the V–tail quadcopter.

Figure 3. Top view of the V–tail quadcopter.

III. NEWTON–EULER FORMULATION FOR A RIGID
BODY WITH 6 DOFS
In this section, the Newton–Euler formulation to obtain the
dynamic model of a rigid body with 6 DOFs is introduced.
The adaptation of this formulation to the quadcopter will be
shown in upcoming sections.
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TABLE 1. Description of the geometric parameters of the V–tail
quadcopter.

The Newton–Euler formulation offers equations that
describe the translational and rotational dynamics of a rigid
body. These equations are derived from the first Euler
axiom for Newton’s second law and are represented by
Tanveer et al. [2], Li and Li [3], Ahmed et al. [4],
Khatoon et al. [7], Ahmed et al. [8], and Jeong and Jung [9]:[

M̃ 0
0 Ĩ

] [
ν̇

ω̇

]
+

[
ω × M̃·ν
ω × Ĩ·ω

]
=

[
κ

τ

]
(1)

where M̃, Ĩ ∈ IR3×3 represent the mass and inertia tensors,
respectively (notice that ·̃ is only used to represent a tensor,
establishing the difference between a matrix and a tensor),
0 ∈ IR3×3 is the zero matrix. The vectors κ ∈ IR3 and
τ ∈ IR3 describe the forces and moments acting on the body,
respectively, and are given in the mobile reference frame. The
vector ν = [u v w]T ∈ IR3 represents the linear velocity of
the body expressed in the mobile reference frame, which is
related to the velocity of the earth–fixed reference frame ξ̇
(time derivative of vector ξ , see [2], [3], [7]–[11]) such that

ξ̇ = Rν.

where R ∈ IR3×3 is the rotational matrix corresponding
to an absolute representation in relation to the earth–fixed
reference frame, given in [2], [3], and [7]–[11] as:

R =

CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ
CθSψ SφSθSψ + CφCψ CφSθSψ − SφCψ
−Sθ CθSφ CθCφ


where, from here to the end of the paper Ca = cos (a),
Sa = sin (a).

In the same way, the angular velocity of the mobile refer-
ence frame is expressed by the vector ω = [p q r]T ∈ IR3,
which can be related to the roll, pitch and yaw velocities and,
it depends on η̇ (the time derivative of vector η), as shown
in [2], [3], [7]–[10], and [12], by the following relation:

ω = T η̇

where T is a transformation matrix, presented in [2], [3],
[7]–[10], and [12] and shown next:

T =

1 0 −Sθ
0 Cφ SφCθ
0 −Sφ CφCθ

 ∈ IR3×3 (2)

Equation (1) corresponds to a dynamic model of a rigid
body with 6 DOFs that depend on the linear and angular
velocities and accelerations of the body expressed in the
mobile reference frame. For convenience, an equation involv-
ing linear velocities and accelerations of the bodywith respect
to the earth-fixed reference frame, and the angular velocities
and accelerations of the body expressed in the mobile ref-
erence frame is presented to simplify the analysis [2], [3],
[7]–[9], [11], [12]. The benefit of making this rearrangement
of equation (1) is that the inertia tensor Ĩ is not dependent
on time [7]. Moreover, the equation of linear movement is
simplified in comparison with the equations obtained when
considering the linear velocities and accelerations in the
mobile reference frame. So, after modifying equation (1),
the following result is obtained:[

M̃ 0
0 Ĩ

] [
ξ̈

ω̇

]
+

[
0

ω × Ĩ·ω

]
=

[
f
τ

]
(3)

Equation (3) combines the dynamics of the body in the
earth–fixed reference frame and in the mobile reference
frame. Herein, the vector f ∈ IR3 appears, representing the
external forces acting on the body described in the earth–fixed
reference frame, the vector 0 ∈ IR3 represents the zero vector,
and ξ̈ is the vector of linear accelerations in the earth–fixed
reference frame.

IV. DYNAMIC MODEL OF THE V–TAIL QUADCOPTER
Until this point, the Newton–Euler formulation used to obtain
the dynamic model of a rigid body has been described. Now it
is important to adapt it to the V–tail quadcopter, considering
the effects of the phenomena that affect the movement of the
vehicle.

