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ABSTRACT In the era of big data, the multi-modal data can be seen everywhere. Research on such data
has attracted extensive attention in the past few years. In this paper, we investigate the perturbations of
compressed data separation with redundant tight frames via 8̃-`q-minimization. By exploiting the properties
of the redundant tight frame and the perturbation matrix, i.e., mutual coherence, null space property, and
restricted isometry property, the condition on reconstruction of sparse signal with redundant tight frames
is established, and the error estimation between the local optimal solution and the original signal is also
provided. Numerical experiments are carried out to show that 8̃-`q-minimization is robust and stable for the
reconstruction of sparse signal with redundant tight frames. To our knowledge, our works may be the first
study concerning the perturbations of the measurement matrix and the redundant tight frame for compressed
data separation.

INDEX TERMS Compressed data separation, perturbation, null space property, restricted isometry property.

I. INTRODUCTION
Compressed sensing [1]–[3] is a novel signal processing
technique for efficiently reconstructing a signal by solving
underdetermined linear systems. The basic principle is that a
sparse or compressible signal can be reconstructed from far
fewer samples than that is required by the Shannon-Nyquist
sampling theorem. Compressed sensing is being extensively
applied in various fields of science and engineering, including
compressive imaging [4], medical imaging [5], pattern recog-
nition [6], image processing [7], etc.

Suppose that we observe

y = Af + z,

where f ∈ Rn is an unknown signal to be reconstructed, A
is an m× n measurement matrix with m � n, y ∈ Rm are
available measurements, and z ∈ Rm is a simple additive
noise with level ε (‖z‖2 ≤ ε). The problem is of course ill-
posed but suppose now that f is known to be sparse or nearly
sparse in the sense that it depends on a smaller number
of unknown parameters. However, in reality, the common
signals are not necessarily sparse, and even these signals
can not be sparsely represented in some orthogonal basis.

Naturally, the above model can not be directly applied to
the reconstruction of this kind of signals. Recently, there are
some literature showing that some signals can be sparsely
represented in certain redundant tight frames D ∈ Rn×d

(n ≤ d,DD∗ = In, where D∗ is the conjugate of the
transpose of D) [8], [9]. That is f = Dx, where x ∈ Rd

is (approximately) sparse. Following this, the above problem
can be regarded as the D-`0-minimization:

min
f̄∈Rn
‖D∗ f̄ ‖0 s.t. ‖Af̄ − y‖2 ≤ ε, (I.1)

where ‖D∗f ‖0 represents the number of nonzero elements
of D∗f . We call a signal D∗f s-sparse, if ‖D∗f ‖0 ≤ s.
However, (I.1) is a NP problem that can not be effectively
solved in practice. Relaxation methods replace `0-norm by
the following convex objective function:

min
f̄∈Rn
‖D∗ f̄ ‖1 s.t. ‖Af̄ − y‖2 ≤ ε, (I.2)

where ‖D∗ f̄ ‖1 =
d∑
i=1
|(D∗ f̄ )i|.

Since (I.2) is a convex optimization problem, it can
be transformed into an equivalent quadratic optimization
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problem that can be very effectively solved. However,
the obtained solution by this method is not necessarily the
most sparse solution. Notice that the `0-norm is the limit of
the `q-norm1 as q→ 0:

‖f ‖0 = lim
q→0
‖f ‖qq = lim

q→0

∑
j

|fj|q.

Naturally, many researchers have utilized `q-norm with
0 < q ≤ 1 to replace `1-norm, see [10]–[14]. Therefore,
the following D-`q-minimization problem is proposed to
solve problem (I.1):

min
f̄∈Rn
‖D∗ f̄ ‖qq s.t. ‖Af̄ − y‖2 ≤ ε.

In [11], Li and Lin have conducted a detailed analysis for
D-`q-minimization. They obtained a sufficient condition for
robust and stable reconstruction of the original signal, and
established an upper bound estimation of approximation error
between the reconstructive signal and the true signal. Along
this line, a few of scholars had paid great efforts [13], [15].

However, in the real world, we often encounter with some
complex data such as: multi-frequency acoustic data (data
from the superposition of different instruments) [16], neu-
robiology image data [17], and radar data [18]. These data
show some special structures different from the traditional
one, for example multiple modes, i.e., being composed of dis-
tinct subcomponents. For these data, one can try to separate
it into suitable single components for convenient analysis.
In literature [19]–[22], typical instances consist of the texture
separation from cartoon images, blind source separation and
separation of sinusoids and spikes. The problem is referred as
compressed data separation. In view of mathematical point,
we consider splitting the signal f = f 1 + f 2 into its
constituents f 1 ∈ Rn and f 2 ∈ Rn, which are assumed
to be sparse in redundant tight frames D1 and D2, respec-
tively. By using linear, nonadaptive, and noisy measurements
y = Af + z and A, we try to reconstruct the unknown
constituents f 1 and f 2. In 2013, considering the special cases
A = I , Donoho and Kutyniok [23] proposed the following
D-`1-separation:

(f̂ 1, f̂ 2) = argmin
¯f 1, ¯f 2∈Rn

‖D∗1 ¯f 1‖1 + ‖D
∗

2
¯f 2‖1

s.t. f = ¯f 1 + ¯f 2.

