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ABSTRACT Classical Bose–Chaudhuri–Hocquenghem (BCH) codes over finite fields have been studied
extensively. One can construct quantum stabilizer codes with good parameters using classical BCH codes.
In this paper, our goal is to find such classical BCH codes. We study some properties of suitable cyclotomic
cosets at first. These results make it possible to construct nonbinary quantum BCH codes with a given
parameter set. Several new families of quantum BCH codes obtained are based on Steane’s enlargement of
nonbinary Calderbank–Shor–Steane codes and Hermitian construction, respectively. Meanwhile, we have
shown that the cyclotomic cosets given in our schemes are optimal to design quantum BCH codes. The
defining set contains most consecutive integers. Therefore, corresponding quantum stabilizer codes have
better lower bound of minimum distance. Furthermore, it is convenient to compute the dimension of new
quantum codes. Compared with the ones available in the literature, the quantum BCH codes in our schemes
have good parameters. In particular, we extend known results to more general case.

INDEX TERMS Bose-Chaudhuri-Hocquenghem codes, cyclotomic cosets, stabilizer codes.

I. INTRODUCTION
Quantum information theory is rapidly becoming a well-
established discipline in quantum communication and quan-
tum computation [10]. However, a major shortcoming of
realizing quantum communication is decoherence of qubits.
There has been much interest in the subject of quantum
error correcting codes to address this issue [2], [6]–[9].
Furthermore, quantum error correcting codes are widely
used in quantum cryptography such as BB84 quantum key
distribution (QKD) protocol and secure share schemes [4].
Therefore, it is significant to research and design quantum
codes.

Cyclic codes in classical information theory have addi-
tional algebraic structure to make encoding and decoding
more efficient. There exist links to classical coding theory that
facilitate the construction of quantum codes [10]. Therefore,
quantum error correcting codes are much investigated by
applying classical cyclic codes in recently. Nonbinary quan-
tum codes with good parameters were designed from
cyclic codes by applying the Calderbank-Shor-Steane (CSS)
constructions [18]. Based on characteristics of classical
q2-ary constacyclic codes, some new quantum codes could be
obtained via Hermitian constructions [14], [15]. Furthermore,
[17] constructed quantum codes from negacyclic codes. The
Bose-Chaudhuri-Hocquenghem (BCH) codes, as a special

subclass of cyclic codes, play an important role in classical
information theory [3]. Many quantum BCH codes have been
constructed by classical error correcting codes in recent years.
Steane gave a simple criterion to decide whether a binary
narrow-sense primitive BCH code contains its dual or not [7].
The design of binary quantum BCH codes is transformed
into the problem of finding additive codes over GF(4) in [5].
Afterwards, Ketkar et al. [9] extended these results in [5] to
nonbinary primitive quantum BCH codes. Steane’s result are
generalized in various ways, in particular, to narrow-sense
(not necessarily primitive) BCH codes over arbitrary finite
fields with respect to designed distance [2]. By applying
useful properties of cyclotomic cosets, [6] and [8] constructed
families of good nonbinary quantum codes based on given
parameters. Quantum codes could be designed not only from
BCH codes [13] but also from negacyclic BCH codes [16].

Motivated by the construction of quantum BCH codes with
good parameters, this paper is then devoted to the study of
such codes over finite fields. These new families of non-
binary quantum BCH codes with a given parameter set in
our schemes have better parameters. Specifically, fixing code
length, the new quantum BCH codes achieve greater values
of the number of encoded qubits and lower bound of the
minimum distance than the codes available in the literature
(see Tables 1 to Table 6). In this paper, the properties of
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cyclotomic cosets are applied to determinewhether a classical
BCH code contains its dual or not firstly. We make sure
that cyclotomic cosets chosen are mutually disjoint. Then
it is tractable to work out the dimension of quantum BCH
codes exactly with the help of some lemmas. In addition,
the defining set contains most consecutive integers as much
as possible. Quantum BCH codes are constructed by these
result with respect to Euclidean and Hermitian duality.

The remainder of this paper is arranged as follows.
Section II gives a brief review of classical BCH codes over
finite fields. New families of quantum BCH codes are con-
structed by classical BCH codes overFq andFq2 in Section III
and Section IV, respectively. In Section V, the parameters
in our schemes are compared with the ones available in the
literature. Finally, conclusions are drawn in Section VI.

II. PRELIMINARIES
The BCH codes as a well-studied class of cyclic codes have
found numerous applications in classical [3] and quantum
information processing [2], [5], [8]. Before delving into the
details, let us present a short overview of relevant concepts
on BCH codes.

The finite field is denoted by Fq, where q is a prime power.
Let n be the code length such that gcd(n, q) = 1. The smallest
positive integer m such that qm ≡ 1 mod n is called the
multiplicative order of q modulo n denoted by m = ordn(q).

Given two vectors x = (x0, x1, · · · , xn−1) and
y = (y0, y1, · · · , yn−1) ∈ Fnq , Euclidean inner product is
defined by

〈x, y〉E = x0y0 + x1y1 + · · · + xn−1yn−1

while Hermitian inner product over Fq2 is defined by

〈x, y〉H = x0y
q
0 + x1y

q
1 + · · · + xn−1y

q
n−1.

The Euclidean dual code of C is defined by

C⊥E = {x ∈ Fnq | 〈x, y〉E = 0 for all y ∈ C}.

Similarly, the Hermitian dual code of C is defined by

C⊥H = {x ∈ Fnq | 〈x, y〉H = 0 for all y ∈ C}.

A linear code C is called Euclidean dual-containing if
C⊥E ⊆ C  Fnq . If C

⊥H
⊆ C  Fn

q2
, we say that C is a

Hermitian dual-containing code.
A BCH code C over Fq of length n and designed distance δ

is a cyclic code with defining set

Z =
b+δ−2⋃
i=b

C[i],

where C[i] = {iqz mod n | z ∈ Z, z ≥ 0} is the q-ary
cyclotomic coset modulo n containing i. If n = qm − 1 then
the BCH code is called primitive and if b = 1 it is called
narrow-sense.

The minimal polynomial over Fq of β ∈ Fqm is the monic
polynomial of smallest degree, M (x), with coefficients in Fq
such that M (β) = 0. If β = αi for a fixed primitive n-th root

of unity α ∈ Fqm , then the minimal polynomial of β over Fq
is denoted by M (i)(x) =

∏
i∈C[i]

(x − αi). We can compute the

dimension of BCH codes with k = n − |Z |. The problem of
finding minimum distance of BCH codes had been a long-
standing open problem [11]. From the BCH bound, this code
has minimum distance at least δ. A thorough discussion about
classical BCH codes is offered in [3].

Steane’s enlargement and Hermitian construction are one
of the most utilized methods in design of quantum codes.
To proceed further, it is necessary to review some useful
results.
Theorem 1 (Quantum Code Constructions [2], [12]):
1) If there exists a classical linear [n, k1, d1]q code C1,

which contains its Euclidean dual C⊥E1 and which can
be enlarged to an [n, k2, d2]q linear code C2, where
k2 − k1 ≥ 2, then there exists an [[n, k1 + k2 − n,
d ≥ min{d1, d

q+1
q d2e}]]q stabilizer code.