Taking as reference equation (3) and taking into account
the effect of gravity on the vehicle, the dynamic model of the
vehicle can be expressed, as shown in [18], as:

M̃t

[
ξ̈

ω̇

]
+ C(ξ̇ ,ω)

[
ξ̇

ω

]
+

[
G
0

]
=

[
f
τ

]
(4)

where

M̃t =

[
M̃ 0
0 Ĩ

]
=


m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ixx Ixy Ixz
0 0 0 Iyx Iyy Iyz
0 0 0 Izx Izy Izz



C(ξ̇ ,ω) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 A −B
0 0 0 −A 0 C
0 0 0 B −C 0


G =

 0
0
mg

 (5)
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where M̃t ∈ IR6×6 is the total mass tensor of the system,
which includes the mass tensor M̃ and the inertia tensor Ĩ ,
C
(
ξ̇ ,ω

)
∈ IR6×6 is the Coriolis and centripetal effects

matrix [2], [3], [7]–[9], [12], [18], m is the quadcopter
mass, Iii are the moments of inertia and g is the gravita-
tional constant in the International System, and, according
to [7] and [12], A, B, and C are such that:

A = Izxp+ Izyq+ Izzr

B = Iyxp+ Iyyq+ Iyzr

C = Ixxp+ Ixyq+ Ixzr

The vector of external forces f includes the vector of lifting
forces produced by each motor f m ∈ IR3, which is described
in the mobile reference frame, and the vector of drag forces
f D ∈ IR3 that acts in the opposite direction of the movement
and is described in the earth–fixed reference frame. So, f can
be defined as [4], [11]–[13], [17]

f = Rf m − f D

Considering that each motor produces a lifting force fmi , and
taking into account the geometry of the model, the vector f m
can be defined by the addition of forces:

f m =

 0
(fm4 − fm3 )Sβ

fm1 + fm2 + (fm3 + fm4 )Cβ

 (6)

where the magnitudes of the forces fmi are computed from the
lift theory for the helicopter’s propellers (see [4], [11]–[13],
[17], [19]). So, the equation describing this quantity is given
by:

fmi =
ρAsCTR2ω2

i

2
= bω2

i

where ρ is the air density, As the effective blades area,
CT the lift coefficient, R is blades radius and ωi is the angular
velocity of the blades of motor i.

The drag forces are expressed in the earth–fixed reference
frame because they depend directly and only on the linear
velocities of the vehicle given in the mentioned reference
frame [13], [17], [19]:

f D =
ρ

2

∥∥ξ̇∥∥T ACDξ̇ =
fDxfDy
fDz


where A ∈ IR3×3 is the diagonal matrix of contact areas and
CD ∈ IR3×3 is the diagonal matrix of drag coefficients, which
can be computed as shown in [19].

Three main effects compose the vector of moments act-
ing on the vehicle, τ , with respect to the mobile reference
frame: moments produced by lifting forces (generated by
motors), τ fm ; torques produced by the motors, τm; and gyro-
scopic effects, τ g, which can be written as [4], [7], [11]–[13]:

τ = τ fm + τm + τ g

The vector τ fm contains the moments produced by the
lifting force related to the center of mass of the vehicle and
can be expressed as:

τ fm =

(fm1 − fm2 )(ly + llCα)+ (fm3 − fm4 )(lcCβ + lb)
−(fm1 + fm2 )(lf + llSα)+ (fm3 + fm4 )(ltCβ )

(fm3 − fm4 )(ltSβ )


(7)

It is known that the motors produce a free moment due to
the rotation around their own axes [4], [7], [11]–[13], which
is a function of the angular velocity. This phenomenon is
represented in the vector τm as follows:

τm =

 0
(τm3 − τm4 )Sβ

τm1 − τm2 + (−τm3 + τm4 )Cβ

 (8)

The magnitude of the i–th moment τmi according
to [4], [7], [11]–[13], and [19], is given by:

τmi =
ρAtCQR3ω2

i

2
= dω2

i

where At is the transverse section area of the blade and
CQ is the torque coefficient. The sign of the moment is
selected according to the sense of rotation of the blades.

