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ABSTRACT Non-intrusive load identification is important to load monitoring and smart power utilization.
In order to effectively identify load status and obtain detailed power data, this paper explained a load
identification algorithm based on load decomposition and frequency domain filtering. It realized load
decomposition through solving an underdetermined problem of a single current signal under non-intrusive
collection mode and then further achieved load identification. The underdetermined problem was optimized
into a 1-D underdetermined problem. The solving model was constructed as separating the collecting current
into two channels. According to the sparseness of the current frequency domain signal, the optimal solution
was obtained by a two-step iterative shrinkage threshold algorithm. Therefore, each operation load can be
decomposed independently. The frequency-domain filter group was conducted to filter the decomposition
current, and load identification was realized based on the decision of the frequency component after filtering.
The algorithm simplified the identification complexity, with a fast convergence rate and high identification
accuracy. The performance was validated by the actually measured data. The load decomposition and
identification was effective, which could accurately determine the load status, and obtain the current
waveform of the independent load.

INDEX TERMS Frequency-domain filtering, load decomposition, load identification, non-intrusive load
monitoring, solving underdetermined problem.

I. INTRODUCTION
As smart grid develops to move traditional power industry
towards highly intensive, knowledge-based and technology-
based directions, apart from the quantity and quality of the
power generation side, great attention should also be paid
to the management of the demand side. Therefore, there is
increasing need for intelligence on the power distribution and
consumption side [1], [2]. Demand side management (DSM)
has been applied to optimize the low voltage user clients
for effective load management. The intelligent technologies
for power consumption side have aroused more and more
interest [3], [4]. The key to DSM is the acquisition of the
detailed information about household energy efficiency, anal-
ysis of household electric energy consumption structure, and
better understanding of the impact of user behaviors on their
household energy efficiency, all of which would guide users
to consciously take action to conserve energy [5]–[7].

Load monitoring is the core technology for load manage-
ment. The traditional approach to load monitoring is intru-
sive, and each power consumption appliance comes with
an information acquisition device. Besides, the power sup-
ply is interrupted temporarily during their installation and
maintenance, which causes inconveniences for users. There-
fore, this approach features poor practicality and availabil-
ity. Because of the above deficiency of intrusive approach,
a non-intrusive load monitoring (NILM) approach was pro-
posed by Professor Hart in the 1980s. Instead of intruding
the loads, the approach acquires the relevant data at power
entrance. It carries out load decomposition and identifica-
tion based on signal analysis and processing, thus allowing
for status identification of all loads on power consumption
network [8], [9].

Based on the existing researches, the non-intrusive load
identification algorithm ismainly divided into two categories.
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One is to switch the judgment based on the changes in load
signature; the other is the intelligent identification algorithm
based on pattern classification. Load signature refers to those
load features which can reliably mark the electricity status of
the load [9], [10]. Hart [10] proposed a clustering algorithm
based on active and reactive (P-Q) features. Due to the sim-
plicity of this method, it is widely used in NILM research,
but this algorithm cannot recognize devices with overlapping
P-Q features. Dinesh et al. [11], [12] used the uncorrelated
component (i.e. frequency component) of the power spec-
trum of the load signal as an effective feature and relied on
the improved mean shift clustering algorithm and Bayesian
classification method to estimate the active power of each
individual device from the aggregated signal, which can solve
the problem raised in [10], but the number of clusters in
the recognition process was not prior information, which has
an impact on the recognition accuracy. In [13], the entire
operation cycle of the load is modeled and the event windows
are identified based on load characteristics. The recognition
accuracy reaches more than 90%. However, it only identifies
the electrical appliances the user is willing to register, and the
edges of the unregistered electrical appliances are excluded
from the candidate electrical windows. The innovation of [14]
is that it develops a new load disaggregation approach to
estimate different customer energy consumption at the bulk
supply point based on general substation measurement with-
out relying on smart meter data, customer surveys and so on.
But the disadvantage of this approach is that it is necessary
to conduct off line training for all possible combinations of
different loads, which is not conducive to the wide appli-
cation. In addition, the work in [15] and [16] used the V-I
trajectory to identify the load operation. The V-I trajectory
of different loads is different, but how to extract the load
V-I trajectory from the total system power data in the actual
application was not explained in any literature. The main
limitation with the steady-state based methods is that they
could not accurately identify the multi-state loads and feature
overlap phenomena [17]. In order to overcome the limitations
of the steady-state analysis methods, [8], [18]–[20] conducted
the transient analysis for load identification. Due to most of
different electrical appliances having their unique electrical
characteristic(s), they have partially or completely repeat-
able transient profiles [20]. In [18], the switching voltage
transient eigenvectors for non-intrusive load monitoring are
calculated by using continuous wavelet transform, which suf-
fers heavy computational burden. And to effectively reduce
the computation time, an energy spectrum of the wavelet
transform coefficients in different scales calculated by the
Perceval’s Theorem is proposed in [8] and [19]. In addition,
some researchers recognized the characteristic information
can be fully extracted by taking the steady-state and transient-
state features of the load into overall consideration [21], [22].
Hong et al. selected seven kinds of load features with com-
bination of current; voltage, active power and reactive power,
and implemented Fourier transform to achieve feature extrac-
tion [23]. Liang et al. used current waveform, active power,

reactive power, other steady-state features and open active
transient-state waveform to decompose the load [24], [25]. He
used dual-layer feature extraction framework to distinguish
electric equipment through three aspects of steady state, tran-
sient state and user behavior [26].