2) If there exists a classical linear [n, k, d]q2 code D such
that D⊥H ⊆ D, then there exists an [[n, 2k − n,≥ d]]q
stabilizer code.

The following Lemma has the potential to find such clas-
sical codes that contain their duals.
Lemma 1 ( [2]): Assume that q is a prime power and n is

an integer such that gcd(n, q) = 1.
1) A cyclic code of length n over Fq with defining set

Z contains its Euclidean dual code if and only if
Z ∩ Z−1 = ∅, where Z−1 = {−z mod n | z ∈ Z }.

2) A cyclic code of length n over Fq2 with defining
set Z contains its Hermitian dual code if and only if
Z ∩ Z−q = ∅, where Z−q = {−qz mod n | z ∈ Z }.

III. STEANE’S CONSTRUCTIONS
Let n = r q

m
−1

q−1 and m = ordn(q). Since n | qm − 1, it follows

that r q
m
−1

q−1 | q
m
− 1. One obtains r(qm−1) | (qm−1)(q−1).

Then we have r | q− 1. If q = 2, one has n = 2m− 1, which
has been discussed by Steane [7]. Quantum BCH codes with
n = qm−1

q−1 for r = 1 were studied in [6]. We consider the case
where q ≥ 3 and r > 1 in this section.

A. m IS EVEN

Let Q0 =
q
m
2 −1
q−1 and Q1 =

q
m
2 −1−1
q−1 when m is even.

Some available results about the q-ary cyclotomic cosets are
presented as follows.
Lemma 2: If i is an integer such that rQ0 | i, then

C[i] = −C[i].
Proof: It suffices to show C[rQ0] = −C[rQ0]. Since

rQ0(q
m
2 + 1) ≡ 0 mod n, one has rQ0q

m
2 ≡ −rQ0

mod n, and therefore C[rQ0] = −C[rQ0]. Then the result
follows. �
Lemma 3: If rQ1 + 1 ≤ i ≤ rQ0 − 1, then C[i] has m

elements.
Proof: Seeking a contradiction, suppose that there is a

q-ary cyclotomic coset C[i] with mi elements, where 1 ≤
mi ≤ m

2 . Then iq
mi ≡ i mod n and then i(qmi − 1) ≡ 0

mod n holds. Since rQ1+ 1 ≤ i ≤ rQ0− 1 and 1 ≤ mi ≤ m
2 ,
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one has

0 < i(qmi − 1) ≤ (rQ0 − 1)(q
m
2 − 1) < n,

which is a contradiction. Therefore, C[i] has m elements,
where rQ1 + 1 ≤ i ≤ rQ0 − 1. �
With these results in hand, we can construct quantum BCH

codes when m is even.
Theorem 2: Let q ≥ 3 be a prime power and n be an integer

such that gcd(n, q) = 1 and ordn(q) = m is even. Assume that
n = r q

m
−1

q−1 , where r > 1. Then there exist quantum codes

with parameters [[n, n− 2rmq
m
2 −1 + 3m, d ≥ rQ0]]q.

Proof:LetC[rQ1+1],C[rQ1+2], · · · ,C[rQ0−1] be the
q-ary cyclotomic cosets according to Lemma 2. We assume
that C[ar+ x] = C[br+ y] such that ar+ x 6= br+ y, where
1 ≤ x, y ≤ r − 1 and Q1 ≤ a, b ≤ Q0 − 1. It follows that

(ar + x)ql ≡ br + y mod n, (1)

where 1 ≤ l ≤ m− 1. One obtains

r(aql − b) ≡ y− xql mod n

⇒ n(aql − b) ≡ (y− xql)
qm − 1
q− 1

mod n

⇒ r | y− xql .

On the other hand, one has r | ql − 1 for r | q− 1. As a result,
one has r | (y− xql)+ x(ql − 1), i.e. r | y− x. Notice that
0 ≤ |y− x| ≤ r − 2. If y − x = 0, we have r(aql − b) +
x(ql − 1) ≡ 0 mod n. If 1 ≤ l ≤ m

2 , then

q− 1 ≤ r(aql − b)+ x(ql − 1)

≤ n− r(Q0 + Q1 + 1)− q
m
2 + 1 < n.

We have a contradiction. If m
2 + 1 ≤ l ≤ m − 1, then

1 ≤ m − l ≤ m
2 − 1. Since qm ≡ 1 mod n, one has

ar + x ≡ (br + y)qm−l mod n which is similar to the case
where 1 ≤ l ≤ m

2 . Hence, the cosets given are mutually
disjoint.

We know that gcd(n, q) = 1. Let C0 = 〈
∏

iM
(i)(x)〉 with

the defining set Z0, where rQ1 + 1 ≤ i ≤ rQ0 − 1. Suppose
Z0 ∩ Z

−1
0 6= ∅. Then there exist a, b, x, and y such that

(ar + x)ql ≡ −(br + y) mod n, (2)

where 1 ≤ x, y ≤ r − 1 and Q1 ≤ a, b ≤ Q0 − 1 with
0 ≤ l ≤ m − 1. Similarly, one obtains r | x + y. Notice that
2 ≤ x + y ≤ 2r − 2. If x + y = r , we have r(aql + b+ 1)+
x(ql − 1) ≡ 0 mod n. If 0 ≤ l ≤ m

2 , then

0 < r(aql + b+ 1)+ x(ql − 1) ≤ n− (q
m
2 − 1)− r .

It is clear that r | x + y is not true. There is a similar
processing method for m

2 + 1 ≤ l ≤ m − 1. Consequently,
Z0 ∩ Z

−1
0 = ∅ and then C0 is Euclidean dual-containing.

Since 1 < r < q, one has rQ1 + 1 ≤ q
m−2
2 < rQ0 −

1, · · · , rQ1 + 1 < Q1q ≤ rQ0 − 2. Then the cyclo-
tomic cosets given include C[1], C[2], · · · , C[rQ1]. Thus all
these cyclotomic cosets have rQ0 − 1 consecutive integers.
From the BCH bound and Lemma 3, C0 is a code with

dimension k0 = n − rmq
m
2 −1 + m and minimum distance

d0 ≥ rQ0.
Let C ′0 = 〈

∏
jM

(j)(x)〉, where rQ1 + 1 ≤ j ≤ rQ0 − 2.
Then C ′0 = [n, k ′0 = n − rmq

m
2 −1 + 2m, d ′0 ≥ rQ0 − 1]q,

which is an enlargement of C0 in view of k ′0 − k0 = m ≥ 2.
Since r > 1, we know that d q+1q (rQ0− 1)e ≥ rQ0. Applying
Steane’s code construction to the codes C0 and C ′0, we obtain
an [[n, n− 2rmq

m
2 −1 + 3m, d ≥ rQ0]]q quantum code. �

Several key points can already be seen in the proof of
Theorem 2. Firstly, the cyclotomic cosets given ensure that
cyclic code C0 is Euclidean dual and C ′0 is an enlargement
of C0. Secondly, these cyclotomic cosets are mutually dis-
joint. Thus, it is easy to compute the dimension of C0 and C ′0.
Finally, the cosets given lead to defining set containing most
consecutive integers.
Examples 1: Consider q = 3, r = 2, m = 4, and n = 80.

