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ABSTRACT The need for distributed energy trading is increasing owing to the deployment of distributed
renewable generators, and a new class of users, prosumers, based on them. This paper presents two
pair-matching strategies for the distributed prosumer energy trading market. We first propose an energy
trading rule guaranteeing a minimum trading quantity. The rule manages distributed market risk from
unpredictability in the demand and supply of participants. A pair matching problem to maximize social
welfare is formulated. However, it requires high computational complexity, as well as a central controller.
Therefore, we propose twomatching strategies considering the properties of the trading rule and the statistical
characteristics of participants by modifying the problem. The proposed strategies can be applied in a
distributed manner with a simple mechanism. Numerical results using the ideal and real data sets show
that the proposed strategies have near optimal performance, with less than a 2% optimal gap. In addition,
we discuss how distributed prosumer energy trading offers a benefit and discuss the dominant parameter for
achieving that benefit.

INDEX TERMS Distributed energy market, distributed generator, energy trading, guaranteed minimum
trading, prosumer, social welfare, uncertainty.

I. INTRODUCTION
With an increasing awareness of potential harmful effects
on the environment, and the development of advanced
grid technologies such as smart grid, distributed generators
including renewable energy sources have been extensively
deployed in energy systems [1]. This has resulted in signif-
icant energy security strengthening, climate-change mitiga-
tion, and economic benefits to the grid [2]. On the customer
side, the expansion of distributed generators has introduced a
new class of users, called prosumers, who sell domestically
generated energy, usually using renewable generators such as
rooftop photovoltaic power stations, as well as buy energy
from the grid and/or other prosumers [3].

Prosumers’ resources have low reliability according to the
stochastic nature of renewable-based sources and the depen-
dency on human behavior, and they are operated as small
distributed agents with small capacity [4]. Considering these
properties of prosumers, distributed or peer-to-peer (P2P)
energy trading market models are suggested in place of
the centralized conventional energy trading market [5].

The distributed trading with limited controllability character-
istic requires more robust and efficient operation methodol-
ogy than before.

In distributed trading, matching the trading pair between
producers (energy sellers) and consumers (energy buyers) is
one of the most important problems to be solved. Pair match-
ing approaches have been reviewed [6]. A basic approach
is a consumer selection from a producer list [7]. In this
approach, after producers announce their generation types
and selling price, the consumer selects the producer based on
its own preference. This approach is quite simple and works
well in a distributed setting. The approach selects the pair
based on the historical profile or the expected average profile.
In the ideal case, the performance of pair matching can be
expected to be guaranteed on average, but in practical cases
it is risky. In addition, it only reflects the convenience of either
producers or consumers. An approach that considers both the
producer and the consumer is presented [8]. Producers and
consumers make contracts with a trading service provider,
and the trading service provider matches the trade between
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the producer and the consumer. The trading pairs are matched
by the service provider’s rule, and the participants are directly
controlled by the trading service provider. The trading ser-
vice provider manages the risks that arise in practical cases
because the service provider controls all parts of pair match-
ing. In this manner, this approach could enhance the benefits
of the producers and the consumers with respect to each
other. However, this approach requires a central controller
operated by the trading service provider. A hybrid model
also considers that the trading service provider matches the
trading pair, considering the consumer’s prioritization [9].
This model allows participants to suggest their preference.
The service provider decides the trading pair to consider the
suggested preferences and the risk by the uncertainty, so this
approach partially guarantees the pair matching performance
in practical cases. However, it also requires a centralized
controller.

The need for a central controller is related to energy trad-
ing market uncertainties. Participants and operators in the
trading market try to optimize their benefits and reduce their
energy trading risk, respectively. Therefore, efficient pro-
sumer energy trading requires that the trading pair matching
strategy operates in a distributed manner, considering pro-
sumer properties as well as the trading mechanism to reduce
the energy trading risk [10].