Coupled with the above load signature methods, some
researchers also undertake to introduce the pattern classifica-
tion algorithm into the non-intrusive load identification. The
pattern identification method firstly constructs the load sig-
nature including different equipment as its base model. The
learning model (other than the predefined base) of the base is
used to identify the mixed signal to achieve effective estimate
of energy consumption of each equipment, which can be
divided into two types, supervised learning and unsupervised
learning. Recently, supervised learning-based algorithms pro-
pose to formulate new meta-features from aggregated power
measurement sampled at 10-minute interval and utilize these
features to train classical multi-label classifiers such as sup-
port vector machines [27], [28], k nearest neighbor [29], [30]
and neural network [31], [32] and so on. It has been proven
that the operation of high precision electrical appliances
can be accurately identified, while this kind of approach is
prone to over-training and over-fitting problems. Kolter et al.
convert non-intrusive load monitoring recognition to single
channel (smart meter is the only channel) blind separation
problem [33]–[35]. The approach transforms the problem of
maximizing the energy decomposition performance into a
structural prediction problem, and provides a specific training
for the energy decomposition task, and then puts forward the
effective algorithm. Although it was a good example of a
supervised learning-based approach, the shortcoming is that,
it cannot be used for real-time disaggregation and the massive
of sensors for appliance sub-metering need to be deployed.
In contrast, load identification based on unsupervised learn-
ing can automatically detect the basic structure of data, which
reduces manual intervention and enhances practicality. Gen-
erally the approach based on unsupervised learningmakes use
of differential HiddenMarkovModels (HMM) and other vari-
ants of HMM in [36], [39], [40]. Reference [36] proposes to
model the probability behavior of devices by using a variant
of HiddenMarkovModel. The disadvantage of this presented
approach is that it only takes into account the appliances
with only ON/OFF states. When the number of electrical
equipment is superabundant, the recognition accuracy will
declined and it is easy to fall into local optimum. To alleviate
the aforesaid problem, Kolter and T Jakakola proposed an
extended version of the hidden Markov model (i.e. Additive
Factorial Hidden Markov model, AFHMM), on the basis
of which household electrical equipment was modeled [39].
Compared with the previous algorithms, the AFAMAP algo-
rithm is not affected by the local minimum, and the decom-
position accuracy is better. However, due to its huge matrix
of variables, computational cost is clearly too high for real-
time applications. Reference [40] assumes that at most one
appliance changes state within a short period and mod-
els the single appliance by adding duration modeling and
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differential observations to the conventional HMM.However,
how to solve NILM problems with this model has not been
reported.

The load signature method can be used to detect and
identify the variations owing to the status changes of load
switch. However, equipment switch information is so fleeting
that it is difficult to separate mixed load. Secondly, the thresh-
old value of changes in load signature is too large to lead
to accurate event detection results and readily ends with an
increase in computational complexity. Currently, there are
inadequate effective features that can exclusively identify
different load status. By comparison, the pattern recognition
algorithm is highly intelligent and flexible in identification
criteria. Nevertheless due to the high complexity of this kind
of algorithms, the complicated process and the difficulty in
hardware implementation and the identification accuracy is
greatly influenced by changes of load amount. In addition,
the methods mentioned above are used to decompose the
load status according to signal features. Due to the compli-
cated steps of feature extraction and the difficulty to obtain
complete data of independent load, there is less research
in respect of signal separation. Consequently the full and
complete method to decompose separate loads is a vacancy
in this realm.

On the whole, the existing non-intrusive power load mon-
itoring algorithms mainly construct the power load model
based on the extracted electrical features along with using
optimization techniques or pattern recognition technology
to achieve identification of power load. However, all of
these approaches have their respective deficiencies and are
not very satisfied. Trying to improve this kind of algo-
rithms and based on the signal model of non-intrusive
load monitoring, one of the contributions of this paper is
through using the sparseness of current frequency domain
signal to obtain an optimal solution. By using this prop-
erty, we can transform the underdetermined problem into an
optimization problem, which can employs a two-step iter-
ative shrinkage threshold algorithm to completely separate
independent load waveform from mixed signals. Further-
more, this approach can simplify load identification process
while ensuring the identification accuracy. Another contri-
bution of this paper is to identify the load of decomposed
complete waveform through the characteristic filter only by
constructing the current characteristic filter group but with-
out extracting load features. The identification process is
simple and accurate, and the computational complexity is
lower than that of feature extraction approach. Meanwhile,
the hardware implementation problem of pattern recogni-
tion algorithms in practical application is solved to some
degree.

This paper consists of the following sections: Section II
introduces fundamentals of NILM and algorithm ideas.
Section III presents complete process of the algorithm herein.
Section IV demonstrates validation and analysis of actually
measured load data. Finally a summary and some conclusions
are provided in Section V.