It is easy to compute the 3-ary cyclotomic cosets C[3] =
{3, 9, 27, 1}, C[4] = {4, 12, 36, 28}, C[5] = {5, 15, 45, 55},
C[6] = {6, 18, 54, 2}, C[7] = {7, 21, 63, 29}, and C[8] =
{8, 24, 72, 56}. It is a fact that C[8] = −C[8]. Let C0 =

〈

7∏
i=3

M (i)(x)〉 and Z0 =
7⋃
i=3
C[i]. It is clear that the cosets are

mutually disjoint and Z0∩Z
−1
0 = ∅. Since the cosets contain 7

consecutive integers, C0 is Euclidean dual-containing and

has parameters [80, 60, d ≥ 8]3. Let C ′0 = 〈
6∏
j=3

M (j)(x)〉.

Similarly, C ′0 has parameters [80, 64, d ≥ 7]3. Then we
obtain an [[80, 44, d ≥ 8]]3 quantum BCH code from
Theorem 2.

B. m IS ODD
It is rather remarkable that one has n = r and n | q− 1
when m = 1. Since we consider only the case where n > q ,

we impose restrictions on m with m > 1. Let Q2 =
q
m−1
2 −1
q−1

when m is odd.
Lemma 4: If rQ2 ≤ i ≤ rqQ2 − 1, then C[i] has m

elements.
Proof: It’s similar to the proof of Lemma 3. We omit

it. �
Theorem 3: Let q ≥ 3 be a prime power and n be an integer

such that gcd(n, q) = 1 and ordn(q) = m > 1 is odd. Assume
that n = r q

m
−1

q−1 , where r > 1. Then there exists an [[n, n −

2mr(q
m−1
2 − 1)+ m, d ≥ rqQ2]]q stabilizer code.

Proof: Each q-ary cyclotomic coset is given by C[rQ2],
C[rQ2 + 1], · · · , and C[rqQ2 − 1]. Similar to the proof in
Theorem 2, all these cosets are mutually disjoint.

Let C0 and C ′0 be cyclic codes generated by the product of
the minimal polynomials

M (rQ2)(x)M (rQ2+1)(x) · · ·M (rqQ2−1)(x)

and

M (rQ2)(x)M (rQ2+1)(x) · · ·M (rqQ2−2)(x),
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respectively. Proceeding similarly as in the proof of
Theorem 2, we know that C0 is Euclidean dual-
containing. According to Lemma 4, the dimension of C0 is
n − rm(q

m−1
2 − 1). Since 1 < r < q, it follows

that rQ2 < q
m−1
2 < rqQ2 − 1, · · · , rQ2 < (rQ2 −

1)q < rqQ2 − 1. The cyclotomic cosets given include C[1],
C[2], · · · , C[rQ2− 1]. Therefore, all these cyclotomic cosets
have rqQ2 − 1 consecutive integers. Then C0 is a code with
parameters [n, k0 = n − rm(q

m−1
2 − 1), d0 ≥ rqQ2]q.

Meanwhile, C ′0 is an enlargement of C with parameters
[n, k ′0 = n− rm(q

m−1
2 − 1)+ m, d ′0 ≥ rqQ2 − 1]q in view of

k ′0 − k0 = m > 1. Since d q+1q (rQ2 − 1)e ≥ rQ2, one has an

[[n, n− 2mr(q
m−1
2 − 1)+ m, d ≥ rqQ2]]q quantum code. �

Examples 2: Let q = 7, r = 3, m = 3, and n = 171.
One has C[3] = {3, 21, 147}, C[4] = {4, 28, 25}, · · · ,
C[19] = {19, 133, 76}, and C[20] = {20, 140, 125}.
Proceeding similarly, C0 and C ′0 have parameters [171, 117,
d ≥ 21]7 and [171, 120, d ≥ 20]7. One can get quantum
codes with parameters [[171, 66, d ≥ 21]]7.

IV. HERMITIAN CONSTRUCTIONS
Let n = r q

2m
−1

q2−1
and m = ordn(q2). It follows that r | q2 − 1.

If m = 1, then n = r and n | q2 − 1. Since we consider only
the case where n > q2, an important assumption made in this
section is m > 1.

A. m IS ODD
To begin with, let us consider the case where m is odd in this
subsection. Suppose that Q3 =

qm−1
q−1 , Q4 =

qm−2−1
q−1 , and

t = gcd(r, q+ 1) for the sake of description.
Lemma 5: If i is an integer such that r

t Q3 | i, then
C[i] = −qC[i].

Proof: It is enough to show C[ rt Q3] = −qC[ rt Q3].
In fact, one has t | q+ 1 and t | r because t = gcd(r, q+ 1).
It follows that n | q+1

t qn. Then we have r
t Q3q(qm +

1) ≡ 0 mod n. Namely, rt Q3qm+1 ≡ −q rt Q3 mod n holds.
Since m is odd, we have C[ rt Q3] = −qC[ rt Q3]. The claim
follows. �
Lemma 6: Let i and j denote the indexes of cyclotomic

cosets. If q is a power of odd prime and i+ j = r
t Q3, then

1) C[i] 6= −qC[j] when t is even and 4 - r .
2) C[i] 6= −qC[j] when t ≥ q+1

2 is even and 4 | r .
3) there are i and j such thatC[i] = −qC[j] when 1 ≤ t <

q+1
2 is even and 4 | r .

4) C[i] 6= −qC[j] when t is odd such that t > q+1
4 .

5) there are i and j such thatC[i] = −qC[j] when t = q+1
4

is odd and r = q2−1
8 .

6) C[i] 6= −qC[j] when t is odd such that t = q+1
4 and

r 6= q2−1
8 .

7) there are i and j such thatC[i] = −qC[j] when 1 ≤ t <
q+1
4 is odd.

Proof: Seeking a contradiction, we assume that there are
i and j such that C[i] = −qC[j]. Then one obtains

iq2l ≡ −jq mod n, (3)

where 0 ≤ 2l ≤ 2(m− 1). One has iq2l + jq ≡ 0 mod n.
If l = 0, then i + jq ≡ 0 mod n. Since 0 < i + jq ≤

( rt Q3−1)q+1 < n, one has a contradiction. If 2 ≤ 2l ≤ m−1,
one obtains iq2l−1+j ≡ 0 mod n for gcd(n, q) = 1. It is clear
that 0 < iq2l−1 + j ≤ iq2l−1 + j ≤ ( rt Q3 − 1)qm−2 + 1 < n.
This case is not true. If m + 3 ≤ 2l ≤ 2(m − 1), then 3 ≤
2m − 2l + 1 ≤ m − 2. We know that q2m ≡ 1 mod n. One
has i + jq2m−2l+1 ≡ 0 mod n, which is similar to the case
where 2 ≤ 2l ≤ m− 1. If 2l = m+ 1, we have i+ jqm ≡ 0
mod n and j+ iqm ≡ 0 mod n. If i = j, one has

(qm + 1)j ≡ 0 mod n⇒ n | (qm + 1)j

⇒
r
t
Q3 | j

q+ 1
t
⇒

r
t
Q3 | j.