As we know, for the measurements y, the simple additive
noise z was uncorrelated with signal f . However, the signal
f may be polluted due to the influence of the measurement
matrix and the dictionary. So, it is necessary to consider the
multiplicative noise which is closely related to the signal f .
This kind of noise is usually generated by non-ideal mea-
surement devices and reconstruction devices as well as the

1For a signal f ∈ Rn, `q-norm (q > 0) are defined as ‖f ‖q =
(
∑n

j=1 |fj|
q)1/q. One has to be careful as such `q are no longer formal norms

for 0 < q < 1, as the triangle inequality is no longer satisfied. Sometimes
we also call such a norm as a `q-quasi norm.

computational limitations. In order to simulate the real situ-
ation and interpret the precision errors of the measurement
and reconstruction process, one should introduce the mul-
tiplicative noise into compressed data separation [24], [25].
Here, we consider the following complex case by respectively
incorporating perturbations E, E1 and E2 to the matrix A,
tight frames D1 and D2:

Ã = A+ E, D̃1 = D1 + E1, D̃2 = D2 + E2,

where E ∈ Rm×n, E1 ∈ Rn×d1 and E2 ∈ Rn×d2 . These
perturbations can be quantified with the following relative
bounds:

‖E‖2
‖A‖2

≤ εA,
‖E1‖2

‖D1‖2
≤ εD1 ,

‖E2‖2

‖D2‖2
≤ εD2 ,

where εA, εD1 and εD2 are perturbation levels of the mea-
surement matrix A and the redundant tight frames D1, D2,
respectively. Meanwhile, considering the merits of `q-norm
(0 < q ≤ 1) with characterizing sparsity, we adopt
D̃-`q-split analysis with perturbations to recover the con-
stituents as follows:

(f̂ 1, f̂ 2) = argmin
f̄ 1,f̄ 2∈Rn

‖D̃
∗

1 f̄ 1‖
q
q + ‖D̃

∗

2 f̄ 2‖
q
q

s.t. ‖Ã(f̄ 1 + f̄ 2)− y‖2 ≤ ε, (I.3)

where y = A(f 1+f 2)+z ∈ Rm and ε is a mixed noise level of
measurement noise z and matrix perturbation E. In general,
these perturbations are more difficult to analyze than simple
additive noise z since they are correlated with constituents
f 1 and f 2 of interest. To see this, simply calculate as:

Ã(f 1 + f 2) = A(f 1 + f 2)+ E(f 1 + f 2),

D̃
∗

1f 1 = D∗1f 1 + E
∗

1f 1, D̃
∗

2f 2 = D∗2f 2 + E
∗

2f 2,

there will be three extra noise terms E(f 1 + f 2), E1f 1 and
E2f 2. To facilitate the problem, we demand for simplify-
ing (I.3) and initially assume the following set-up:
• A is an m× n measurement matrix.
• Ã is an m× n full rank measurement matrix
(perturbation matrix of the true matrix A).

• D1 ∈ Rn×d1 and D2 ∈ Rn×d2 are two redundant tight
frames.

• D∗1f 1 and D∗2f 2 are approximately s1-sparse and
s2-sparse, respectively.

• D̃1 ∈ Rn×d1 and D̃2 ∈ Rn×d2 are two perturbation
dictionaries of D1 and D2, respectively.

• d = d1 + d2, D = [D1|D2]n×d , 8 =
[
D1 0
0 D2

]
2n×d

,

8̃ =

[
D̃1 0
0 D̃2

]
2n×d

, f =
(
f 1
f 2

)
2n×1

, A = ÃD8∗ ∈

Rm×2n.
• 8∗f is approximately s-sparse, where s = s1 + s2.

Then, we can rewrite (I.3) as the following
8̃-`q-minimization problem:

f̂ = argmin
f̄∈R2n

‖8̃
∗
f̄ ‖qq s.t. ‖Af̄ − y‖2 ≤ ε. (I.4)
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Taking into account the special case of `1-minimization
and non-perturbation, in 2013, Lin et al. [26] have done some
valuable work that investigated compressed data separation
using the model

f̂ = argmin
f̄∈R2n

‖8∗ f̄ ‖1 s.t. ‖AD8∗ f̄ − y‖2 ≤ ε.

They obtained sufficient conditions for the robust and stable
reconstruction of the signal and gave an upper bound on the
estimation error

‖f̂ − f ‖2 ≤ C0ε + C1
‖8∗f − (8∗f )[s]‖1

√
s

,

where ‖8∗f − (8∗f )[s]‖1 is the best s-term `1 approximation
error [27]. This influential result has far-reaching signifi-
cance for the research of the compressed data separation.
Considering the importance of the above problem, we con-
duct a deep investigation and provide two important results
that show 8̃-`q-split analysis is robust and stable with regard
to measurement noise and perturbation of the measurement
matrix A, tight frames D1 and D2.
In short summary, our contributions are as follows:
• We first investigate the perturbations of the measure-
ment matrix and the redundant tight frame for com-
pressed data separation.