II. FUNDAMENTALS AND ALGORITHM MODELS
A. FUNDAMENTALS OF NILM
NILM is designed to acquire the overall power consump-
tion information of user loads at residential power entrances.
Fig. 1 shows the NILM structure, which identifies the oper-
ation of individual loads through analysis and processing
of overall power consumption information, thus allowing
for real-time tracing and management of residential energy
efficiency [41]. In contrast with traditional load monitoring
technologies, it is unnecessary to install a test device for
each load, so the acquiring and monitoring mechanism is
quite simple for users. It is suitable for individual installation
and more acceptable. NILM simplifies the acquiring and
measuring mechanism, but the power consumption data of all
loads is included in one signal collected [42]. Therefore, for
NILM, it is critical to analyze and extract the information of
individual loads from single signal acquired, and effectively
achieve load identification.

FIGURE 1. NILM structure.

B. LOAD DECOMPOSITION MODELS
The power consumption data of all loads is included in one
comprehensive signal collected, out of which the power con-
sumption information of individual loads should be separated
and extracted. This paper is built upon the current signals of
loads for decomposition and identification. In the event of m
power consumption loads, the single current acquired in non-
intrusive mode is as follows:

I (t) =
m∑
k=1

Ik (t)+ n(t) (1)

where Ik (t) stands for the current signal of load operating
independently, and n(t) represents the signal of noise.
From (1) we can know that I (t) is a known quantity, while

Ik (t) are unknowns to be solved, and there are m quantities
in aggregate. Load decomposition can be modeled as solving
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the underdetermined equation. However, when the number of
loads, i.e.,m, is far more than 1, the number of unknowns will
be farmore than equations, so the number of underdetermined
dimensions will be huge. In this case, it will be difficult to
solve the equation. Therefore, this paper will optimize the
underdetermined issue.

According to the user habits in terms of load operation,
there is very low probability to open or close two loads at
the same time absolutely. That is, load switching is sequen-
tial. Therefore, the current operation model at present can
be established as sum of current signal for the previous
moment and individual load current newly put into operation,
as shown in (2) below:

I (t) =
m−1∑
k=1

Ik (t)+ Im(t)+ n(t) = I ′(t)+ Im(t)+ n(t) (2)

where I ′(t) stands for the current signal at previous moment,
and Im(t) stands for the independent current of load newly put
into operation. Similarly, when there is a load off, the mixed
current in the circuit is given by:

I (t) =
m−1∑
k=1

Ik (t)+ (−Im(t))+ n(t)

= I ′(t)+ (−Im(t))+ n(t). (3)

Equation (2) or (3) indicates that, by solving two unknowns
for each time interval, namely, mixed signal at previous
moment and current signal of load newly put into opera-
tion, the multi-dimensional underdetermined issue of (1) can
be transformed into one-dimensional underdetermined issue
of (2) or (3), thus we can make sure that the equation can be
solved effectively.

C. SOLUTION OF THE UNDERDETERMINED ISSUE
Solving only two unknown quantities at each time interval,
the multi-dimensional underdetermined problem in (1) which
is difficult to solve is transformed into the one-dimensional
underdetermined problem in (2) or (3) which can be solved.
To solve the underdetermined problem, (2) or (3) based on
principle of compressed sensing is solved, and the sparseness
of signal is used to construct the constraint conditions, thus
to optimize the solution through iterative shrinkage.

Underdetermined problem can be deemed as high-
dimensional unknown quantity to be projected to low-
dimensional space through measurement matrix, as shown
in (4)

I = 84 = 89θ = 2θ (4)

where,8 refers to the measurement matrix and I refers to the
vector representation of I (t); 4 refers to the decomposition
current to be solved;9 refers to the sparse base of current sig-
nal; θ refers to the sparse representation of current.We cannot
directly solve 4 containing two unknown quantities from
a measured value of I . Therefore, based on the sparseness

of signal, we can achieve the sparsest solution [42] of the
equation. The optimization problem is shown as (5)

min ‖θ̂‖0 s.t. I = 2θ̂ (5)

where || · ||0 refers to the norm of `0, the number of nonzero
elements in vector quantity. However, the solution of (5) can
only be solved by solving all possible sparse situations and
finding the sparsest form, which is a NP problem [43]. When
multi-dimensional underdetermined problem is transformed
into one-dimensional problem, `0 problem can be solved by
equivalent to `1 norm problem, which is shown as (6). It can
be equivalent to a linear programming problem, which is
facilitated to use the existing method for solution

min ||θ̂ ||1 s.t. I = 2θ̂ . (6)

To sum up, if there is a sparse base to make current signal
sparse, the underdetermined problem in this paper can be
solved. According to the periodicity of load current, the fre-
quency domain component has harmonic property, in other
words, only some specific frequency points have values,
the remaining components are zeros, so the current signal in
frequency domain has sparsity, and the sparse base is FFT
transformation matrix [44].