It is not true since i+ j = r
t Q3. Without loss of generality, let

j > i. Then one obtains

(i+ j)(qm + 1) ≡ 0 mod n⇒
r
t
Q3 |

q+ 1
t

(i+ j).

Since gcd( rt ,
q+1
t ) = 1 and gcd(Q3,

q+1
t ) = 1, it follows that

r
t Q3 | i+ j. If i + j = r

t Q3, one has r
2tQ3 < j ≤ r

t Q3 − 1
and r

t Q3 + (qm − 1)j ≡ 0 mod n. Namely, rt + (q − 1)j ≡
0 mod r q

m
+1

q+1 . Since gcd( rt ,
q+1
t ) = 1 and r | q2 − 1, one

obtains r
t | q− 1. Then 1 + j q−1r t ≡ 0 mod t q

m
+1

q+1 holds.
Let r = tb and q− 1 = bd . We have

1+ dj ≡ 0 mod t
qm + 1
q+ 1

. (4)

Suppose that 1+ dj = st q
m
+1

q+1 .

1) Considering 4 - r and gcd(q−1, q+1) = 2, let t = 2t0
and r = 2t0b such that gcd(b, q+1) = 1. It is clear that
gcd(r, q−1) = 2b and then 2 | d . Since t q

m
+1

q+1 | 1+ dj
and t = 2t0, one obtains 2 | 1+ dj. It follows that 2 |
−dj+ (1+ dj). Namely, 2 | 1, which is a contradiction.
Thus, when t is even and 4 - r , one has C[i] 6= −qC[j].

2) We know s ∈ ( q+12t ,
q+1
t − 1]. If t ≥ q+1

2 , it is clear
that q+12t ≥

q+1
t − 1. Thus, there exists no s such that

1 + dj = st q
m
+1

q+1 . Then one obtains C[i] 6= −qC[j]
when t ≥ q+1

2 is even and 4 | r .
3) If 1 ≤ t < q+1

2 and gcd(s, d) = t2 > 1, it follows that
t2 | s and t2 | d . Since s | 1+ dj, one has t2 | 1+ dj.
Similarly, we know t2 | 1, which is a contradiction.
If gcd(s, d) = 1, one has j = r(stqm+st−q−1)

t(q2−1)
. If j is an

integer, it follows that

t(q2 − 1) | r(stqm + st − q− 1)

⇒ d(q+ 1) | stqm + st − q− 1

⇒ d | stq
qm−1 − 1
q+ 1

+ st − 1.
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Since m is odd, then q− 1 | qm−1−1
q+1 . Considering

d | q− 1, one has d | st − 1. Namely, q− 1 | sr − b.
Hence, if q− 1 | sr − b and gcd(s, d) = 1, there are i
and j such that C[i] = −qC[j] when 1 ≤ t < q+1

2 is
even and 4 | r .

4) If t is odd, then r and Q3 both are odd. We know that
r
t Q3 + 1

2
≤ j ≤

r
t
Q3 − 1

⇒
qm + 1+ d

2
≤ 1+ dj ≤ qm − d

⇒
q+ 1
2t
+ 1 ≤ s ≤

q+ 1
t
− 1.

Since t > q+1
4 , we know q+1

t − 1 < q+1
2t + 1, which

indicates that there exists no integer s. Thus, one has
C[i] 6= −qC[j] when t > q+1

4 is odd.
5) If t = q+1

4 is odd, then q+1
2t + 1 = q+1

t − 1 = 3.

One has s = 3 and j = 3qm−1
8 when r = q2−1

8 .
If t = q+1

4 , it follows that qm + 1 = 4t1, where
1 =

∑m−1
k=0 (−4t)

k . Since t and 1 both are odd, then
j = 3t1−1

2 is an integer. Consequently, there are i and j
such that C[i] = −qC[j] when t = q+1

4 is odd and

r = q2−1
8 .

6) Since gcd(q + 1, q − 1) = 2, if t is odd, then r is odd
too. One has gcd(b, q + 1) = 1 and d ≥ 2. If t =
q+1
4 , it is clear that j = r(3qm−1)

4t(q−1) . If j is an integer,
then 4t(q − 1) | r(3qm − 1) and then d | 3qm − 1.
Since d | q− 1 and q− 1 | qm − 1, one can derive
d | 2. If d = 2, then r = q2−1

8 contradicting the fact

r 6= q2−1
8 . Hence, C[i] 6= −qC[j] when t = q+1

4 is odd

and r 6= q2−1
8 .

7) If t is odd such that 1 ≤ t < q+1
4 , one has s ∈ [ q+12t +

1, q+1t −1]. According to the proof of 3), we know that
if gcd(s, d) = 1 and q− 1 | sr − b, there are i and j
such that C[i] = −qC[j] when 1 ≤ t < q+1

4 is odd. �
If q = 2e, where e is an integer, then t is just odd since

r | q2 − 1. We have similar results in the following.
Lemma 7: Let i and j denote the indexes of cyclotomic

cosets. If q = 2e and i+ j = r
t Q3, where e > 1 is an integer,

then
1) C[i] 6= −qC[j] when t ≥ q+1

3 is odd.
2) there are i and j such thatC[i] = −qC[j] when 1 ≤ t <

q+1
3 is odd.

Proof: According to the proof of Lemma 6, we know
q+1
t +1
2 ≤ s ≤ q+1

t − 1 since
r
t Q3+1

2 ≤ j ≤ r
t Q3 − 1.

If t > q+1
3 , one has

q+1
t +1
2 >

q+1
t − 1. There exists no

integer s such that 1+dj = st q
m
+1

q+1 . If t = q+1
3 , then s = 2 and

j = r 2q
m
−1

q2−1
. Let r = q+1

3 rt such that rt | q− 1. One obtains

j = 2qm−1
3(q−1)/rt

. If j is an integer, then q−1
rt
| 2qm − 1. Since

q−1
rt
| qm − 1, one has q−1

rt
| qm, which is a contradiction

because of gcd(q − 1, qm) = 1. Therefore, C[i] 6= −qC[j]
when t ≥ q+1

3 is odd.

If 1 ≤ t < q+1
3 , let r = tb and q − 1 = bd . One obtains

q− 1 | sr − b and gcd(s, d) = 1 from the proof Lemma 6-7).
Thus there are i and j such that C[i] = −qC[j] when
1 ≤ t < q+1

3 is odd. �
Examples 3: When q = 5, r = 8, and m = 3, one has

t = 2 and r
t Q3 = 124. From Lemma 6-3), it is found that

C[41] = −5C[83]. When q = 11, r = 15, and m = 5,
it is easy to work out that t = 3 and r

t Q3 = 80525. From
Lemma 6-5), it follows that C[20131] = −11C[60394].
Similarly, when q = 47, r = 69, and m = 3, it is clear
that t = 3 and r

t Q3 = 51911. From Lemma 6-7), one
has C[9733] = −47C[42178], C[3244] = −47C[48667],
C[16222] = −47C[35689], andC[22711] = −47C[29200].
When q = 28, m = 3, and r = 21, then t = 3, s ∈ [86, 170],
and 511 | 21s− 7. When s = 122 such that gcd(s, 73) = 1,
one has C[1311749] = −512C[526850].