• We establish two sufficient conditions for the robust and
stable reconstruction of the original signal.

• We obtain the estimation of upper bound on error
between the reconstructive signal and the true signal.

• We perform a series of experiments to verify the recon-
struction effects of 8̃-`q-minimization method.

The paper is organized as follows. In Section 2, we give the
main result of this paper. With respect to the main theorem,
we will present some meaningful remarks. In Section 3,
we carry out some numerical simulation experiments on sig-
nal reconstruction. The conclusion is addressed in Section 4.
Finally, proofs of Theorem 2 and Theorem 7 are presented in
Appendix A and Appendix B, respectively.

II. MAIN RESULT
In this section, we present our two main contributions.

A. RECONSTRUCTION ERROR ESTIMATION WITH 8-NSPq

One of our main results is to get the upper bound of recon-
struction error by using8-NSPq and 8̃-`q-split analysis with
perturbations. The8-NSPq, analogous to the null space prop-
erty, is imposed on the measurement matrix and its definition
is given as follows.
Definition 1 (8-NSPq [28]): Let 8 ∈ R2n×d be a dictio-

narymatrix as in the previous setting, if there exists 0 < c < 1
such that

∀f̄ ∈ kerA, ∀|T | ≤ s ‖8∗T f̄ ‖
q
q ≤ c‖8

∗
T c f̄ ‖

q
q,

where |T | is the cardinality for the index set T ⊂

{1, 2, · · · , d}, T c is its complementary index set and 8∗T f̄ =
(8∗ f̄ )T is the restriction of8∗ f̄ on T , then matrix A satisfies

the `q null space property of order s relative to 8 (8-NSPq),
and the smallest constant c is named as the null space con-
stant (NSC).

We are now prepared to state our first main result.
Theorem 2: Suppose that a tight frame 8 ∈ R2n×d satis-

fies 88∗ = I2n and that 8̃ ∈ R2n×d fulfils ‖8∗ − 8̃
∗
‖op ≤

τ1. Moreover, suppose that the matrix A ∈ Rm×2n obeys
the 8-NSPq of order s with the null space constant c (0 <
c < 1). If the noise measurement y = AD8∗f + z satisfies
‖AD8∗f − y‖2 ≤ ε, then any solution f̂ of (I.4) satisfies

‖f̂ − f ‖2 ≤ C1ε + C2‖8
∗f − (8∗f )[s]‖q

+C3‖A− Ã‖op + C4,

where

τ1 = 5
(
1− c
10

) 1
q

d
1
2−

1
q ,

and

C1 =
2

νA

(
τ1−‖8

∗
− 8̃

∗
‖op

) , C2 =
2

1
q d

1
2−

1
q

τ1−‖8
∗
− 8̃

∗
‖op

,

C3 =

(
1+ 2

1
q−

1
2 + 2

1
q−

1
2 ‖8∗ − 8̃

∗
‖op

)
‖D8∗f ‖2

νA

(
τ1 − ‖8

∗
− 8̃

∗
‖op

) ,

C4 =
2

1
q ‖8∗ − 8̃

∗
‖op‖f ‖2

τ1 − ‖8
∗
− 8̃

∗
‖op

.

Proof: See Appendix A. �
The operator norm of an m× n matrix as a mapping from

(Rn, ‖ · ‖2) to (Rm, ‖ · ‖2), denoted by ‖ · ‖op. The smallest
positive singular value of A denoted by νA. This constraint
‖8∗ − 8̃

∗
‖op ≤ τ1 can be met by controlling the disturbance

level of the frame8 such that ‖8∗ − 8̃
∗
‖op is small enough.

Remark 3: Theorem 2 is our highlight that we first use
the 8-NSPq to deal with the reconstruction of the com-
pressed data separation with respect to perturbations on the
measurement matrix and the dictionary. From Theorem 2,
the condition that A satisfies the8-NSPq is only a necessary
condition, however, when D1, D2 are the canonical basis,
the 8-NSPq degenerates to the standard NSPq that is a nec-
essary and sufficient condition to robustly and stably recover
any (approximately) sparse signal.

The above statement can be summarized by the following
corollary.
Corollary 4: Let D1, D2 are the canonical basis. The

matrix Ã ∈ Rm×2n obeys the NSPq of order s with the null
space constant c (0 < c < 1) is a necessary and sufficient
condition to robustly and stably recover any (approximately)
sparse signal in the case of perturbations of the measurement
matrix and noise measurement. If the noise measurement
y = Af + z satisfies ‖Af − y‖2 ≤ ε, then any solution f̂
of the following optimization problem

min
f̄∈R2n

‖f̄ ‖qq s.t. ‖Ãf̄ − y‖2 ≤ ε

35846 VOLUME 6, 2018
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satisfies

‖f̂ − f ‖2 ≤ C ′1ε + C
′

2‖f − f [s]‖q + C
′

3‖A− Ã‖op,

where

C ′1 =
2

5νÃ

(
10

1− c

) 1
q

d
1
q−

1
2 , C ′2 =

1
5

(
5

1− c

) 1
q

,

C ′3 =
1+ 21/q−1/2

5νÃ

(
10

1− c

) 1
q

d
1
q−

1
2 ‖f ‖2.