The vector of moments caused by the gyroscopic effects
can be expressed as [4], [11], [12], [17]:

τ g = −

4∑
i=1

Jtp

ω ×
00
1

ωi
where Jtp is the rotational moment of inertia of the motor
around its own axis.

Notice that all of these vectors are expressed in the mobile
reference frame, so the vector τ is expressed in the same
reference frame.

Due to the non–linearity of the system and the number of
unknown parameters and terms, it is necessary to simplify the
dynamic model when designing the controllers.

A. SIMPLIFIED DYNAMIC MODEL OF THE V–TAIL
QUADCOPTER
As mentioned in the previous paragraph, it is necessary to
make some simplifications to the dynamic model presented
in equation (4) when designing the controllers. These simpli-
fications are examined in this section.

First, the product of the Coriolis and centripetal effects
matrix C

(
ξ̇ ,ω

)
and the velocity vector [ξ̇ ω]T is neglected

due to the magnitude of the resultant vector is smaller than
the other terms of the dynamic model. The same is true for the
gyroscopic effects, which are also neglected. Assuming that
the V–tail quadcopter operates in a quasi–stationary region,
i.e., φ ≈ 0 and θ ≈ 0, it can be established that η̇ = ω and
η̈ = ω̇, which can be easily proved if φ = 0 and θ = 0
are substituted into the transformation matrix T , introduced
in equation (2). The third and last simplification consists of
assuming that the quadcopter operates at low speeds, so that,
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drag effects can be neglected, i.e., f D = 0. Also, for this
reason, coupling effects are not taken into consideration. All
these assumptions have been proven in [3], [4], [7], [9]–[11],
[14], [15], [20], where further information about these facts
is given. Finally, and considering the dynamic model of
equation (4), the modified dynamic model of the vehicle is

M̃t

[
ξ̈

η̈

]
+

[
G
0

]
=

[
Rf m

τ fm + τm

]
To simplify the vector f m, given in (6), and the vectors

of external moments τ fm and τm, introduced in (7) and (8),
respectively, the angle β is set to 0, so the modified vectors
are

f =

 0
0

fm1 + fm2 + fm3 + fm4

 (9)

τ =

(fm1 − fm2 )(ly + llCα)+ (fm3 − fm4 )(lc + lb)
−(fm1 + fm2 )(lf + llSα)+ (fm3 + fm4 )(lt )

τm1 − τm2 − τm3 + τm4

 (10)

Besides the simplification of the vectors, β is set to 0 to get
an approximation of the V–tail quadcopter behavior because
there was no information about it.

Considering equations (9) and (10), the control variables
of the quadcopter are defined as follows [3], [15]:

U1 = fm1 + fm2 + fm3 + fm4 (11)

U2 = (fm1 − fm2 )(ly + llCα)+ (fm3 − fm4 )(lc + lb) (12)

U3 = −(fm1 + fm2 )(lf + llSα)+ (fm3 + fm4 )(lt ) (13)

U4 = τm1 − τm2 − τm3 + τm4 (14)

The inertia tensor Ĩ in (5), is simplified if it is considered
that the main axis of inertia coincides with the axis of the
mobile reference frame (see the design and configuration
of the V–tail described in Section II). This simplification is
proved by the data obtained from the CAD software used to
create the prototype of the quadcopter. Here it can be found
that themain inertiamoments are of the order of 10−3 kg ·m2.
The other components of the inertia tensor are of the order
of 10−7 kg ·m2, which can be mathematically expressed
as:

Ĩ =

Ixx 0 0
0 Iyy 0
0 0 Izz


Modifying, in this sense, the total mass tensor, M̃t , of
equation (5), the final modified dynamic model is given
by [21]: 

mẍ
mÿ
mz̈
Ixx φ̈
Iyyθ̈
Izzψ̈

+


0
0
mg
0
0
0

 =

UxU1
UyU1
UzU1
U2
U3
U4

 (15)

where Ux = CφSθCψ + SφSψ , Uy = CφSθSψ − SφCψ and
Uz = CφCθ , and which are used to design the controller and
carry out the corresponding simulations.