It should be pointed out that there is an implicit condi-
tion where t ≥ 2 from Lemma 6-1) – Lemma 6-6) and
Lemma 7-1). Let us consider t ≥ 2 at first.
Theorem 4: Let q ≥ 3 be a prime power and n be an integer

such that gcd(n, q2) = 1, where m = ordn(q2) > 1 is odd.
Assume that n = r q

2m
−1

q2−1
. If t and r satisfy conditions in 1),

2), 4), or 6) of Lemma 6 or 1) of Lemma 7, then there exists
an [[n, n− 2m r

t (Q3−Q4)+ 2m, d ≥ r
t Q3]]q stabilizer code.

Proof: We next show that all the q2-ary cyclotomic
cosets given by C[ rt Q4 + 1], C[ rt Q4 + 2], · · · , C[ rt Q3 − 1]
aremutually disjoint. Seeking a contradiction, we assume that
C[i] = C[j], where r

t Q4 + 1 ≤ i 6= j ≤ r
t Q3 − 1. One has

iq2l ≡ j mod n, (5)

where 1 ≤ l ≤ m− 1. It is equivalent to iq2l − j ≡ 0 mod n.
It follows from r | q2 − 1 that lcm(r, q+1) ≤ q2−1. Since

t = gcd(r, q+1), we have r
t (q+1) ≤ q

2
−1. If 1 ≤ l ≤ m−1

2
and t ≥ 2, one obtains

0 < q2 + 1−
r
t
(q+ 1) ≤ iq2l − j

≤
r
t
(Q3qm−1 − Q4)− qm−1 − 1 < n,

which is a contradiction. If m+1
2 ≤ l ≤ m − 1, one has

1 ≤ m − l ≤ m−1
2 . We can infer from q2m ≡ 1 mod n

that jq2m−2l − i ≡ 0 mod n. It is similar to the case where
1 ≤ l ≤ m−1

2 . Therefore, all these q2-ary cyclotomic cosets
are mutually disjoint.

LetC0 = 〈
∏

iM
(i)(x)〉 and Z0 =

⋃
iC[i], where

r
t Q4+1 ≤

i ≤ r
t Q3 − 1. From the proof of Lemma 6, we know that

Z0∩Z
−q
0 = ∅. It implies thatC0 is Hermitian dual-containing.

Suppose there is a q-ary cyclotomic coset withmi elements,
where mi | m and 1 ≤ mi ≤ m

3 because m is odd. Then
iq2mi ≡ i mod n. Namely, n | i(q2mi − 1). Since r

t Q4 + 1 ≤
i ≤ r

t Q3 − 1, it follows that 0 < i(q2mi − 1) < n. Hence, all
the cyclotomic cosets given have m elements.
If r

t = 1, one has C[2] = C[2qm−3]. If r
t > 1,

one obtains C[2] = C[2qm−1]. Analogously, we know that
C[1] = C[qm−1], · · · , C[ rt Q4] = C[ rt q

2Q4] also hold. The
cyclotomic cosets given byC[i] with r

t Q4+1 ≤ i ≤ r
t Q3−1
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include C[1], C[2], · · · , C[ rt Q4]. Hence, these cyclotomic
cosets contain r

t Q3 − 1 consecutive integers. Then C0 has
parameters [n, n− m r

t (Q3 − Q4)+ m, d0 ≥ r
t Q3]q2 . Apply-

ing the Hermitian construction to C0, one can construct an
[[n, n− 2m r

t (Q3 − Q4)+ 2m, d ≥ r
t Q3]]q code. �

Examples 4: Theorem 4 has variants as follows: q = 5,
r = 2, m = 3, and n = 1302. Then one has Q3 = 31,
Q4 = 1, and t = 2. It is easy to work out each 25-ary
cyclotomic coset C[i] for 2 ≤ i ≤ 31. It is clear that C[31] =
−5C[31] since C[31] = {31, 775, 1147}. The cosets are
given by C[2] = {2, 50, 1250}, C[3] = {3, 75, 573}, · · · ,
C[30] = {30, 750, 522}. Suppose that C0 = 〈

∏
i
M (i)(x)〉 and

Z0 =
⋃

iC[i], where i ∈ {2, 3, · · · , 30}. It is a fact that cosets
are mutually disjoint and Z0∩Z

−5
0 = ∅. ThenC0 is Hermitian

dual-containing and has parameters [1302, 1215, d ≥ 31]25
since cosets contain 30 consecutive integers. Applying the
Hermitian construction, we have an [[1302, 1128, d ≥ 31]]5
quantum code.

The q2-ary cyclotomic cosets given in the proof of
Theorem 4 are optimal from Lemma 6 and Lemma 7. Not
only do cosets given make sure that C0 is Hermitian dual-
containing but also it is convenient to compute the dimen-
sion of C0. In particular, the number of consecutive integers
reaches the maximum.

From 3), 5) or 7) of Lemma 6 or 2) of Lemma 7 , we know
that there are i and j such that C[i] = −qC[j] when t and r
meet certain conditions. Another issue one might raise is how
to design quantum BCH codes for these cases. The following
lemma offers a desirable solution to choose cosets in order to
facilitate the construction of quantum BCH codes.
Lemma 8: Suppose α = qm−βt q

m
+1

q+1 such that 0 ≤ βt ≤
q+1
2 , then C[α] = −qC[qm − α − 1].

Proof: Note that r | q2 − 1 and t = gcd(r, q + 1). One
has r

t |
q+1
t (q − 1) and gcd( rt ,

q+1
t ) = 1. Then r

t | q− 1

and then r | (q− 1)t . Since βq(q − 1)t q
2m
−1

q2−1
≡ 0 mod n

and q(q2m − 1) ≡ 0 mod n, we have βtq(qm − 1) q
m
+1

q+1 ≡

0 mod n and (qm − βt q
m
+1

q+1 )qm+1 ≡ −q(qm − 1 − qm +

βt q
m
+1

q+1 ) mod n. Thus, αqm+1 ≡ −q(qm − 1 − α) mod n
holds. Since m is odd, one has C[α] = −qC[qm − 1− α]. �
Let α′ = qm − b q+12t ct

qm+1
q+1 . We have Theorem 5 as

follows.
Theorem 5: Let q ≥ 3 be a prime power and n be an integer

such that gcd(n, q2) = 1 and m = ordn(q2) > 1 is odd.
Assume that n = r q

2m
−1

q2−1
, where r > q+ 1. If t and r satisfy

conditions in 3), 5) or 7) of Lemma 6 or 2) of Lemma 7 and
α′ ≤ r

t Q3, then there exist quantum codes with parameters
[[n, n− 2m(α′ − d α

′

q2
e), d ≥ α′]]q.