The focus of this work is to propose trading pair match-
ing strategies for a distributed prosumer market. To do this,
we first suggest an energy trading rule for the prosumer
market and propose trading pair matching strategies that
effectively operate in the trading environment. Both of these
are summarized below:
• Energy Trading Rule: The distributed prosumer energy
trading is high risk by virtue of its unpredictability.
To manage this, we consider an energy trading rule that
guarantees a minimum trading quantity. A rule based
on guaranteed minimum value is often applied in many
areas of social economics, such as the guaranteed min-
imum income and the guaranteed minimum pension,
and the target is to create a system of social welfare
provision [11]. In this work, the guaranteed minimum
trading quantity means that the prosumer should at least
guarantee the quantity of energy demand or supply that
the prosumer can commit to. Otherwise, a penalty would
be given. This approachmanages the energy trading risk,
encouraging energy sharing in the distributed prosumer
energy market [12].

• Trading Pair Matching Strategies: Under the trading
rule, an energy trading problem is formulated as a pair
matching problem to maximize the social welfare that
is the total benefit of participants achieved via prosumer
energy trading [13]. The problem becomes a non-convex
problem that requires a central controller with high
computational complexity to optimally solve. Analyzing
the trading rule and participant properties, we modify
the problem to a simplified pair matching problem that
minimizes benefit loss. The suggested pair matching

TABLE 1. Notation summary.

strategy is solved in a distributed manner using partial
information, such as the first and second statistical char-
acteristic ‘‘mean and variance’’ of participants. We also
present a strategy only requiring the first statistical char-
acteristic of the participant distribution, relaxing the
proposed strategy. Numerical studies using the ideal and
real demand sets show that these two proposed trading
pair matching strategies have near optimal performance.

The rest of this paper is organized as follows. Section II
describes systemmodels and theminimumguaranteed energy
trading rule. Section III discusses how to design the two
proposed pair matching strategies. Section IV demonstrates
measurement studies using ideal and real demand profiles
applied to the proposed strategies. Section V concludes the
paper.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION
A. SYSTEM MODEL
1) PLAYER MODEL
Players are defined as producers and consumers who partici-
pate in prosumer energy trading. There are sets of producers
(P) and consumers (C). Let i ∈ P be the index of the
i-th producer and j ∈ C be the index of the j-th consumer.
Before being matched for trading, players announce

their first and second statistical characteristics of energy
demand forecasting through the trading interval t ∈ T =
{1, · · · , t, · · · ,T }, i.e., the generation forecasting for the
producer, êi(t) and σi(t) where i ∈ P , and the load forecasting
for the consumer, l̂j(t) and σj(t) where j ∈ C. These values are
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predicted using demand forecasting methods, such as gener-
ation forecasting methods for producers’ demand [14], [15],
and customer baseline load (CBL) calculation methods for
customers’ demand [16], [17].

2) PRICE MODEL
The price is determined by many variables, such as the
fuel used, government subsidies, government and industry
regulations, infrastructure, and local weather patterns. How-
ever, for residential players who have demand with small
quantity, price impacts are limited and dependent on indi-
vidual demand profiles, which vary from one location to
another [18]. Therefore, a linear pricing model proportionally
related to energy usage is considered, and its unit price is
defined as follows:
• pT [$/kWh]: Trading price between producers and con-
sumers, which is a selling price for producers and a
buying price for consumers,

• psG [$/kWh]: Selling price to the grid,
• pbG [$/kWh]: Buying price from the grid.
In order to establish a trade, each price has the relationship

psG ≤ pT ≤ p
b
G. When considering a dynamic pricing model,

such as real-time pricing and time-of-use pricing [19], the unit
price varies through the trading time interval.

B. TRADING RULE WITH GUARANTEED
MINIMUM QUANTITY
A trade with a guaranteed minimum quantity (GMQ) is con-
sidered. The GMQ means that players should guarantee at
least the energy demand that they announce. At the trade
between the i-th producer and the j-th consumer, the GMQ
rule is applied as follows:

1) The i-th producer should supply at least the minimum
value of energy between êi(t) and lj(t).