V. DESIGN OF THE PID POSITION CONTROLLER BASED
ON THE CONTROL THEORY OF ROBOT MANIPULATORS
In this section, the procedure to design the PID controller is
described. The procedure presented is based on the method
established in [18].

Now it is essential to define the vector q ∈ IR6 as:

q =
[
ξ

η

]
Then the system state is defined by the vector 4 ∈ IR18

described as:

4 =

ζ ∈ IR6

q̃
q̇

 (16)

such that ζ̇ = q̃, q̃i = qdi − qi and ˙̃q = −q̇ where qdi is the
set point (in this case, strictly constant).

The PID control law is given by:[
f
τ

]
= Kpq̃+ Kv ˙̃q+ Kiζ

where Kp,Kv,Ki ∈ IR6×6 are the diagonal matrices of pro-
portional, derivative and integral gains, respectively.

Thus, the closed–loop equation of the system (16) is
obtained:

q̈ =



(
Kpx x̃ − Kvx ẋ + Kix ζx

)
/m(

Kpy ỹ− Kvy ẏ+ Kiyζy
)
/m(

Kpz z̃− Kvz ż+ Kizζz − mg
)
/m(

Kpφ φ̃ − Kvφ φ̇ + Kiφ ζφ
)
/Ixx(

Kpθ θ̃ − Kvθ θ̇ + Kiθ ζθ
)
/Iyy(

Kpψ ψ̃ − Kvψ ψ̇ + Kiψ ζψ
)
/Izz


, (17)

which corresponds to the control law to be implemented on
the quadcopter based on the dynamic model of equation (15).

A. STABILITY ANALYSIS USING A LYAPUNOV FUNCTION
Following the procedure in [18], it is necessary to make a
change of variables, i.e.:

µ =


µx
µy
µz
µφ
µθ
µψ

 =


ζx
ζy

ζz − K
−1
iz mg
ζφ
ζθ
ζψ


Then, the new vector of states 4n ∈ IR18 is given by:

4n =

µq̃
q̇


where

d
dt

µq̃
q̇

 =
 q̃
−q̇
q̈

 (18)
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so that, the vector q̈ is:

q̈ =



(
Kpx x̃ − Kvx ẋ + Kixµx

)
/m(

Kpy ỹ− Kvy ẏ+ Kiyµy
)
/m(

Kpz z̃− Kvz ż+ Kizµz
)
/m(

Kpφ φ̃ − Kvφ φ̇ + Kiφµφ
)
/Ixx(

Kpθ θ̃ − Kvθ θ̇ + Kiθµθ
)
/Iyy(

Kpψ ψ̃ − Kvψ ψ̇ + Kiψµψ
)
/Izz


This guarantees that the only equilibrium point of the

system is the origin. Whit regard to the stability analysis
of the PID controller, the next global change of variables is
established:γq̃

q̇

 =
εI I 0
0 I 0
0 0 I

µq̃
q̇

 =
εµ+ q̃q̃

q̇

 (19)

with ε > 0 being a new parameter, introduced to analyze
the stability of the UAV. I ∈ IR6×6 is the identity matrix.
Note that this parameter ε is a characteristic used in control
theory of robot manipulators, which is applied in this paper.
The new variable vector γ is also introduced in equation (19),
as suggested in [18], this variable has never been used before
in the stability analysis of quadcopters because it belongs to
the control theory of robot manipulators.

So the closed–loop equation is then obtained as:

d
dt

γq̃
q̇

 =
εq̃− q̇−q̇

q̈


where

q̈ = M̃t
−1
[
Kpq̃− Kvq̇+

1
ε
Ki (γ − q̃)

]
= M̃t

−1
[(

Kp −
1
ε
Ki

)
q̃− Kvq̇+

1
ε
Kiγ

]
(20)

Equation (20) is autonomous, and its origin is the only
equilibrium point; besides, due to the globality of the variable
change (19), the attributes of stability of this equilibrium
correspond to the ones of the equilibrium of equation (18).