Corollary 4 shows that NSPq, the minimal condition on Ã
for exact recovery for any sparse signal, is also sufficient for
robustness and stability via `q-minimization.

B. RECONSTRUCTION ERROR ESTIMATION WITH D-RIP
The other main result of this paper is obtained via 8̃-`q-split
analysis with perturbations under D-RIP, a natural property
on measurement matrix, analogous to the restricted isometry
property. The definition of D-RIP is as follows.
Definition 5 (D-RIP [29]): Let x ∈ Rd be approximately

s-sparse.D ∈ Rn×d is a matrix as the previous setting, if there
exists a constant 0 < δs < 1 for all s sparse vectors x ∈ Rd

such that

(1− δs)‖Dx‖22 ≤ ‖ADx‖
2
2 ≤ (1+ δs)‖Dx‖22,

then matrix A satisfies the restricted isometry property with
respect to D (D-RIP) of order s, the smallest constant δs is
referred to as the restricted isometry constant with respect to
D (D-RIC).

Given a deterministic matrix A, it is generally NP-hard,
however, to verify whether A is a D-RIP matrix. Fortunately,
some random matrices have been proved to satisfy D-RIP
with overwhelmingly high probability, such as Gaussian ran-
dom matrices, Bernoulli random matrices and partial Fourier
random matrices, etc.

Next, we introduce the concept of the mutual coherence to
provide a measurement of incoherence between the frames
D1 and D2, which can be used to measure the morphological
difference between components.
Definition 6 (Mutual Coherence [26]): Let D1 =

(d1i)1≤i≤d1 and D2 = (d2j)1≤j≤d2 . The mutual coherence of
D1 and D2 is defined as

µ = µ(D1;D2) = max
i,j
| < d1i,d2j > |.

We are now ready to state our second main result.
Theorem 7: Suppose that a tight frame 8 ∈ R2n×d satis-

fies 88∗ = I2n and that 8̃ ∈ R2n×d fulfils ‖8∗ − 8̃
∗
‖op ≤

τ2. Fix positive integers s, k with s < k. Moreover, suppose
that Ã obeys theD-RIPwith constant δ̃s+k and that theD-RIP
constant δ̃s+k and themutual coherenceµ betweenD1 andD2
jointly meets

δ̃s+k < W (s, µ, k, q) :=
2(1− α2)

2
− µ (s+ k)− 4α2

2(1− α2)2 − µ (s+ k)+ 4α2
.

If the noise measurement y = AD8∗f+z satisfies ‖AD8∗f−
y‖2 ≤ ε, then any solution f̂ of (I.4) satisfies

‖f̂ − f ‖2 ≤ C5ε + C6‖8
∗f − (8∗f )[s]‖q

+C7‖A− Ã‖op + C8,

where

τ2 = (
d
s
)
1
2−

1
q

√
V1
2V3

, α =
1
2
(
4s
k
)
1
q−

1
2 ,

and

C5 =
( ds )

1
2−

1
q
√

2V2
V3

τ2 − ‖8
∗
− 8̃

∗
‖op

, C6 =
(d/2)

1
2−

1
q

τ2 − ‖8
∗
− 8̃

∗
‖op

,

C7 =
( ds )

1
2−

1
q
√

V2
2V3
+

2
1
q−1

νA
+

2
1
q−1

νA
‖8∗ − 8̃

∗
‖op

τ2 − ‖8
∗
− 8̃

∗
‖op

,

C8 =
2

1
q−

1
2 ‖8∗ − 8̃

∗
‖op‖f ‖2

τ2 − ‖8
∗
− 8̃

∗
‖op

.

In addition, the constants Vi(i = 1, 2, 3) are quantified
in (B.9).

Proof: See Appendix B. �
Similarly, this constraint ‖8∗ − 8̃

∗
‖op ≤ τ2 also can be

achieved by bounding the disturbance level of the frame 8
such that ‖8∗ − 8̃

∗
‖op is small enough. There are plenty

of constants in Theorem 7. It is difficulty to understand the
whole statement for some readers. Therefore, we provide the
proper choice of parameters in the step 5 of the proof of
Theorem 7, which makes our results clearer.
Remark 8: Lin et al. have explored the compressed data

separation via `1-split analysis and `q-split analysis under
the D-RIP in literatures [26] and [12], respectively. Our
works share the `q-minimization method with [12]. From
[24, Th. 1], there is a close correlation among the perturba-
tion, the restricted isometry constants δ and δ̃ with respect A
and Ã, respectively. If more information on the perturbation
matrix is known, then it may be possible to estimate a smaller,
and more accurate value of D-RIC. In view of this, therefore,
there are essential differences between our works and [12],
so the perturbation should not be neglected.