2) The j-th consumer should purchase at least the mini-
mum value of energy between l̂j(t) and ei(t).

The values without hats, ei(t) and lj(t), express actual
demand, which are the generation of producer i and the load
of consumer j at time t , respectively.
There can be a mismatch between the actual demand and

the traded quantity in the GMQ. Players have to buy or sell
energy from the grid to compensate for this imbalance.
At the trade between the i-th producer and the j-th consumer,
the mismatched quantity at time t is measured as

e−ij (t) = max{0, ei(t)−max(lj(t), l̂j(t))}, (1a)

e+ij (t) = max{0, min(lj(t), êi(t))− ei(t)}, (1b)

l−ji (t) = max{0, min(ei(t), l̂j(t))− lj(t)}, (1c)

l+ji (t) = max{0, lj(t)−max(ei(t), êi(t))}. (1d)

From the producer aspect, e−ij (t) and e
+

ij (t) in (1a) and (1b)
are the energy sold to grid by the extra generation and the
energy bought from grid for the minimum generation guar-
antee, respectively. l−ji (t) and l

+

ji (t) in (1c) and (1d) are the
energy sold to grid by the minimum load guarantee and the

energy bought from grid by the extra consumption of the
consumer, respectively.

FIGURE 1. Traded and mismatched quantity example by the GMQ.
Examples of the mismatched quantities, e−ij (t), l−ji (t), l+ji (t), and e+ij (t),
exist at time 6, 10, 17, and 18, respectively.

Figure 1 shows an example of traded and mismatched
quantities between a supplier and consumer pair by the GMQ.
Dashed and solid lines express the demand forecasting and
actual demand, and lines with a circle marker and with a
squaremarker represent the value of the producer and the con-
sumer, respectively. Examples of the mismatched quantities,
e−ij (t), l

−

ji (t), l
+

ji (t), and e
+

ij (t), exist at time 6, 10, 17, and 18,
respectively. In addition, the black dashed line indicates the
traded quantity considering the GMQ constraint between the
producer and consumer trading pair. The trading quantity is
determined by adjusting the mismatched quantity and the
actual demand.

C. PROBLEM FORMULATION
Under the GMQ, the aim of this work is to maximize social
welfare determined as the sum of all player’s profits. The
profit is defined as the additional gain over the case of trading
with the grid, such as extra income for the producer and
expense savings for the consumer. At the trade between the
i-th producer and the j-th consumer, profits of producer i, Bij,
and consumer j, Bji, are written as

Bij =
∑
t∈T

[(
eTi (t) pT + e

−

ij (t) p
s
G − e

+

ij (t) p
b
G

)
− ei(t) psG

]
,

(2a)

Bji =
∑
t∈T

[
lj(t) pbG −

(
lTji (t) pT − l

−

ji (t) p
s
G + l

+

ji (t) p
b
G

)]
,

(2b)

where eTij (t) = ei(t)−e
−

ij (t)+e
+

ij (t) and l
T
ji (t) = lj(t)+l

−

ji (t)−
l+ji (t) are the quantities traded by the producer and consumer,
respectively. According to the energy balance equation, this
becomes eTij (t) = lTji (t).
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The objective function is given by

O(e, l) =
∑
(i,j)

Bij + Bji (3)

where (i, j) is the trading pair as producer i and consumer j.
e and l are column vectors of the ordered producer and
consumer so that each element at the same index in the vectors
together represent the player pairs (e.g., i and j).
In addition, players expect to obtain positive profit through

the trade, so a profit constraint is considered as

Bij ≥ 0, ∀(i, j) ∈ (P, C),
Bji ≥ 0, ∀(i, j) ∈ (P, C). (4)

In general, the social welfare maximization problem con-
sidering positive profit is formulated as:

P0: max
(i,j)∈(P,C)

O(e, l)

s.t. Bij ≥ 0, ∀(i, j) ∈ (P, C),
Bji ≥ 0, ∀(i, j) ∈ (P, C). (5)