Proof:We choose C[d α
′

q2
e], C[d α

′

q2
e + 1], · · · , C[α′ − 1]

as the q2-ary cyclotomic cosets. Suppose C[i] = C[j], where
d
α′

q2
e ≤ i 6= j ≤ α′−1. It follows that iq2l ≡ j mod n, where

1 ≤ l ≤ m−1. Namely, iq2l− j ≡ 0 mod n. If 1 ≤ l ≤ m−1
2

and r > q+ 1, one has

0 < d
α′

q2
eq2 − (α′ − 1) ≤ iq2l − j

≤ (α′ − 1)qm−1 − d
α′

q2
e < n,

which is a contradiction. If m+12 ≤ l ≤ m− 1, then 1 ≤ m−
l ≤ m−1

2 . We can infer from q2m ≡ 1 mod n that i ≡ jq2m−2l

mod n. It is similar to the case where 1 ≤ l ≤ m−1
2 . Thus, all

these cosets are mutually disjoint.
Let C0 = 〈

∏
iM

(i)(x)〉, where d α
′

q2
e ≤ i ≤ α′ − 1.

Proceeding similarly as in the proof of Theorem 4, we can
show that C0 is Hermitian dual-containing and compute its
dimension as well as the minimum distance. �
In the proof of Theorem 5, the condition r > q + 1

is attributed to mutually disjoint cosets. It has no effect on
Hermitian duality. The following Theorem can be applied to
show that the q2-ary cyclotomic cosets given in the proof of
Theorem 6 are tight.
Theorem 6: If the q2-ary cyclotomic cosets are given by

C[d α
′

q2
e − 1], C[d α

′

q2
e], · · · , and C[α′ − 1], then there exist i

and j such that C[i] = C[j], where d α
′

q2
e − 1 ≤ i, j ≤ α′ − 1.

Proof: If d α
′

q2
e is an integer, let i = α′

q2
− 1 and j = iq2.

Since α′

q2
− 1 ≤ iq2 ≤ α′ − 1, it is obvious that C[i] = C[j].

If d α
′

q2
e is not an integer, let i = d α

′

q2
e− 1 = b α

′

q2
c and j = iq2.

Because d α
′

q2
e − 1 ≤ iq2 < α′, it is clear that C[i] = C[j].

The result follows. �
Examples 5: When q = 5, r = 8, and m = 3, we know

that n = 5208, t = 2, and r
t Q3 = 124. There are i and j such

that C[i] = −5C[j] from Lemma 6-3). One has α′ = 83
and C[83] = −5C[41] according to Lemma 8. Let C[4],
C[5], · · · , C[82] be the 25-ary cyclotomic cosets to generate
cyclic code C0. The defining set of C0 is Z0 =

⋃82
i=4 C[i].

Since Z0 ∩ Z
−5
0 = ∅, then C0 is Hermitian dual-containing

with parameters [5208, 4971, d0 ≥ 83]25. One obtains an
[[5208, 4734, d ≥ 83]]5 quantum BCH code. If we select
C[3], C[4], · · · , C[82] as the 25-ary cyclotomic cosets to
generate cyclic code C0, then there are cosets mutually joint.
For example, we know that C[3] = C[75].

Finally, let us consider t = 1. It is a fact that r | q− 1.
In addition, one has gcd(q− 1, q+ 1) = 2 when q is an odd
prime power. We know that r and Q3 are both odd.
Lemma 9: Suppose ζ = rQ3 − r q

m
−q

q2−1
− η

qm+1
q+1 , where

0 ≤ η ≤ r−1
2 , then C[ζ ] = −qC[rQ3 − ζ ].

Proof: It is a fact that −q(rQ3 − ζ ) = r q
2
−qm+1

q2−1
−

η
qm+1+q
q+1 . Thus, we have ζqm+1 ≡ r q

2
−qm+1

q2−1
− η

q+qm+1

q+1 ≡

−q(rQ3 − ζ ) mod n. Since m is odd, then C[ζ ] =
−qC[rQ3 − ζ ] holds. If we consider ζ ≥ rQ3 − ζ , one has
0 ≤ η ≤ r−1

2 because r is odd. �
Theorem 7: Let q ≥ 3 be a prime power and n be an

integer such that gcd(n, q2) = 1, gcd(r, q + 1) = 1, and
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m = ordn(q) > 1 is odd. Assume that n = r q
2m
−1

q2−1
and

ζ ′ = r q
m+1
−1

q2−1
−

r−1
2

qm+1
q+1 . Then there exist quantum codes

with parameters [[n, n− 2m(ζ ′ − d ζ
′

q2
e), d ≥ α′]]q.

Proof: Each q2-ary cyclotomic coset is given by
C[d ζ

′

q2
e], C[d ζ

′

q2
e + 1], · · · , C[ζ ′ − 1]. Similar to the proof

of Theorem 4, these q2-ary cyclotomic cosets are mutually
disjoint.

Let C0 = 〈
∏

iM
(i)(x)〉, where d ζ

′

q2
e ≤ i ≤ ζ ′ − 1. Assume

that C[i] = −qC[j], where d ζ
′

q2
e ≤ i, j ≤ ζ ′ − 1. One has

iq2l ≡ −qj mod n, where 0 ≤ 2l ≤ 2(m − 1). We only
consider l = m+1

2 since the other cases are similar to the proof
of Theorem 4. If l = m+1

2 , one has i + jqm ≡ 0 mod n and
j+iqm ≡ 0 mod n. Then (i+j)(qm+1) ≡ 0 mod n.We have
rQ3 | i+ j in that gcd(r, q+ 1) = 1 and gcd(Q3, q+ 1) = 1.
If i = j, then i(qm + 1) ≡ 0 mod n. One has rQ3 | i which
is not true for i ≤ ζ ′ − 1 ≤ rQ3. Without loss of generality,
we assume that i < j. Since i + j < 2j < 2rQ3, one has
i+ j = rQ3 and

rQ3+1
2 ≤ j ≤ ζ ′ − 1. It follows that

j+ (rQ3 − j)qm ≡ 0 mod n

⇒ rqm − j(q− 1) ≡ 0 mod r
qm + 1
q+ 1

⇒ j(q− 1) ≡ r
qm − q
q+ 1

mod r
qm + 1
q+ 1

.

Let q − 1 = t0r . Then t0j ≡
qm−q
q+1 mod qm+1

q+1 . Since

gcd( q
m
+1

q+1 , q− 1) = 1 and t0 | q− 1, one obtains

j ≡
qm − q
t0(q+ 1)

mod
qm + 1
q+ 1

⇒
qm + 1
q+ 1

| j−
qm − q
t0(q+ 1)

.