In view of the common properties of Theorem 2 and
Theorem 7, we provide some remarks as follows:
Remark 9: By using the frame inequality, our results can

be easily extended to the general frames cases and because
there exists only a difference of constants in the proofs.
In Theorem 2 and Theorem 7, we assume 8 is a tight frame
(ρ1 = ρ2). This means that D1 and D2 are also tight frames.
It is helpful for simplifying the analysis, but is of course
not necessary because the assumption does not affect the
generalization of our theorems. Since the condition of the
theorem can be weakened, in this situation, our theory will
be more practical significance and applied values.
Remark 10: When D1 = D2 = I , 8-NSPq and D-RIP

will reduce to the standard NSPq and RIP, respectively.
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Algorithm 1 IRLS Algorithm for 8̃-`q-Minimization
Problem
1: Initialize f (0) such that Af (0) = y, and ε(0) = 1,

0 < q ≤ 1, λ.
2: Set t = 0.
3: repeat
4: Search f (t+1) by solving

f (t+1) =
{
8̃Diag

[
qλI(

(ε(t))2 + (8̃
∗

[i]f
(t))2

)1− q
2
,

i = 1, 2, · · · , d
]
8̃
∗
+ A∗A

}−1
A∗y.

5: Update ε(t+1) = 0.9ε(t).
6: Replace t with t + 1.
7: until Any of the following stopping criterions are

satisfied.
1) ‖f (t+1) − f (t)‖2 ≤ 1× 10−5;
2) t ≤ 100.

8: Output f (t+1) as the approximation to f 0.

Our results show that NSPq or RIP characterizes the exact
recovery of any sparse signal f = f 1 + f 2 from its noiseless
observation y = A(f 1 + f 2) via 8̃-`q-split analysis.
Remark 11: The above theorems offer the upper bound

estimation on reconstruction error, which clearly depicts
relationship among reconstruction error, the best s-term
approximation, noise level and q. Particularly, it shows
that the reconstruction speed is proportionally controlled
by the best s-term approximation, perturbation and noise
level. Obviously, with no perturbations on the measurement
matrix or the redundant tight frame, ‖f̂ − f ‖2 → 0 as
ε → 0, it therefore shows that any s-sparse signal can be
approximated arbitrarily well, especially, when ε = 0, f can
be exactly reconstructed.

III. NUMERICAL SIMULATIONS
In this section, we provide an efficient algorithm and a series
of numerical simulations to evaluate the performance of our
8̃-`q-minimization method.

A. AN IRLS ALGORITHM FOR 8̃-`q-MINIMIZATION
PROBLEM
In order to solve the 8̃-`q-minimization problem (I.4) with
0 < q ≤ 1, we first derive an efficient algorithm which can
be seen a natural extension of the iterative reweighted least
squares algorithm (IRLS) [30]. Similarly, the problem (I.4)
can be rewritten as the following unconstrained regularization
problem:

min
f̄∈R2n

‖8̃
∗
f̄ ‖qq,ε +

1
2λ
‖Af̄ − y‖22, (III.1)

Fig. 3.1. Parameters selection for 8̃-`q-minimization method. (a) for q
versus relative error with different values of εA. (b) for εA versus relative
error with different values of q.

where ε is a smoothing parameter, λ is a regularization

parameter and ‖8̃
∗
f̄ ‖qq,ε =

∑d
i=1

(
ε2 + (8̃

∗

[i] f̄ )
2
) q

2
. For

convenience, we let f 0 denote a critical point of (III.1) and
it satisfies the first-order optimality condition
d∑
i=1

q8̃[i]8̃
∗

[i](
ε2 + (8̃

∗

[i]f 0)2
)1− q

2
f 0 +

1
λ
A∗(Af 0 − y) = 0. (III.2)

Because of the nonlinearity of the above system, there is
no straightforward method to solve it. However, we can use
the iterative method to approximate the solution of prob-
lem (III.2), and the iterative process is as follows:

d∑
i=1

qλ8̃[i]8̃
∗

[i](
(ε(t))2 + (8̃

∗

[i]f
(t))2

)1− q
2
+ A∗A

 f (t+1) = A∗y,

the above method is summarized as Algorithm 1:

B. EXPERIMENTAL SETTINGS
Throughout the experiments, the measurement matrix A is
generated by creating anm×nGaussianmatrix withm = 128
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Fig. 3.2. Signal reconstruction via 8̃-`q-minimization method with
q = 0.5 and εA = 0.01. (a), (b) and (c) for the signal f and its constituents
f1, f2, respectively.

and n = 256, and the tight frames D1 and D2 are generated
by creating two n × d1 and n × d2 DCT dictionaries with
d1 = d2 = 512, respectively. The elements of perturbation
matrices E, E1 and E2 are subject to normal distribution,

moreover ‖E‖2 = εA‖A‖2, ‖E1‖2 = εD1‖D1‖2 and
‖E2‖2 = εD2‖D2‖2, where εA, εD1 and εD2 are perturbation
levels of the measurement matrix A and the redundant tight
frames D1, D2, respectively. As is shown in the conditions