D. ANALYSIS OF FREQUENCY DOMAIN CHARACTERISTICS
OF RESIDENTIAL POWER LOADS
Current signals generated by the typical residential loads are
acquired, and then are transformed into frequency domain.
Fig. 2 shows the current spectrums of five different loads,
with frequency f converted into digital angular frequency
ω ∈ (−π, π) rad/s.

Fig. 2 indicates the harmonic property of current signal.
The frequency domain characteristics of periodical signals
lead to sparsity, which is the critical foundation to solve
the underdetermined issues herein. The frequency compo-
nents of load current are in the range of −0.3π∼0.3π rad,
which correspond to the frequency range of 0∼1.5 kHz. The
characteristic frequency spectrums of all loads have power
frequency of 50Hz (ω = 0.1π ) as fundamental; that is, all
loads contain the frequency component, which has the highest
energy.

FIGURE 2. Current signal spectrums of different loads.

The frequency components of different power loads’ cur-
rent signals vary a great deal, in other words, the various
loads have their specific spectrum components. The hardware
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circuits of different loads vary a great deal, and the oscillation
frequencies and control signals of the circuits will introduce
specific spectrum components, thus changing the original
frequency intervals of signals. They are the critical foundation
to use characteristic filtering for load identification. Further-
more, it shows more and more smart and digital electrical
appliances, whose electronic circuits will introduce more
high-frequency components, which represent low energy but
are all characteristic components, providing favorable condi-
tions for load identification.

III. LOAD IDENTIFICATION ALGORITHM BASED ON
UNDERDETERMINED DECOMPOSITION AND
CHARACTERISTIC FILTERING
In this paper, load decomposition is achieved by solving
underdetermined problem, and the decomposition current
signals of independent loads are obtained. Based on this,
characteristic filtering is used for load identification. The
processing details of the proposed algorithm are presented in
this section.

A. DECOMPOSITION OF MIXED CURRENT SIGNALS
For residential users, the power consumption appliances are
started and closed sequentially. In this section, the equation
shown in (2) or (3) is solved, and two signals are separated for
each time interval. One is the load current signal newly put
into operation, and the other is the integrated current signal
for previous moment. Equation (2) is expressed as (7):

I = A4+ N (7)

where I is the observed vector of collected single mixed cur-
rent I (t); 4 = [ I ′, Im ]T is the unknown matrix consisting
of two decomposed currents, and the length of I′ and Im

is n; A ∈ Rn×N is the coefficient matrix, whose value is
[En×n, En×n]T in ideal situation; and N is the vector consist-
ing of noises, which should be restricted in solving process.
Similarly, when one load is off, the amplitude of the total
load current will decrease, and from (3), the value of mixing
matrix A in our solution will be [−En×n, En×n]T. As for the
load decomposition process, i.e., solving 4 with I, since the
number of unknowns is over the number of equations, it is
necessary to set up the optimal objective function for solving.

In the optimization issue, the objective function is defined
as follows:

f (4k ) =
1
2
||I − A4k

||
2
2︸ ︷︷ ︸

I

+ τ8(4k )︸ ︷︷ ︸
II

(8)

where part I represents the fit goodness of known data, and
part II is the regularization term, intowhich the expected char-
acteristics of unknown signals are added to get the solution.
And τ is the regular parameter. By adjusting its size, we can
change the frequency domain sparsity of the separated signal.
In each separation process, using the mixed matrix Awith the
value of [En×n, En×n]T or [−En×n, En×n]T, a mathematical
model is constructed to indicate that the mixing current at the

previous moment is superimposed with the load current of
the new input operation, and then by judging the frequency
of the last mixed signal sparsity, adjust the regular coefficient
τ to change the sparseness of the separation results to get the
results we want. The estimated value sequence of unknown
signal is {4k , k = 0, 1, . . . , n}, where k stands for iteration
number of the algorithm. The formula of iteration for solution
is (9)

4k+1
= argmin

4

1
2
||4k
− Ek ||22 +

τ

λ
8(4k ) (9)

where Ek = 4k
+ AT (I − A4k )/λ, λ and τ are adjustable

regularization parameters.
The regularization term in the equation adopts `1 norm

of current signal to be solved; that is, 8(4k ) =
∣∣4k

∣∣ is
substituted into (9), which is shown as (10)

4k+1
= argmin

4

1
2
||4k
− Ek ||22 +

τ

λ

∣∣∣4k
∣∣∣ . (10)

With (10), we can take a derivative with respect to unknown
4 as follows:

4k+1
= argmin

4

1
2
||4k
− Ek ||2 +

τ

λ
= 0λ(4k ) (11)

where 0λ(4k ) is a soft threshold function defined to remove
the noise signals, and can be simplified as (12)

0λ(4k ) = sign(4k ) max{|4k
| −

τ

λ
, 0}. (12)

To sum up, the underdetermined problem in this paper can
be simplified as (13).

f (4k ) =
1
2
||I − A4k

||2 + τ

∣∣∣4k
∣∣∣ . (13)

The optimization issue shown in (13) can be solved through
two-step iterations [45], and the process of iteration is shown
as follows.{

41
= 0λ(40)

4k+1
= (1− α)4k−1

+ (α − β)4k
+ β0λ(4k )