Let j − qm−q
t0(q+1)

= s q
m
+1

q+1 . Then we know that s ∈ ( r2 ,
r+1
2 ),

which is a contradiction. The way of determining the dimen-
sion and the minimum distance is similar to the proof of
Theorem 4. �
Similar to Theorem 6, we can show that the q2-ary cyclo-

tomic cosets given are tight. Namely, when q2-ary cyclotomic
cosets are given by C[d ζ

′

q2
e−1], C[d ζ

′

q2
e], · · · , and C[ζ ′−1],

there are i and j such that C[i] = C[j].
Examples 6: Let q = 4, r = 3, and m = 3. It follows

that n = 819 and Q3 = 21. One has ζ ′ = 38 and
C[38] = −4C[25] according to Lemma 9. We choose C[3],
C[4], · · · , C[37] as the 16-ary cyclotomic cosets to gen-
erate the cyclic code C0. The defining set of C0 is Z0 =⋃37

i=3C[i]. Since Z0 ∩ Z
−4
0 = ∅, then C0 is Hermitian dual-

containing with parameters [819, 714, d ≥ 38]16. One has
an [[819, 609, d ≥ 38]]4 quantum BCH code. If we select
C[2], C[3], · · · , C[37] as the 16-ary cyclotomic cosets to
generate cyclic code C0, then C[2] = C[32]. That is to say
that cosets given in this way are mutually joint. It shows that
the cyclotomic cosets selected by Theorem 7 are tight.

B. m IS EVEN
We assume that Q5 =

qm−1
q2−1

when m = ordn(q2) is even. One
has the similar results in the following.
Lemma 10: If λ is an integer such that 0 ≤ λ < r , then

C[rqQ5 − λ] = −qC[rQ5 + λqm−1].
Proof: Notice that (rqQ5 − λ)qm ≡ −r

qm+1−q
q2−1

− λqm ≡

−q(rQ5+λqm−1) mod n. Sincem is even, we haveC[rqQ5−

λ] = −qC[rQ5 + λqm−1]. If we consider rQ5 + λqm−1 ≤
rqQ5 − λ, it is clear that λ < r . Especially, C[rqQ5] =
−qC[rQ5] when λ = 0. �
Applied Lemma 10, it is convenient to select the q2-ary

cyclotomic cosets. Hence, we obtain the following result.
Theorem 8: Let q ≥ 3 be a prime power and n be an

integer such that gcd(n, q2) = 1 and m = ordn(q2) is even.
Assume that n = r q

2m
−1

q2−1
. Then there exists an [[n, k ≥

n− 2mr(qm−1 − 1), d ≥ rqQ5 − r + 1]]q quantum code.
Proof: Let C0 = 〈

∏
iM

(i)(x)〉 and Z0 =
⋃

i C[i], where
r Q5−1

q +1 ≤ i ≤ rqQ5−r . Similar to the proof of Theorem 4,
we know that C0 is Hermitian dual-containing. The number
of disjoint cyclotomic cosets is smaller than or equal to
r(qm−1 − 1). In addition, each q2-ary cyclotomic coset has
at most m elements. Hence, one has C = [n, k0 ≥ n −
mr(qm−1 − 1), d0 ≥ rqQ5 − r + 1]q2 . We have an [[n, k ≥
n− 2mr(qm−1 − 1), d ≥ rqQ5 − r + 1]]q code. �
Although Theorem 8 does not ensure that each q2-ary

cyclotomic coset is mutually disjoint, its minimum distance
is comparatively good when we consider the random error
correcting capacity.

For example, one has n = 130208 and Q5 = 26, when
q = 5, r = 8, and m = 4. If we choose C[41], · · · , C[1032]
as the 25-ary cyclotomic cosets according to Theorem 8, it is
easy to find that designed cyclic code C0 is Hermitian dual-
containing. However, there are cosets mutually joint such as
C[209] = C[417].
If we wish to compute the dimension of C0 accurately,

the result in Theorem 8 can be strengthened under some
restrictions.
Theorem 9: Let q ≥ 3 be a prime power and n be an integer

such that gcd(n, q2) = 1 and m = ordn(q2) is even. Assume
that n = r q

2m
−1

q2−1
, where 1 ≤ r ≤ q+1

2 . Then there exist an

[[n, n−2rm(qm−1−qm−2), d ≥ r q
m
−1

q+1 +1]]q quantum code.
Proof: Let C[i] be the q2-ary cyclotomic coset to gen-

erate C0, where r
qm−2−1
q+1 + 1 ≤ i ≤ r q

m
−1

q+1 . Since selective
cosets belong to the cosets given in the proof of Theorem 8.
Hence, C0 is Hermitian dual-containing.
Let us show that the cosets given are mutually disjoint.

In fact, if C[i] = C[j], it follows that iq2l ≡ j mod n, where
r q

m−2
−1

q+1 + 1 ≤ i 6= j ≤ r q
m
−1

q+1 and 1 ≤ l ≤ m − 1. It is
equivalent to iq2l − j ≡ 0 mod n. If 1 ≤ l ≤ m−2

2 and
1 ≤ r ≤ q+1

2 , one has 0 < q2 − r(q − 1) ≤ iq2l − j ≤

r q
2m−2
−2qm−2+1
q+1 − 1 < n. If m+2

2 ≤ l ≤ m − 1, we have
1 ≤ m − l ≤ m−2

2 . It follows from q2m ≡ 1 mod n
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that i ≡ jq2m−2l mod n, which is similar to the case where
1 ≤ l ≤ m−2

2 . Let us concentrate on the case where l = m
2 .

Then one has

iqm ≡ j mod n
jqm ≡ i mod n

⇒ (i+ j)(qm − 1) ≡ 0 mod n

⇒ qm + 1 | (i+ j)
q2 − 1
r

.

Since 1 ≤ r ≤ q+1
2 and r q

m−2
−1

q+1 + 1 ≤ i 6= j ≤ r q
m
−1

q+1 ,

it is clear that i + j ≤ 2r q
m
−1

q+1 − 1 ≤ qm − 2. When
q 6= 2e, where e is an integer, one has gcd(qm+1, q2−1) = 2.
If gcd(qm + 1, q

2
−1
r ) = 1, we know that qm + 1 | i+ j

contradicting the fact i+j ≤ qm−2. If gcd(qm+1, q
2
−1
r ) = 2,

then gcd( q
m
+1
2 ,

q2−1
2r ) = 1 and then qm+1

2 | i+ j. If i + j =
qm+1
2 , one obtains

qm + 1
2
≡ j(qm + 1) mod n

⇒ qm + 1 ≡ 2j(qm + 1) mod 2n

⇒ 2j− 1 ≡ 0 mod 2r
qm − 1
q2 − 1

.

It is clear that we have a contradiction, because 2j− 1 is odd
and 2 q

m
−1

q−1 is even. When q = 2e, where e is an integer, one
has gcd(qm + 1, q2 − 1) = 1, which is similar to above case
where gcd(qm + 1, q

2
−1
r ) = 1. In a word, the cyclotomic

cosets given by C[i], where r q
m−2
−1

q+1 + 1 ≤ i ≤ r q
m
−1

q+1 are
mutually disjoint.

Suppose the q2-ary cyclotomic coset C[i] has mi elements,
where mi | m and 1 ≤ mi ≤ m

2 , then iq
2mi ≡ i mod n.

If 1 ≤ mi ≤ m
2 −1, the maximum of iq2mi−i is smaller than n.

If mi = m
2 , one has q

m
+ 1 | i q

2
−1
r because n | i(q2mi − 1).