‖8∗ − 8̃
∗
‖op < τ1 and ‖8∗ − 8̃

∗
‖op < τ2, the dictionary

8 is very sensitive to the perturbation, so we make ‖8∗ −
8̃
∗
‖op small enough by controlling εD1 and εD2 , meanwhile,

we keep the perturbation matrices E1 and E2 unchanged and
only consider the change of E in the experiment. We set
the value of the noise vector z obeying a Gaussian distribute
with mean 0 and deviation 0.05. The original signal f is
synthesized by using f = 8x where x ∈ Rd is a s-sparse
signal with d = 1024 and s = 30. The relative error between
the reconstructed signal f̂ and the original signal f is denoted
as ‖f̂ − f ‖2/‖f ‖2. We perform 100 times against each test
and report the average result.

C. EXPERIMENTAL RESULTS
Fig 3.1 presents the relationship between the q, the pertur-
bation level, and the relative error of signal reconstruction.
The results show that the smaller the perturbation, the better
the reconstruction effect of the signal. Moreover, the recon-
struction effect is the best when q is around 0.5, and the
reconstruction effect is the worst when q = 1. An instance
is also presented in Fig 3.2, which carves the recovery of the
signal f and its constituents f1, f2 via 8̃-`q-minimization
method with q = 0.5 and εA = 0.01. The results show that
8̃-`q-minimizationmethod can almost accurately reconstruct
the original signal.

IV. CONCLUSION
This paper mainly investigates 8̃-`q-split analysis
(0 < q ≤ 1) to recover the general signal based on the mea-
surement matrix and the redundant tight frames with per-
turbations. The sufficient conditions 8-NSPq and D-RIP for
the robust and stable reconstruction of the original signal are
established, and the estimations of upper bound on error are
obtained. The derived results show that the upper bound of the
error is mainly controlled by q, the best s-term approximation,
‖8∗ − 8̃

∗
‖op and ‖A − Ã‖op. In addition, a series of exper-

iments are conducted to test 8̃-`q-minimization method.
The simulation results show that 8̃-`q-minimization method
has the ideal reconstruction effect. Our works are helpful
in understanding and development of the compression data
separation.

APPENDIX A
PROOF OF THEOREM 2
In order to improve the readability of theorem proving, we ini-
tially review some inequalities used repeatedly in this paper
as follows:
1) The triangle inequality:

‖x+ y‖ ≤ ‖x‖ + ‖y‖, ∀x, y ∈ Rn.

2) The reverse triangle inequality:

‖x‖ − ‖y‖ ≤ ‖x− y‖, ∀x, y ∈ Rn.
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3) The frame inequality:

ρ1‖f ‖ ≤ ‖8∗f ‖ ≤ ρ2‖f ‖, 0 < ρ1 ≤ ρ2, ∀f ∈ Rd .

4) The quasi-norm inequality:

‖x‖p ≤ n
1
p−

1
q ‖x‖q ≤ ‖x‖q ≤ n

1
q−

1
p ‖x‖p,

0 < q ≤ p ≤ ∞, ∀x ∈ Rn.

Two special cases of quasi-norm inequality:
4.1) ‖x‖q1 ≤ ‖x‖

q
q, 0 < q ≤ 1.

⇔

(
n∑
i=1
|xi|
)q
≤

n∑
i=1
|xi|q, 0 < q ≤ 1.

4.2) ‖x‖t1 ≤ n
t−1
‖x‖tt , t ≥ 1.

⇔

(
n∑
i=1
|xi|
)t
≤ nt−1

n∑
i=1
|xi|t , t ≥ 1.

The following lemma provides a useful property deriving
from the singular value decomposition.
Lemma 12 [10]: SupposeM is an m× n (m ≤ n) matrix,

then any vector ξ ∈ Rn can be decomposed as ξ = γ + η

with γ ∈ kerM , η⊥ kerM and ‖η‖ ≤ 1
νM
‖Mξ‖, where νM

is the smallest positive singular value ofM .
With these preparations we embark on the proof of

Theorem 2.
Proof:

Step 1 (Estimation of the Perturbations): It is known that,
‖AD8∗f − y‖2 ≤ ε is valid. But ‖ÃD8∗f − y‖2 is not
necessarily less than ε because Ã is a perturbation of A.
Moreover, because Ã is a full rank matrix, so there are some
ws for each f such that ÃD8∗(w + f ) = AD8∗f , that is
ÃD8∗w = (A − Ã)D8∗f , which means ‖ÃD8∗(w + f ) −
y‖2 ≤ ε is feasible. Moreover, among all w which satisfy
this equation, there exists a unique vector of minimal `2 norm
with w⊥ ker(ÃD8∗). Thus, by Lemma 12, we have

‖w‖2 ≤
1
νA
‖Aw‖2 =

1
νA
‖(A− Ã)D8∗f ‖2. (A.1)

Since 8 is a tight frame, using the frame inequality with
ρ2 = 1, we get ‖8∗w‖2 ≤ ‖w‖2, and hence