(14)

where 40 is the initial value; α and β are adjustable param-
eters, with 0 < α < 2 and 0 < β < 2α. When
f (4k+1) > f (4k ), the current value solved should be kept;
when f (4k+1) < f (4k ), the iteration formula should be used
to calculate 4k+2 with 4k and 4k+1, and then whether the
iteration is over can be determined by verifying if termination
function is less than threshold value. The termination function
is defined as (15)

C(4k+1,4k ) =
|f (4k+1)− f (4k )|

f (4k )
. (15)

When the value of (15) is less than the termination thresh-
old value, the iteration should be terminated, and the optimal
solution of decomposed signal is obtained. Thus, the load
current decomposition is finished. For each time interval,
the iteration process is carried out. By this way we can make
sure that the current of a load is effectively separated from the
original mixed current when it is put into operation.
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B. FREQUENCY DOMAIN FILTERING FOR
LOAD IDENTIFICATION
After load decomposition, the current of the load which put
into operation can be obtained independently, thus the com-
plexity of load identification is greatly reduced. This paper
puts forward an identification method based on frequency
filtering.
Ik (t) can be obtained a priori, which is called characteristic

current of a load. The characteristic current of each load is
regarded as a filter, which allows its own frequency compo-
nents to pass only, while other frequency components will
be filtered out. The frequency response of the characteristic
current can be expressed as (16)

Ik (jω) =

{
|Ik (jω)| ejϕ(ω) ω ∈ ωk

0 ω /∈ ωk
(16)

whereωk is the frequency component of characteristic current
signal Ik (jω).

It is assumed that there are M power loads in a power
consumption network. The characteristic currents of these
loads constitute a group of frequency domain filters, which
includesM branches. This group of filters is used to filter the
decomposed load current signal Im(t) in frequency domain,
and the result of filtering by each branch j is shown as (17)

Yj(jω) = Im(jω)Ij(jω)

≈

{
|Im(jω)|

∣∣Ij(jω)∣∣ ejθ(ω) ω ∈ ωj ∩ ωm

0 others
(17)

where Im(jω) is the spectrum of decomposed current Im(t), ωj
and ωm are the frequency components of Ij(jω) and Im(jω).
Equation (17) shows that, only when the frequency domain
components of Ij(jω) and Im(jω) are identical, can their
spectral components be kept completely; otherwise, some
frequency components will surely be restricted. Therefore,
whether Im(t) is the load corresponding to the filter of the
branch can be determined by verifying if the frequency com-
ponent filtered is completely kept. After frequency domain
filtering, if the frequency component of filtered output is
apparently lost compared to Ij(jω) or Im(jω), then Im(t) cannot
be the load corresponding to Ij(t). By contrast, if the fre-
quency component of filtered output is completely kept, then
Ij(t) can be identified as the corresponding load.

In order to facilitate machine processing, the frequency
components of filtering output are defined as 0-1. A threshold
is selected as δ, when the frequency component above the
threshold is set to 1, otherwise, it is set to 0. The binaryzation
output can be expressed as (18)

yj(jω) =

{
1

∣∣Yj(jω)∣∣ ≥ δ
0

∣∣Yj(jω)∣∣ < δ.
(18)

Based on (18), the frequency components of Ij(jω) and
Im(jω) are quantified and recorded as Îj(jω) and Îm(jω), thus

FIGURE 3. The concept schematic diagram.

the criterion function is established as (19) below:

01 =

∑
ω

yj(jω)∑
ω

Îj(jω)
02 =

∑
ω

yj(jω)∑
ω

Îm(jω)
. (19)

Equation (19) gives the quantitative criterion function of
frequency component retention. When frequency component
is completely kept after filtering, the ideal value of (19) is 1.
Therefore, only when the values of 01 and 02 both are close
to 1, can Im(t) be taken as the load corresponding to filter
Ij(jω).

C. PERFORMANCE ANALYSIS
The algorithm includes two parts. One part is load decom-
position. Utilizing the load operation habits of residential
users, it develops an optimization model for the underdeter-
mined problems that are difficult to solve, then transform-
ing them into one-dimensional underdetermined problem.
In each processing interval, the processor collects the mixed
current signal, and then establishes the mathematical solution
model, while changing the regular parameter τ . The two-
step iterative shrink threshold algorithm is used to recover
the two source signals from the observed signal, one of
which is the previous mixed signal and the other is the newly
added load signal. The other part is load identification after
decomposing the mixed signal. The frequency domain filters
are constructed by the load characteristic currents obtained
previously, and the frequency components are quantized to
realize load identification after frequency domain filtering.
The concept schematic diagram of the algorithm is presented
in Fig. 3 and the implementation flow is shown in Fig. 4.

The condition for underdetermined optimization is that
the loads are started and closed sequentially. If a load can
be decomposed independently, the load decomposition and
identification must be finished before next load start or off.
Therefore, high processing efficiency is required, and the
duration for decomposition and identification should be less
than the minimum interval between which the user starts two
loads. The major computation of load decomposition is solv-
ing the underdetermined equation, which is optimized into
one-dimensional underdetermined issue to reduce solving
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FIGURE 4. Flow chart of the proposed algorithm.

complexity. Two-step iteration threshold shrinkage is adopted
in this process; that is, in the process of iteration, the informa-
tion of previous iteration is used to improve computing speed
and accelerate convergence process. The computing time of
load decomposition can be controlled within 1.5s.