In (5), the social welfare maximization problem (P0)
becomes determining the set of trading pairs between pro-
ducers and consumers subject to positive profit. As shown
in Figure 1, the trading quantity, which is an element of
the profit function, is a non-convex function. Therefore,
the problem presents as a non-convex problem. For finding
the optimum set, high computational complexity is theo-
retically required among |P| × |C| combinations [20], and
a controller that in practice requires information from all
players is also needed. These difficulties impose a burden on
the practical implementation of prosumer energy trading in a
low responsibility, distributed prosumer market environment.
In this paper, effective trading pair matching strategies are
suggested to deal with these difficulties. To keep the notation
simple, the time index t is suppressed throughout the paper.

III. TRADING PAIR MATCHING STRATEGIES
This section begins by discussing the profit of players under
the GMQ mechanism. Based on the lesson, trading pair
matching strategies are proposed that can be solved with low
computational complexity and in a distributed manner.

A. DESIGN RATIONALE
The difficulty in solving the problem in (5) is due to the
non-convexity of the players’ profit Bij and Bji and the trading
price. It is the basic element for constructing the objective
to maximize social welfare, and the constraint to guarantee
positive profit through trading. To design an effective strat-
egy, the effect of the profit of players on the objective and the
constraint is checked.

From (2a), the profit of producer i at time t trading with
consumer j is written as

bij =
(
eTi pT + e

−

ij p
s
G − e

+

ij p
b
G

)
− ei psG,

= ei(pT − psG)− e
−

ij (pT − p
s
G)− e

+

ij (p
b
G − pT ). (6)

The mismatched quantities e−ij and e
+

ij do not happen at the
same time because they are the selling and buying quantities
to/from the grid by the trade imbalance, respectively. There-
fore, the profit in (6) can be rewritten as

bij =

{
ei(pT − psG)− e

−

ij (pT − p
s
G), (7a)

ei(pT − psG)− e
+

ij (p
b
G − pT ). (7b)

It is generally understood that the profit in (7) is positive
because the maximum value of e−ij is ei in (1a), and the profit
in (7) also becomes positive on average because the expecta-
tion of e+ij goes to zero in (1b). This means that the profit of
a producer has a positive value on average under the GMQ.
In the same way, it is seen that the profit of a consumer
also has a positive value on average. In addition, the profit
in (6) says that to maximize the profit that is the objective
of the problem in (5) becomes to minimize the mismatched
quantities, such as e−ij and e

+

ij , as is obvious.
From these derivations, the social welfare maximization

problem that considers the positive profit constraint in the
GMQ can be relaxed to minimize the mismatched quantities
in trading.

B. TRADING PAIR MATCHING STRATEGIES
Assuming that the demand of players has a Gaussian distri-
bution as ei ∼ N

(
êi, σ 2

ei

)
and lj ∼ N

(
l̂j, σ 2

lj

)
, the differ-

ence between the demand and supply, zij, is also normally
distributed with mean µzij = êi − l̂j and variance σ 2

zij =

σ 2
ei + σ

2
lj [21]. In addition, the mismatched quantity between

the trading pair |zij| has a folded normal distribution with
parameters µzij and σzij .

The expected mismatched quantity with folded normal
distribution is measured as [22]

E
{
|zij|

}
= µzij

[
1− 2Q

(
µzij

σzij

)]
+ σzij

√
2
π
exp

(
−

µ2
zij

2σ 2
zij

)
(8a)

≥ µzij

[
1− exp

(
−

µ2
zij

2σ 2
zij

)]
+ σzij

√
2
π
exp

(
−

µ2
zij

2σ 2
zij

)
,

(8b)

≈ µzij

[
1− exp

(
−

µ2
zij

2σ 2
zij

)]
+ σzij exp

(
−

µ2
zij

2σ 2
zij

)
, (8c)

= µzij
(
1− αij

)
+ σzij αij. (8d)

whereQ(·) is the tail distribution function of the standard nor-
mal distribution, Q(x) = 1