‖8̃
∗
w‖qq

(a)
≤ ‖8∗w− 8̃

∗
w‖qq + ‖8

∗w‖qq
(b)
≤

(
d

1
q−

1
2 ‖8∗w− 8̃

∗
w‖2

)q
+

(
d

1
q−

1
2 ‖8∗w‖2

)q
(c)
≤ d1−

q
2 ‖8∗ − 8̃

∗
‖
q
op‖w‖

q
2 + d

1− q
2 ‖w‖q2

= d1−
q
2 ‖w‖q2

(
‖8∗ − 8̃

∗
‖
q
op + 1

)
, (A.2)

where (a) follows from the triangle inequality, and (b) is due
to the quasi-norm inequality. Notice that in (c), the operator
norm of an m × n matrix as a mapping from (Rn, ‖ · ‖2) to
(Rm, ‖ · ‖2), denoted by ‖ · ‖op. Thus

‖(8∗ − 8̃
∗
)w‖2 ≤ ‖8∗ − 8̃

∗
‖op‖w‖2

is an immediate consequence of the definition of operator
norm.2

2Wedefine the operator norm ofQ ∈ Rm×n as: ‖Q‖op := sup{‖Qv‖/‖v‖ :
v ∈ Rn with v 6= 0}

Taking the qth root of (A.2) and using the special case 4.2)
of quasi-norm inequality, we have

‖8̃
∗
w‖q ≤ (2d)

1
q−

1
2 ‖w‖2

(
‖8∗ − 8̃

∗
‖op + 1

)
.

By (A.1), we have

‖8̃
∗
w‖q ≤

(2d)
1
q−

1
2

νA

(
‖8∗−8̃

∗
‖op + 1

)
‖(A− Ã)D8∗f ‖2.

(A.3)

Step 2 (Consequence of the Minimizer): Since both f̂ and
f + w are feasible, but f̂ is a minimum solution of (I.4),
we have

‖8̃
∗
f̂ ‖qq ≤ ‖8̃

∗
(f + w)‖qq

= ‖8̃
∗

T f + 8̃
∗

Tw‖
q
q + ‖8̃

∗

T c f + 8̃
∗

T cw‖
q
q. (A.4)

Moreover, let h = f̂ − f where f̂ is the optimal solution
of (I.4) and f is the original signal, we have

‖8̃
∗
f̂ ‖qq = ‖8̃

∗
(h+ f )‖qq

= ‖8̃
∗

Th+ 8̃
∗

T f ‖
q
q + ‖8̃

∗

T ch+ 8̃
∗

T c f ‖
q
q

≥ ‖8̃
∗

T f + 8̃
∗

Tw‖
q
q − ‖8̃

∗

Th− 8̃
∗

Tw‖
q
q

+‖8̃
∗

T ch‖
q
q − ‖8̃

∗

T c f ‖
q
q, (A.5)

here, the last inequality holds because of the reverse triangle
inequality.

Combining (A.4) with (A.5), yields

‖8̃
∗

T ch‖
q
q ≤ ‖8̃

∗

Th‖
q
q + 2‖8̃

∗

T c f ‖
q
q + ‖8̃

∗
w‖qq. (A.6)

Adding the term ‖8∗T ch‖
q
q to both sides of (A.6), we get

‖8∗T ch‖
q
q + ‖8̃

∗

T ch‖
q
q ≤ ‖8

∗
T ch‖

q
q + ‖8̃

∗

Th‖
q
q + 2‖8̃

∗

T c f ‖
q
q

+‖8̃
∗
w‖qq + ‖8

∗
Th‖

q
q − ‖8

∗
Th‖

q
q.

By rewriting the above inequality, we obtain

‖8∗T ch‖
q
q

≤ ‖8∗Th‖
q
q +

(
‖8̃
∗

Th‖
q
q − ‖8

∗
Th‖

q
q

)
+ 2‖8̃

∗

T c f ‖
q
q

+

(
‖8∗T ch‖

q
q − ‖8̃

∗

T ch‖
q
q

)
+ ‖8̃

∗
w‖qq

≤ ‖8∗Th‖
q
q + ‖8

∗
Th− 8̃

∗

Th‖
q
q + 2‖8̃

∗

T c f ‖
q
q

+‖8∗T ch− 8̃
∗

T ch‖
q
q + ‖8̃

∗
w‖qq

= ‖8∗Th‖
q
q + ‖8

∗h− 8̃
∗
h‖qq + 2‖8̃

∗

T c f ‖
q
q + ‖8̃

∗
w‖qq,

(A.7)

where the second inequality utilizes the reverse triangle
inequality again.
Step 3 (Consequence of8-NSPq):Utilizing the assumption

thatA satisfies the8-NSPq, T is a index set with |T | ≤ s, and
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we decompose h as h = γ + η with γ ∈ kerA and η⊥ kerA,
we get

‖8∗Th‖
q
q

(a)
≤ ‖8∗T γ ‖

q
q + ‖8

∗
T η‖

q
q

(b)
≤ c‖8∗T cγ ‖

q
q + ‖8

∗
T η‖

q
q

≤ c‖8∗T ch‖
q
q + ‖8

∗η‖qq, (A.8)

where, according to the triangle inequality, (a) is definitely
true; while (b) holds since by definition of8-NSPq with null
space constant c.
Step 4 (Estimation of ‖8∗η‖q): Since 8 is a tight frame

with ρ2 = 1, we easily obtain

‖8∗η‖q ≤ d
1
q−

1
2 ‖8∗η‖2 ≤ d

1
q−

1
2 ‖η‖2.