The Lyapunov candidate function proposed for the stability
analysis is:

V (q̃, q̇, γ ) =
1
2

γq̃
q̇

T  1
ε
Ki 0 0
0 εKv −εM̃t
0 −εM̃t M̃t

γq̃
q̇


+

1
2
q̃T
[
Kp −

1
ε
Ki

]
q̃+ U (qd − q̃)

−U (qd )+ q̃
T
[
G
0

]
(21)

whereU (q) represents the potential energy of the quadcopter.
The Lyapunov candidate function (21) is positive–definite

if ε is chosen in a way that the following condition is true:

λmin {Kv} λmin
{
M̃t
}

λmax
2 {M̃t

} > ε >
λmax {Ki}
λmin

{
Kp
}

and it can be proved that the time derivative of the Lyapunov
candidate function of equation (21) satisfies the condition:

V̇ (q̃, q̇, γ ) ≤ −
[
‖q̃‖
‖q̇‖

]T [
311 0
0 322

] [
‖q̃‖
‖q̇‖

]
with

311 = ελmin
{
Kp
}
− λmax {Ki}

322 = λmin {Kv} − ελmax
{
M̃t
}

So that the time derivative of the Lyapunov candidate function
is negative–definite if ε is selected to satisfy the following
condition:

λmin {Kv}

λmax
{
M̃t
} > ε >

λmax {Ki}
λmin

{
Kp
}

If all the conditions over ε are satisfied, it can be ensured that
the origin of the closed–loop equation (19) is a stable equi-
librium point of the system [16], [18]. The LaSalle theorem
needs to be applied in orderto prove the asymptotic stability
of the origin. So, the set � is defined as:

� =
{
4n ∈ IR18

: V̇ (4n) = 0
}

=

{
γ ∈ IR6, q̃ = 0 ∈ IR6, q̇ = 0 ∈ IR6

}
It is easily and immediately appreciated that V̇ (q̃,

q̇, γ ) = 0 if and only if q̃ = 0 and q̇ = 0. For the
solution 4n(t) to belong to � for all t ≥ 0, it is sufficient
and necessary that q̃ = 0 and q̇ = 0 for all t ≥ 0; hence,
also q̈ = 0 must be satisfied for all t ≥ 0. Then, it can be
concluded that if 4n(t) ∈ � for all t ≥ 0, then γ = 0 for all
t ≥ 0. Therefore, [γ T q̃T q̇T ] = 0T ∈ IR18 is the only initial
condition in � for which 4n ∈ � for all t ≥ 0. From these
statements, it can be assumed that the origin of the closed–
loop equation (19) is an asymptotic stable equilibrium point.

VI. DESIGN OF THE PD POSITION CONTROLLER BASED
ON THE CONTROL THEORY OF ROBOT MANIPULATORS
In this section, the design procedure for the PD controller
is described. It is important to mention that the procedure
followed is based on the control theory of robot manipulators
explained in [18], similar to what has been shown in the
previous section.

Considering the vectors q and q̃ previously established,
the state of the system can be defined as:

0 =

[
q̃
q̇

]
∈ IR12 (22)

By knowing that the PD control law is given by:[
f
τ

]
= Kpq̃− Kvq̇

with Kp and Kv as defined in the previous section.
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It is possible to define the closed–loop system (22) as:

q̈ =



(
Kpx x̃ − Kvx ẋ

)
/m(

Kpy ỹ− Kvy ẏ
)
/m(

Kpz z̃− Kvz ż− mg
)
/m(

Kpφ φ̃ − Kvφ φ̇
)
/Ixx(

Kpθ θ̃ − Kvθ θ̇
)
/Iyy(

Kpψ ψ̃ − Kvψ ψ̇
)
/Izz


(23)

This equation corresponds to the control to be imple-
mented on the quadcopter based on the dynamic model of
equation (15).

A. STABILITY ANALYSIS USING A LYAPUNOV FUNCTION
Using the time derivative of equation (22) and letting this be
equal to 0 ∈ IR12, the equilibrium of the system can be found.
Since this equilibrium point is not equal to the origin of the
system, it is necessary to make a change of variables in the
manner that:

δ =


δx
δy
δz
δφ
δθ
δψ

 =


x̃
ỹ

z̃− Kpz
−1mg
φ̃

θ̃

ψ̃


So now, it is convenient to define a new vector of states

0n ∈ IR12, such as:

0n =

[
δ

q̇

]
(24)

where the origin of the system is the only equilibrium point
of the system.