√
2π

∫
∞

x exp
(
−
u2
2

)
du, and αij =

exp
(
−
µ2
zij

2σ 2zij

)
. From (8a) to (8b), the value is relaxed using

the improved exponential bound ofQ(·) [23]. This shows that
the expected mismatched quantity comes from the α fraction
of the difference of the average demand between the trading
pair and its standard deviation (STD). Figure 2 presents the
bound of the expected mismatched quantity varying with the
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FIGURE 2. Theoretical bound of the expected mismatched quantity in (8).
Dashed lines in figures are the value of αij . Figure 2 shows that the
mismatching quantity is evenly affected by the mean and STD, but the
quantity depends on the difference in the average demand between the
trading pair in the region below 40%, as shown in Figure 2. (a) Absolute
STD. (b) Relative STD.

difference in average demand and its STD. It says that the
mismatching quantity is evenly affected by the mean and
STD, and, to minimize the mismatching quantity, the mean
and STD should be balanced.

Using (8), the problem of maximizing social welfare in (5)
is converted to minimizing the expected mismatched quantity
between the pairs, which is the first effective trading pair
matching strategy,

P1: min
(i,j)∈(C,P)

∑
(i,j)

|êi − l̂j|
(
1− αij

)
+

√
σ 2
ei + σ

2
lj αij. (9)

Note that in (9), the trading pair matching problem based on
the expected mismatched quantity (P1) is a convex problem
constructed with convex combination sets. The problem can
be solved by iterative algorithms such as the Newton method
or the gradient descent method in a distributed manner [24].

To find the solution, each player selects their matching pair to
minimize the mismatched quantity, and announces the infor-
mation related to the selection. Using updated information,
each player repeatedly selects. Based on the convex property,
the solution always converges.

When the expected mismatched quantity based on the
relative STD, which is the ratio of the STD over the mean,
is reviewed, the quantity depends on the difference in the
average demand between the trading pair in the region
below 40%, as shown in Figure 2. Considering that the
demand forecasting error is less than 15% of the average
demand [14]–[17], it can be said that the difference in
the average demand between the trading pair dominates in
determining the mismatched quantity in practice. Therefore,
the trading pair matching problem to minimize the expected
mismatched quantity in (9) is approximated to the trading
pair matching problem to minimize the difference of the
average demand between the trading pair, which is the second
effective trading pair matching strategy,

P2: min
(i,j)∈(C,P)

∑
(i,j)

||êi − l̂j||, (10)

where || · || is the Euclidean norm. Similar to problem P1,
the trading pair matching problem based on the difference of
the average demand between the trading pair (P2) in (10) is
also a convex problem that is solved by iterative algorithms
in a distributed manner.

Let (i(t), j(t)) be the pair matching at the t-th iteration. The
distributed trading pair matching algorithm is sketched as
follows:

Algorithm 1 Distributed Trading Pair Matching Algorithm

1: Initialize (i(0), j(0)) that is randomly selected.
2: do while (i(t−1), j(t−1)) 6= (i(t), j(t))
3: t ← t + 1,
4: Each player i (or j) selects its own pair j (or i) to

minimize (9) or (10).
5: The selected information is broadcast and updated.
6: end do

Asmentioned above, the problem P1 and P2 are convex prob-
lems, so the algorithm is always converged and solved with
the linear computational complexity as O (max(|P|, |C|)).

IV. NUMERICAL RESULTS
To verify the effectiveness of our work, we evaluate the
performance of the proposed trading pair matching strategies
using ideal and practical demand profiles and discuss which
characteristics of the players affect performance, and how.
The results are compared to the performance achieved by
solving the problem in (5).

In the simulation, daily trading is considered as a player
trading energy within the same pair for a day. The trading
is measured every half hour. The trading price is assumed
to be pT = KRW 100/kWh, psG = KRW 80/kWh, and
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pbG = KRW 120/kWh,1 which are the average electricity
prices in Korea [25] and U.S [26].