According to the proof above, we know that this is not true.
Then each q2-ary cyclotomic coset given has m elements.
Since C[1] = C[qm−2], C[2] = C[2qm−2], · · · ,

C[r q
m−2
−1

q+1 ] = C[r q
m
−q2

q+1 ], the cyclotomic cosets given con-

tain r q
m
−1

q+1 consecutive integers. Therefore, C0 is a cyclic
code with parameters [n, n − rm(qm−1 − qm−2), d0 ≥
r q

m
−1

q+1 + 1]q2 . One obtains an [[n, n − 2rm(qm−1 − qm−2),

d ≥ r q
m
−1

q+1 + 1]]q code. �
Examples 7: Taking q = 3, m = 4, and r = 2 into consid-

eration, it is easy to compute n = 1640 and Q5 = 10. If one
choose C[5], C[6], · · · , C[40] as the 9-ary cyclotomic cosets
to design cyclic code C0, its defining set is Z0 =

⋃40
i=5 C[i].

It’ clear that Z0 ∩ Z
−3
0 = ∅. Meanwhile, all these cosets

are mutually disjoint and contain 40 consecutive integers.
Therefore, C0 is Hermitian dual-containing with parameters
[1640, 1496, d ≥ 41]9. Applying Hermitian construction,
one has an [[1640, 1352, d ≥ 41]]3 quantum BCH code.

V. CODE COMPARISONS
We compare the parameters of quantum BCH codes in our
schemes with the ones available in the literature as follows.

Steane constructed quantum BCH codes with n = 2m − 1
in [7]. It is a special case for q = 2. In this paper, we gen-
eralize to q ≥ 3. Quantum BCH codes for n = qm−1

q−1 have
been studied, where q is a power of odd prime number [6].
We extend its results to the case where r > 1. In particular, q
is an arbitrary prime power in our schemes.

Concerning Steane’s construction, quantum BCH codes
have parameters [[n, n − 2md(δ − 1)(1 − 1/q)e, d ≥ δ]]q

with 2 ≤ δ ≤ r q
m
2 −1
q−1 whenm is even in [2]. It is similar to the

case in Theorem 2. However, the dimension of quantum BCH
codes in our scheme is superior to the result in [2]. Similarly,

when m is odd, one has 2 ≤ δ ≤ r q
m+1
2 −q
q−1 +

r
q−1 in [2].

Suppose that we only consider nonprimitive BCH codes,

it follows that 2 ≤ δ ≤ r q
m+1
2 −q
q−1 . This is similar to the case in

Theorem 3.Whereas the dimension of quantumBCHcodes in
our scheme is larger than the dimension in [2]. For example,
we can construct [[312, 244, d ≥ 12]]5 quantum codes with
r = 2 and m = 4 while one has [[312, 240, d ≥ 12]]5
in [2]. Focusing on Hermitian construction, [2] constructed
quantum BCH codes with [[n, n − 2md(δ − 1)(1 − 1/q2)e,
d ≥ δ]]q where 2 ≤ δ ≤ br q

m
−1

q2−1
c for n = r q

2m
−1

q2−1
.

It is clear that br q
m
−1

q2−1
c ≤

r
t
qm−1
q−1 when m is odd and

r q
m
−1

q2−1
< r q

m
−1

q+1 + 1 when m is even, respectively. Namely,
the new codes in our schemes have better lower bound for the
minimum distance than the ones in [2]. Quantum BCH codes
with parameters [[1953, 1869, d ≥ 15]]5 can be obtained
in [2]. In our scheme, one has an [[1953, 1779, d ≥ 31]]5
code. Table 1 and Table 2 show above results in a concrete
way.

TABLE 1. Codes comparison for n = r qm−1
q−1 .

TABLE 2. Codes comparison for n = r q2m−1
q2−1

.

G. G. La Guardia proposed three constructions to generate
primitive quantum BCH codes in [13]. The first two ones are
derived from Hermitian’s constructions with r = q2 − 1.
In terms of lower bound for the minimum distance, quantum
BCH codes have d ≥ q2 when m = ordn(q2) = 2 and
d ≥ 2q2 + 2 when m = ordn(q2) ≥ 3 and q ≥ 4 in [13].
From Theorem 4 and Theorem 8, one obtains d ≥ qm − 1
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when m = ordn(q2) > 1 is odd and d ≥ qm+1 − q2 − q + 2
when m = ordn(q2) is even, respectively. The third one is
obtained from Steane’s constructions when r = q − 1 with
parameters [[n = qm − 1, n− m(4q− 5)− 2, d ≥ 2q+ 2]]q
for q ≥ 4 and m ≥ 3. We can construct [[n = qm − 1, n −
2m(qm/2 − qm/2−1) + 3m, d ≥ qm/2 − 1]]q quantum BCH
code when m is even from Theorem 2 and [[n = qm − 1,
n−2m(q(m+1)/2−q(m−1)/2−q)−m, d ≥ q(m+1)/2−q]]q when
m > 1 is odd from Theorem 3. From Table 3 and Table 4,
we can see that the lower bound for the minimum distance in
our schemes are better than the results in [13].

TABLE 3. Codes comparison for n = q2m − 1.

TABLE 4. Codes comparison for n = qm − 1.

Afterwards, G. G. La Guardia designed quantum BCH
codes with m = 2 in [8]. When we consider Steane’s con-
struction, one has n = r ′(q − 1) in [8] and n = r(q + 1)
in this paper. We can see that the results in our construc-
tions are comparable to those in [8, Table 5]. With respect
to Hermitian’s construction, new quantum BCH codes with
n = r(q2 + 1) from Table 6 have better lower bound for the
minimum distance than the ones with n = r ′(q2 − 1) in [8].
He further studied quantum BCH codes with m ≥ 3 [8].
However, his results need to meet certain conditions when
m ≥ 3. For example, the codes length n is a prime number.
In addition, the cosets given need to be mutually disjoint such
that Z ∩ Z−1 = ∅. Therefore, his methods are inflexible
to construct quantum codes and are suitable for computer

TABLE 5. Codes comparison for m = 2.

TABLE 6. Codes comparison for m = 2.

searching. We come up with an effective solution to choosing
suitable cosets. As a result, these cosets are mutually disjoint
and the defining set contains most consecutive integers from
the proof of theorems in our schemes. Meanwhile, the code
generated is Euclidean dual-containing or Hermitian dual-
containing. In particular, the code length is not necessary a
prime. It can be seen that constructions presented in this paper
are more general than [8].

VI. CONCLUSION
We have constructed quantum BCH codes by classical non-
binary BCH codes over Fq and Fq2 , respectively. We charac-
terized the properties of cyclotomic cosets and these results
make it possible to construct more families of quantum BCH
codes, since the BCH codes are nested and are amenable
to the Steane enlargement technique [7]. Not only do our
schemes facilitate to figure out the dimension of quantum
BCH codes but also their defining sets contain consecutive
integers as far as possible.

In this paper, We extend to more general case where
n = r q

m
−1

q−1 relative to results in [6] and [7]. Especially, q
is just a prime power in our schemes. Compared with the
results in [2], [8], and [13] one can see that the new codes
in this paper have parameters better than the codes in [2], [8],
and [13]. It is interesting to note that the quantum BCH code

for n = r q
m
−1

q−1 is the special case for n = r q
mm′
−1

qm′−1
when

m′ = 1. Therefore, this more general case needs further study
in the future.
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