Let the Lyapunov candidate function be

V (δ, q̇) =
1
2

[
δ

q̇

]T [Kp 0
0 M̃t

] [
δ

q̇

]
, (25)

which is positive–definite since Kp and M̃t are positive–
definite matrices. It can be proved that the time derivative of
equation (25) is negative-definite in the manner that:

V̇ (δ, q̇) = −
[
δ

q̇

]T [
0 0
0 Kv

] [
δ

q̇

]
where Kv is a positive–definite matrix.

With these two properties of the function shown in
equation (25), it can be ensured that the origin of the
system (24) is a stable equilibrium point. It is necessary to
apply the LaSalle theorem in the same way that it was used
for the PID controller to prove asymptotic stability.

Let the set 5 be:

5 =
{
0n ∈ IR12

: V̇ (0n) = 0
}

=

{
δ ∈ IR6, q̇ = 0 ∈ IR6

}
It is immediately apparent that V̇ (δ, q̇) = 0 if and only
if q̇ = 0. For the solution 0n(t) to belong to 5 for all

t ≥ 0, it is sufficient and necessary that q̇ = 0 for
all t ≥ 0; hence, also q̈ = 0 must be satisfied for all
t ≥ 0. Taking this in consideration, it can be concluded
that if 0n(t) ∈ 5 for all t ≥ 0, then δ = 0 for all
t ≥ 0. Therefore, [δT q̇T ] = 0T ∈ IR12 is the only initial
condition in 5 for which 0n ∈ � for all t ≥ 0. From these
statements, it can be assumed that the origin of the closed–
loop equation (24) is an asymptotic stable equilibrium point.

VII. DESIGN OF THE SLIDING–MODE POSITION
CONTROLLER
Sliding–mode controllers have been successfully adapted to
UAVs as mentioned in [17]. In this section, the design of
a controller of SMC is shown, based on the methodology
found [17], while the stability analysis is carried out using
the control theory of robot manipulators [18].

Let the sliding surfaces be defined and given in the vector
S ∈ IR6 as:

S =


Sx
Sy
Sz
Sφ
Sθ
Sψ

 =


˙̃x + λx x̃
˙̃y+ λyỹ
˙̃z+ λzz̃
˙̃
φ + λφ φ̃
˙̃
θ + λθ θ̃
˙̃
ψ + λψ ψ̃


with λi > 0.

By knowing that ˙̃q = −q̇, the sliding surfaces can be
expressed as:

S =



−ẋ + λx x̃
−ẏ+ λyỹ
−ż+ λzz̃
−φ̇ + λφ φ̃

−θ̇ + λθ θ̃

−ψ̇ + λψ ψ̃

 = −q̇+ Kl q̃ (26)

with Kl ∈ IR6×6 being the diagonal matrix of gains λi.
It is necessary to define the attractive sliding surfaces,

which depend on the vector Ṡ ∈ IR6 such that:

Ṡ = −Kk sign (S) (27)

where Kk ∈ IR6×6 is a diagonal matrix that depends
on the gains of the controller. Satisfying this, the sliding
condition ST Ṡ ≤ 0.

By considering equation (26), the time derivative of the
sliding surfaces vector S can also be expressed as:

Ṡ = −q̈− Kl q̇ (28)

Substituting equation (27) into equation (28) and solving
for q̈, the following result can be obtained:

q̈ = Kk sign (S)− Kl q̇ (29)
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or in an extended form:
ẍ
ÿ
z̈
φ̈

θ̈

ψ̈

 =


Kkx sign (Sx)− λx ẋ
Kky sign

(
Sy
)
− λyẏ

Kkz sign (Sz)− λzż
Kkφ sign

(
Sφ
)
− λφ φ̇

Kkθ sign (Sθ )− λθ θ̇
Kkψ sign

(
Sψ
)
− λψ ψ̇


A. STABILITY ANALYSIS USING A LYAPUNOV FUNCTION
To analyze the stability of the system, let the Lyapunov
candidate function be given as:

V (S) =
1
2
STS (30)

where S was established in equation (26) and is also used to
describe the state of the system.