In the process of load identification, the current signals
are transformed into frequency domain. This process can be
realized by FFT and basic multiplication. Furthermore, final
judgment of load identification is defined as 0-1 binaryzation
form, which is suitable for machine processing. Therefore,
it is easy to control the identification timewithin 0.5s via DSP.
In combination, the implementation of the entire algorithm
can be controlled within 2s, thus addressing the needs.

Decomposition models in this paper have conditions, using
the time difference when the load started or closed. If two
loads were started synchronously, mixed current of the two
loads would be decomposed into one load, which could cause
the error of load identification. In practice, the probability of
being started absolutely synchronously two loads is small,
so the condition has little influence. The reasons are as fol-
lows: Firstly, the habit of user’s operation determined that
there are various lengths of time differences when the loads
are started, even if the time difference is very small, but
there often existed; Secondly, the response time is different
when the loads are put in operation, therefore, even if the
user operated two loads synchronously, there still are more
obvious time differences on the signals. However, there still is
the probability of being started synchronously. The algorithm
could not completely eliminate the effects arising from being
started synchronously, which could reduce the probability
as much as possible. In this case, the direct optimization
approach is to improve the convergence rate of the algorithm
and reduce the unit interval for processing.

IV. EXPERIMENT AND ANALYSIS
In order to verify the effectiveness of the algorithm, a res-
idential power consumption network is set up, and current
signals of actual loads are acquired, with the signal sampling
fs = 10kHz. The algorithm is applied in load decomposition
and identification.

Load decomposition is very important for the algorithm,
so themethod of solving underdetermined problem is verified
firstly. Load switching process is that fan first starts when
computer is running and then fridge starts. The loading pro-
cess of experiment is shown in Fig. 5.

Fig. 6(a)-(c) show the current signal frequency domain
waveforms of computer, fan and fridge respectively. There
are values only at very few frequency components. As can be
seen from the figure, their frequency spectrum values are zero
(or the value is close to zero) at many frequency components,
that is, there is less time when the frequency domain signal
takes a larger value. In other words, the current signals are
sparse in frequency domain.

Figure 7 shows the whole process of the algorithm.
Fig. 7(a) indicates that the computer runs stably, and shows
the spectrum of mixed current after the fan is connected.
The proposed algorithm is used to decompose the mixed
current, that is, by using the frequency domain sparsity of
the load signal, the TWIST algorithm separates two signals
from the mixed signal. In the process of algorithm separation,
the value of regular coefficient needs to be set. After many
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FIGURE 5. Load switching process.

FIGURE 6. Load switching process. (a) computer. (b) Fan. (c) Fridge.

tests, the optimal coefficient τ = 3.0E − 9 is obtained.
Fig. 7(c)-(d) illustrate the two separated signals obtained
after underdetermined solution, i.e., separated signal 1 and
separated signal 2.

Compared with Fig. 6(a) and (b), although the two decom-
position current signals are not completely consistent with
the amplitude of the source signal, all the main frequency
components are retained, which indicates that the separation
is effective. In order to quantitatively evaluate the effective-
ness of decomposition, the similarity coefficient is used to
measure the degree of approximation between decomposed
signals and original current signals as follows:

ρ =

∣∣∣∣ M∑
i=1

(xi − x̄)(yi − ȳ)

∣∣∣∣√
M∑
i=1

(xi − x̄)2

√
M∑
i=1

(yi − ȳ)2

(20)

where x and y are the two sequences compared, and M is
the number of sequence points. When ρ approaches to 1,
the two sequences are more similar. Table 1 provides the
values of similarity coefficient between separated signals and
original current signals. The values approach to 1, indicating
that the separated signals retain the original ones well. Major
frequency components and scale are well kept. After each
load is decomposed, the decomposition current is recognized
by the characteristic frequency domain filter composed of the
computer, the fan and the refrigerator. Each filter filters the
decomposed current, and its decision results are displayed
on the lower side of the decomposition current. Frequency
components of filtering output must be not lost after compar-
ing with the characteristic filter spectrum and decomposition
current spectrum. In this case, it could decide that the corre-
sponding load is put into operation of the frequency domain
filter.

TABLE 1. Coefficient of similarity between separated signals and original
current signals in frequency domain.

Fig. 7 shows that for the separated signal 1, only after
passed the frequency domain filter of fan, compared with
the corresponding decomposition current and frequency
domain filter, the output frequency components are com-
pletely retained. But after passed the corresponding fre-
quency domain filter of other two kinds of loads, compared
with at least one kind, the output frequency components
appeared obvious losses. Only the second output in Fig. 7,
relative to the former two, was completely retained, so that
the load could be identified as fan. The identification process
of the separation signal 2 is similar.