A. IDEAL CASE
The demand of each player is randomly generated with a nor-
mal distributed model at each trade time and the mean of the
demands varying with time according to a typical residential
demand model for Korea [27]. Average daily demand and the
STD of players is uniformly distributed in a specific range
depending on the case. For player sets, 16 producers and
consumers are basically considered, but the case for varying
the set size is also described. The performances are calculated
by averaging the results over 1000 days.

1) PREFERENCE
Table 2 shows the performance of the average unit profit
when applying the proposed trading pair matching strategies,
P1 and P2, as well as the solution of the optimal problem
P0. According to the statistics for Korea [25] and the accu-
racy of conventional demand forecasting methods [14]–[17],
the average daily demand and relative STD of the reference
case are set to 12 kWh and 15%, respectively. The perfor-
mance is also measured considering high STD and low STD
environments.

TABLE 2. Average unit profit [KRW/kWh].

Throughout the results, the producers and the consumers
have similar profits because they have similar properties.
In the reference case and the low STD case, results under the
proposed strategies achieve more than 90% of the maximum
achievable profit and have less than 1% optimal gap com-
pared to the optimal solution of P0. By increasing the demand
uncertainty, presented as STD, the performance is reduced in

1The KRW is the currency unit of South Korea ($1 = KRW 1,000).

the high STD case. However, the optimal gap of the proposed
strategies is still less than 2%. This verifies that the proposed
strategies are well designed, and work effectively.

Comparing the results of applying P1 and P2, the perfor-
mance of P1 achieves better profit than that of P2 in the
reference case and the low STD case. This is because P1
considers both the first and second characteristics of demand,
but P2 only uses the first demand characteristic. However,
when STD grows, this increases the approximation error
in (8) and reduces the performance of P1.

FIGURE 3. Gain achievement with varying player set size. The black line
with circles, the red dashed line with squares, and the blue dash-dot line
with diamonds illustrate the gain achievement by applying P0, P1, and
P2, respectively.

Figure 3 shows the gain achievement related to the size
of the player sets for the reference case. The circled black
line, the red dashed line with squares, and the blue dash-dot
line with diamonds illustrate the gain achievement by apply-
ing P0, P1, and P2, respectively. The performance of P0 is
enhanced by increasing the set size. To solve this problem
for P0, perfect demand information is required, and the infor-
mation improves performance with increasing multi-user
diversity [28]. The proposed strategies, P1 and P2, use only
partial information, such as the first and second characteris-
tics of the demand, thus the performance enhancement due
to multi-user diversity is limited. However, the gain achieve-
ment gap is marginal, less than 1.5%, between the optimal
solution and the proposed strategies.

2) CHARACTERISTICS
To show how players achieve profit, we observe the charac-
teristics of matching pairs for the reference case. Pearson’s
linear correlation coefficient (PLCC) is used to check the
relationship [29].

Table 3 presents the relationship between the matched
trading pairs. P1 and P2 use the first and second demand
characteristics of players, so the PLCC of demand character-
istics between pairs is measured. The similar values of PLCC
at P0 and P1 show that the matching pairs by P0 and P1
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FIGURE 4. Relationship between the total profit and the relative STD of each pair. The result of P1 in Figure 4 shows higher correlation than the other
results in Figure 4 and 4. (a) P0. (b) P1. (c) P2.

TABLE 3. PLCC of characteristics between matched trading pairs.

are organized to similar sets. This verifies that our approach
in converting the social welfare maximization problem to a
mismatched quantity minimization problem is rational. InP2,
the relative STD between pairs is remarkably low at 0.01, but
the profit of trading is high even when considering the STD as
shown above. This means that the profit of trading is highly
dominated by the average demand of pairs.

TABLE 4. PLCC between total profit and characteristics of pairs.

Table 4 represents the relationship between the total profit
of pairs and the matched pair’s characteristics. The relation-
ship between the profit and the STD is quite high (larger
than 0.8). This says that a pair with low uncertainty (low
STD) can achieve more profit because of a lesser mismatched
quantity.