It can be proved that the Lyapunov candidate function (30)
is a local positive–definite function while the time derivative
of it is local negative–definite function and is given as:

V̇ (S) = ST Ṡ

So, it can be guaranteed that the origin of the system is a stable
equilibrium point. Now, to apply the LaSalle theorem, let the
set 8 be defined as:

8 =
{
S ∈ IR6

: V̇ (S) = 0
}
= {S = 0}

Herein, the only element of the set is the zero vector 0,
which ensures the asymptotic stability of the origin.

VIII. SIMULATIONS AND RESULTS
With the three controllers designed and analyzed, a set of
simulations was carried out to validate them. In this section,
the simulations and the results of these are described.

The non–holonomic constraints between the linear accel-
erations with respect to the earth–fixed reference frame, and
the yaw, roll and pitch angles [17] that related the objective
control with the control variables [10], are given by:

Sφ =
ẍSψ − ÿCψ√

ẍ2 + ÿ2 + (z̈+ g)2
(31)

Tθ =
ẍCψ + ÿSψ

z̈+ g
(32)

The block diagram of the algorithm for the PID and
PD controllers is shown in Fig. 4, where it is possible to
observe that there is an external control loop, which corre-
sponds to the position control, and an inner control loop that
controls the orientation of the quadcopter. Also, the block of
non–holonomic constraints, where equations (31) and (32)
were programmed, is considered.

To simulate the sliding–mode controller, the algorithm
introduced in [17] was programmed. The block diagram of
the algorithm is shown in Fig. 5.

Taking into consideration equations (20) and (23), as well
as the control algorithm introduced in Fig. 4 and the param-
eters of Table 2 (where the values of b and d were taken

Figure 4. Block diagram of the control algorithm for the PID and PD
controllers.

Figure 5. Block diagram of the control algorithm for the SMC.

TABLE 2. Values of the parameters of the V–tail quadcopter for the
simulations.

from [13]), the system was simulated in Matlab
. For the
simulation of the SMC, the equation (29) and the algorithm
introduced in Fig. 5 were taken into consideration. Moreover,
for the simulation, xd = 1 m, yd = −1 m, zd = 2 m and
ψd = 30◦.

Figure 6.a shows the time evolution of the position of the
quadcopter in the X -axis, while Fig. 6.b and 6.c show how the
quadcopter moves in the Y and Z directions, respectively.

From Fig. 6.a and 6.b, it can be established that the PD and
PID controllers make the vehicle behave in the same manner
(depending on the gains of these), but it does not occur the
same with the sliding–mode controller. It can be seen that
the PD and PID controllers have an exponential behavior
while the sliding–mode controller has a linear behavior. Time
stabilization is another remarkable characteristic of the con-
trollers that can be modified by the gains of each but, from
Fig. 6.a and 6.b, it could be inferred that the sliding–mode
controller stabilizes the vehicle faster than the other two
controllers do.

In Fig. 6.c, it can be observed that the sliding–mode con-
troller makes the quadcopter reach the desired position faster
than the PD and PID controllers. The similarity in behavior
between the PD and PID controllers can be seen but also
the difference regarding time stabilization. It is clear that
the PD controller responds faster than the PID controller.
Once again, it is important to mention that time stabilization,
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Figure 6. Position of the quadcopter for the three controllers: (a) X–position, (b) Y –position, (c) Z–position, (d) position in space.

as well as other properties of the closed–loop system can be
modified by the gains of the controllers.

In Fig. 6.a, 6.b and 6.c, it is possible to appreciate the
differences in the movements of the quadcopter between each
of the controllers. In Fig. 6.d a comparison of the movement
of the quadcopter in space is represented so that it is easier to
get an idea of the possible real movement of it.