Fig. 7(b), (e)-(f) present the process of decomposition after
connection running of fridge. The mixed signal of computer
and fan is then recorded as one original signal. When the
fridge is started, there are still two signals need to be decom-
posed. One signal is the mixed current of computer and fan
which have finished the decomposition at the previous pro-
cessing interval, and the other is the current of fridge that is
newly put into operation at this processing interval. Fig. 7(b)
demonstrates the spectrum of mixed current signal after the
fridge is put into operation, The proposed algorithm is used
to decompose the mixed current as shown in Fig. 7(e)-(f),
and the decomposed signal with different sparsity can be
obtained by modifying the value of the regular coefficient
τ = 1.5E − 9. The decomposition signal 3 is shown in
Fig. 7(e), and the decomposition signal 4 is shown in Fig. 7(f).
As can be seen from the comparison with Fig. 7(a) and
Fig. 6(c), the decomposition signal 3 corresponds to the
mixed signal of the computer and the fan, and the decomposi-
tion signal 4 corresponds to the refrigerator signal. It is clear
that the two separated signals and the original signals basi-
cally share the same spectrum. As Fig. 7 revealed, all loads
are decomposed independently, so the load decomposition
method is effective. Similarly, after each load is decomposed,
the decomposition current is recognized by the characteristic
frequency domain filter composed of the computer, the fan
and the refrigerator. The separation current 3 is corresponding
to the cooperation of the computer and the fan. Therefore,
after the characteristic filtering, the frequency components of
the filtered output are lost varying degrees compared with
the frequency domain filter spectrum and the decomposed
current spectrum. So, through the decision recognition, the
separation current 3 is not the open appliance. At the same
time, as shown in the lower side of the decomposition cur-
rent 3 of Fig. 7(f), the refrigerator signal has been correctly
identified.

To demonstrate the verification, a small power consump-
tion network is established. Five loads are selected consisting
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FIGURE 7. Results of load decomposition and identification.

TABLE 2. Coefficient of similarity between separated signals and original
current signals in time domain.

of fan, fridge, rice cooker, air conditioner and TV set, which
are typical residential loads and cover the various types of
power loads, including resistance, motor and switching power
supply. Two lines of current signals are separated in unit time
interval, and all loads can be decomposed independently in
different time intervals.

Fig. 8 shows the current signal waveforms of the five loads
that run separately in time domain. Load1 to load5 are fan,
fridge, rice cooker, air conditioner and TV set, successively.
Fig. 9 shows the decomposed currents of the loads obtained
by load decomposition. The left side of Fig. 9 (including
Fig. 9(a), Fig. 9(b), Fig. 9(c), Fig. 9(d) and Fig. 9(e)) labeled
in blue shows the current signals’ spectrum of five power
loads. The right side of Fig. 9(including Fig. 9(f), Fig. 9(g),
Fig. 9(h), Fig. 9(i) and Fig. 9(j)) labeled in green shows the
decomposed current signal of the five loads in frequency
domain. The spectrums of the source signals and the decom-
posed signals are sparse and the spectral components are
substantially the same.

The decomposition process for each time interval is 1.5s
on average, so the method is able to address our needs and
allows for real-time decomposition. Comparing the decom-
posed current signals shown in Fig. 10 with the original
load current signals shown in Fig. 8, it can be seen that the
decomposed signals and original signals share very similar
waveforms. Table 2 gives the time domain similarity coeffi-
cient of load current signals corresponding to the decomposed
current signals. As Table 2 revealed the similarity coefficients
of load 2 and load 3are above 0.99, indicating very high simi-
larity. The similarity coefficients for decomposed currents of
load 1, load 4 and load 5 are relatively low, but this have no
influence on the load identification.

The loads in the power network were put into operation in
turn from the off state. During the experiment, the process-
ing interval was 3s. Load decomposition must be conducted
within each processing interval. If there were loads put into
operation within the interval, the current of new load being
put into operation could be decomposed out independently,
and within the interval, the decomposed load being put into
operation was conducted identification. Transforming the
load current decomposed out to the frequency domain by
FFT, and conducting the frequency domain filtering by priori
building the characteristic filter group, each branch would
have filtering output. In this case, the frequency components
of the filtering output were compared with that of the load
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FIGURE 8. Current signals of five power loads. (a) load 1—fan. (b) load
2—fridge. (c) load 3—rice cooker. (d) load 4—air conditioner. (e) load 5—TV.

current spectrum and that of the corresponding frequency
domain filter, respectively. If there were no obvious losses for
the frequency component, the load being put into operation
was the corresponding one in the frequency domain filter of
this branch.

In order to facilitate the machine’s decision, the parameters
were constructed in accordance with degree of preserving

FIGURE 9. The current signals and decomposed current signals spectrum
of five power loads.

TABLE 3. Quantitative decision results.

of the frequency component, namely (19). The decision was
conducted according to the decision parameters of (19) in the
experiment. Only two decision parameters both were close
to 1, the running load was the corresponding one in the
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FIGURE 10. Decomposed current signals of the five power loads. (a) load
1—fan. (b) load 2—fridge. (c) load 3—rice cooker. (d) load 4—air
conditioner. (e) load 5—TV.

frequency domain filter of this branch. As long as there was
a parameter being less than 1, it was not the corresponding
load. There were five times to put the load into operation in
the experiment, thus the respective current was decomposed
out in five intervals respectively, and load identification was
conducted. The decision parameters were shown in Table 3.