Figure 4 describes the relationship between the total profit
(or social welfare) and the relative STDof each pair. The same
as the result in Table 4, the result of P1 in Figure 4 shows
higher correlation than the other results in Figure 4 and 4.
Actually, P1was designed considering the demand difference
and the STD, so it has the highest correlation in Table 4
and Figure 4. However, the performance of P1 is limited
compared with that of P0, which is less related to these two
characteristics, and additionally considers other information.
In Figure 4, some points in bold dashed circles have low
profit even though they are low STD. This point reduces the

performance of P2, because P2 was designed to be biased
toward the demand difference only.

FIGURE 5. Probability distribution of the total profit of each pair. The
black line with circles, the red dashed line with squares, and the blue
dash-dot line with diamonds show the gain achievement by applying P0,
P1, and P2, respectively.

Figure 5 shows the total profit distribution of each pair
applying the strategies. The circled black line, the red dashed
line with squares, and the blue dash-dot line with diamonds
illustrate the gain achievement by applying P0, P1, and P2,
respectively. Similar numbers of pairs achieve a high profit
of more than 38 by P0 and P1, but more pairs by P1 achieve
a profit of less than 34 than do pairs by P0. The opposite
property appears when comparing the profit distribution by
P0 and P2. In addition, the profit distribution by P2 has
lower variance than that by P1. This means that P2 only
considers the average demand difference and ensures the
average profit as the maximization of the minimum profit
(max-min) operation, andP1with average demand difference
and relative STDworks as the maximization of the maximum
profit (max-max) operation [30]. These results show that P2

VOLUME 6, 2018 40331



E. Oh, S.-Y. Son: Pair Matching Strategies for Prosumer Market Under Guaranteed Minimum Trading

FIGURE 6. Real demand properties. The blue line with circles and the red
line with squares represent the statistical properties of the generation
and load, respectively. (a) Daily demand. (b) Relative STD.

is a more effective strategy when considering profit fairness
among pairs, andP1 is a better strategy for maximizing profit.

B. PRACTICAL CASE
For more practical results, we simulate using the sample data
from real demand profiles of wind generation and building
load. The wind generation was collected by the Bonneville
Power Administration (BPA), United States Department of
Energy [31], and the building load was recorded as part of
the KoreaMicro Grid Energy Project (K-MEG) [32] in 2016,.
The announced generation forecasting data from BPA and the
measured data applying the NYISO day-ahead CBL method-
ology [17] are considered. The accuracy of the generation
and load forecasting corresponds to about 11% and 4% of
the relative STD. The statistical properties of real demand
are presented in Figure 6. The performance is averaged on
the results of 30 days with 16 producer and consumer sets.

TABLE 5. Average unit profit [KRW/kWh].

In Table 5, performance using the real data shows the same
trend as that of the ideal case, and the optimal gap between
the optimal solution of P0 and the results using the proposed
strategies, P1 and P2, is less than 1%. This verifies that the
proposed strategies work well. In addition, the results show
that the consumers achieve more profit than the producers
on average. This is because the consumers’ STD related to
mismatching is lower than that of the producers. This says
once again that the profit is highly correlated to the STD.

V. CONCLUSIONS
In this study, we focused on the trading pair matching prob-
lem for social welfare maximization. First, we suggested a
GMQ to manage the distributed energy trading risk. Ana-
lyzing the effect of the players’ profit on the problem in

the GMQ mechanism, the non-convex social welfare max-
imization problem was converted into a convex problem to
minimize the mismatched quantity. We proposed two trading
pair matching strategies based on the first and the second
statistical characteristics of demand. The proposed strategies
can be solved in a distributed manner with low computa-
tional complexity. We empirically showed that the proposed
strategies perform close to the optimal solution for the ideal
case, as well as for the practical case considering real demand
profiles. In addition, we discussed the relationship between
the profit and the characteristics of the matched trading pairs.
This suggests guidance in designing rules for trading and
matching.
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