In Fig. 6.d, the differences in the movement of the quad-
copter in the space with each controller with respect to
the others can be appreciated. The linear behavior of the
quadcopter with the sliding–mode controller is clearly dis-
tinguished from the exponential behavior of the PD and PID
controllers.

By observing the graphs a–c in Fig. 6, it can be seen that
the three controllers tend to eliminate the error, but this does
not happen with the movement in the Z direction, as shown
in Fig. 6.c, where it can be seen that the SM and PID con-
trollers can eliminate the error in the stable state but that the
PD controller cannot. It is worth mentioning that this can
affect the performance of the quadcopter when it comes to
precision maneuvers, but this cannot be a problem depending
on the application of the quadcopter.

For the yaw movement (ψ angle), Fig. 7 is obtained,
where it can be appreciated how the quadcopter reaches the
desired orientation. The SM controller takes the quadcopter
to the specified angle in less time than the PD, and the PID
controllers do. In the zoom of Fig. 7, it can be observed how
the three controllers tend to eliminate the error when time
increases.

The roll and pitch angles cannot be ignored since they
affect the movement in the Y and X directions, respectively,

Figure 7. Yaw (ψ) angle of the quadcopter for the three controllers.

Figure 8. Roll (φ) angle of the quadcopter for the three controllers.

as can be appreciated from equations (31) and (32), so the
behavior of these two variables is shown in Fig. 8 and 9.

In Fig. 8 and 9, it is easy to observe how the magnitude of
the angles varies from one controller to another. For the SMC,
the roll and pitch angles exceed 20◦, making it possible to
reach the desired position in less time than with the other
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Figure 9. Pitch (θ) angle of the quadcopter for the three controllers.

Figure 10. Roll (φ) angle resulted from the PD and PID controllers.

Figure 11. Pitch (θ) angle resulted from the PD and PID controllers.

two controllers. The higher the angles φ and θ , the faster the
quadcopter moves in the Y and X directions, respectively; so
that, since the quadcopter would not work in a stationary state,
which makes the adopted simplifications to be wrong.

For the PD and PID controllers, it can be seen that the
magnitude of the angles is so much smaller than for the SMC.
Fig. 10 and 11 show the roll and pitch angles resulted from
the PD and PID controllers for a better appreciation.

In both cases, the roll and pitch angles are near 3◦, so it can
be concluded that the quadcopter operates near the stationary
state so that the simplifications previously made are valid.
It can be observed that the angle φ has similar behavior for the
two controllers, but the θ angle presents a slightly different
behavior.

IX. CONCLUSIONS
In this paper, a dynamic model of a V–tail quadcopter
was introduced, and an algorithm to control the position
of this kind of vehicle with the PID and PD controllers

was proposed. It is worth mentioning that there is little infor-
mation about studies of this type of quadcopter, and this paper
could become a reference for new studies on this topic.

The application of the control theory of robot manipulators
to a V–tail quadcopter, shown in this paper, is validated by
simulation, obtaining as a result of a new methodology to
design PD and PID controllers for stabilization of UAVs.
Moreover, the stability analysis using a Lyapunov function
was developed in a different way (based on the same robot
manipulator theory), introducing a new variable and a new
parameter that had never been used before in quadcopter
stability analysis.

From the results, it can be concluded that the PID controller
can keep the quadcopter operating close to the stationary state
and also eliminates the error in the stable state; furthermore,
the properties of the closed–loop system can be modified
depending on the necessities of the application by varying the
gains of the controller. The PD controller presents an error
in the stable state that will not disappear as time goes on,
so this can be a problem if an application with precisión is
required. The SMC has a facile and rapid response, which
it makes the quadcopter converge to the desired point in
the space. Then, the fact that φ and θ angles are big can
bring problems in the real world (due to the simplifications
made on the model), so it needs to be validated first through
experiments.

Existing knowledge of typical× structure quadcopters was
applied to this specified case, proving the similarity between
them and V–tail quadcopters.

It is left for future work to analyze the behavior of the
V–tail quadcopter when the β angle is not 0, so it is the com-
parison of the performance of several configurations of β.
The construction of the V–tail and the experimental validation
of the theory presented in this paper is also left for upcoming
projects.
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