Table 3 provides the quantitative identification parameters
for all loads. Only with the frequency domain filtering cor-
responding to the load can the frequency component be well
kept. As a result, both identification parameters approach 1,
and dual parameters allow for the accuracy of identification.
From Table 3, it is know that all loads can be accurately
identified.

Since the identification process after decomposition is sim-
ilar, we provide the result of identification after the fourth
decomposition, i.e., the result of frequency domain filtering
after the air conditioning is decomposed, as shown in Fig. 11.
The subgraph labeled in green of Fig. 11 is the air condition-
ing current waveform in frequency domain after the fourth
load decomposition. The left side of Fig. 11 labeled in blue is
the corresponding frequency domain filter spectrum of each
load. The middle labeled in red is the frequency component
after each filter conducted the filtering for the air conditioning
decomposition current, and the decision result is on the right.

Frequency components of filtering output must remain rel-
atively complete after comparing with the frequency domain
filter spectrum and decomposition current spectrum. In this
case, it could decide that the corresponding load that put into
operation. Fig. 11 shows that for the current signals after
independent decomposition, only after they passed the fre-
quency domain filter of air conditioning (load 4), compared
with the decomposition current and the frequency domain
filter, the output frequency components were completely
retained. But after they passed the frequency domain filters of
other four loads, compared with at least one kind, the output
frequency components appeared obvious losses. Only the
fourth output in Fig. 11, relative to the former two, was
completely retained, so that the load could be identified as air
conditioning.

Fig. 12 compares the proposed algorithm, traditional time
domain algorithm and Fisher intelligent algorithm with the
increase in the number of loads in terms of computational
efficiency and identification accuracy rate.

Traditional time domain identification algorithm uses the
change of load signature to conduct judgment for load switch-
ing. Load signature refers to the unique information that can
reflect the electrical state embodied in the operating electri-
cal equipment, such as active power waveform [25]. After
detecting the load of the switch, the effective value and the
maximum value of load current and voltage are extracted
further in time domain. Afterwards, the genetic algorithm is
used to compare the given features of the electrical equipment
and the load features extracted from the measured data to
identify the components of the mixed load. Then the basic
transform domain analysis of load identification is carried
out. Traditional optimization algorithm achieves the goal of
identifying load by studying the featuredmodels of each load.
Computational efficiency and identification accuracy of the
traditional algorithm are greatly influenced by the load fea-
tures, depending on the dimensions and effectiveness of the
features. Fisher intelligent algorithm is a linear discriminant
algorithm [46]. When non-intrusive monitoring is used to
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FIGURE 11. Identification process of air conditioning after it is
decomposed independently.

extract the load feature, it uses the Fisher intelligent algorithm
with supervisory discrimination to select the projection line
and projects the data points of the main component feature
space on a straight line to separate the load data, thus to
achieve load identification.

Fig. 12(a) shows that the number of frequency domain
filters increases with the increase in the number of loads.
The calculated amount of this paper has a slight increase,
but the increase of calculation complexity has little effect on
the whole identification efficiency. Under the circumstance
of lower feature dimension, the processing efficiency of the
traditional time domain algorithm continuously fluctuates
around 2.2s, but its processing efficiency is related to the time
domain feature. As the feature increases, the computational
efficiency will sharply fall. Fisher intelligent algorithm needs
to extract the load features and conduct linear iteration, so the
calculated amount is large and the computing time is longer.
Fig. 12(b) shows that the identification accuracy curves of
the three algorithms as the number of input loads increase.
As the number of loads changes, the accuracy of the proposed

FIGURE 12. Performance comparison. (a) Computational efficiency.
(b) Identification accuracy.

algorithm is less affected. However, the traditional approach
is more sensitive to the increase of load number, which
caused a significant decrease of the identification accuracy.
Similarly, fisher algorithm also has a significant decrease in
identification accuracy rate as the feature increases.

V. CONCLUSION
A non-intrusive identification algorithm for residential users
based on underdetermined decomposition and frequency
domain filtering is proposed.

The undetermined solution model of current is established
for load decomposition. The sparse feature of current in
frequency domain is used to transform the underdetermined
problem into optimization seeking problem. Two-step iter-
ative shrinkage threshold algorithm is introduced to enable
the solving process to rapidly converge. As the experimental
results demonstrated, this algorithm can competently separate
the waveform of each load from the mixed currents. The
decomposed current is filtered in frequency domain. We can
judge the retention of the output frequency component to
complete load identification. The judgment function in two-
parameter form is constructed to ensure the accuracy of load
identification. The performance is validated by the actually
measured data. The computational efficiency and identifica-
tion accuracy have been improved obviously compared with
traditional method.

In this paper, the regularization parameters are determined
by experience value. This has influence to the convergence
rate and decomposition accuracy. Therefore, it is required
to further study the adaptive parameter selection strategy,
guiding the solution to the direction of optimal solution.
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