On account of η⊥ kerA, by Lemma 12, we have

‖η‖2 ≤
1
νA
‖Ah‖2 =

1
νA
‖ÃD8∗(f̂ − f )‖2.

Note that

‖ÃD8∗(f̂ − f )‖2
= ‖ÃD8∗ f̂ − y+ y− AD8∗f + AD8∗f − ÃD8∗f ‖2
≤ ‖ÃD8∗ f̂−y‖2 + ‖y−AD8∗f ‖2 + ‖AD8∗f−ÃD8∗f ‖2
≤ 2ε + ‖(A− Ã)D8∗f ‖2,

that is because ‖y−AD8∗f ‖2 ≤ ε follows from the assump-
tion of Theorem 2; and because f̂ is the optimal solution
of (I.4), f̂ satisfies the constraint condition of (I.4), that is,
‖y− ÃD8∗ f̂ ‖2 ≤ ε.

Thus, we have

‖η‖2 ≤
1
νA

{
2ε + ‖(A− Ã)D8∗f ‖2

}
.

So, the following holds

‖8∗η‖q ≤
d

1
q−

1
2

νA

{
2ε + ‖(A− Ã)D8∗f ‖2

}
. (A.9)

Step 5 (Estimation of ‖8̃
∗

T c f ‖
q
q):

‖8̃
∗

T c f ‖
q
q

(a)
≤ ‖8̃

∗

T c f ‖
q
q + ‖8

∗
T f − 8̃

∗

T f ‖
q
q

=

(
‖8̃
∗

T c f ‖
q
q − ‖8

∗
T c f ‖

q
q

)
+ ‖8∗T f − 8̃

∗

T f ‖
q
q + ‖8

∗
T c f ‖

q
q

(b)
≤ ‖8∗T c f − 8̃

∗

T c f ‖
q
q + ‖8

∗
T f − 8̃

∗

T f ‖
q
q + ‖8

∗
T c f ‖

q
q

= ‖8∗f − 8̃
∗
f ‖qq + ‖8

∗
T c f ‖

q
q, (A.10)

where (a) is founded on the non-negativity of quasi-norm, that
is, ‖8∗T f − 8̃

∗

T f ‖
q
q ≥ 0, and (b) holds because of the reverse

triangle inequality.
Step 6 (Bounding the Error): Based on the fact that 8 is

a tight frame with ρ1 = 1 and the quasi-norm inequality,
we have

‖h‖2 ≤ ‖8∗h‖2 ≤ ‖8∗h‖q.

In order to get bounds on ‖h‖2, we are first ready to estimate
‖8∗h‖q.
By (A.7), it is easy to see that

‖8∗h‖q

=

(
‖8∗Th‖

q
q + ‖8

∗
T ch‖

q
q

) 1
q

≤

(
2‖8∗Th‖

q
q+‖8

∗h− 8̃
∗
h‖qq + 2‖8̃

∗

T c f ‖
q
q + ‖8̃

∗
w‖qq

) 1
q
.

On the other hand, associating with (A.7) and (A.8), we get

‖8∗Th‖
q
q ≤

c
1− c

‖8∗h− 8̃
∗
h‖qq +

2c
1− c

‖8̃
∗

T c f ‖
q
q

+
c

1− c
‖8̃
∗
w‖qq +

1
1− c

‖8∗η‖qq.

Hence

‖h‖2 ≤
(
1+ c
1− c

‖8∗h− 8̃
∗
h‖qq +

2+ 2c
1− c

‖8̃
∗

T c f ‖
q
q

+
1+ c
1− c

‖8̃
∗
w‖qq +

2
1− c

‖8∗η‖qq

) 1
q

.

Substituting (A.10) into the above inequality, we have

‖h‖2

≤

(
1+ c
1− c

‖8∗h− 8̃
∗
h‖qq +

2+ 2c
1− c

‖8∗f − 8̃
∗
f ‖qq

+
2+ 2c
1− c

‖8∗T c f ‖
q
q +

1+ c
1− c

‖8̃
∗
w‖qq +

2
1− c

‖8∗η‖qq

) 1
q

≤ 5
1
q−1

{(
1+ c
1− c

) 1
q (
‖8∗h− 8̃

∗
h‖q + ‖8̃

∗
w‖q

)
+

(
2+ 2c
1− c

) 1
q (
‖8∗f − 8̃

∗
f ‖q + ‖8∗T c f ‖q

)
+

(
2

1− c

) 1
q

‖8∗η‖q

}
.

In particular, since 1
q > 1, so the second inequality

takes advantage of the special case 4.2) of the quasi-norm
inequality.

Then plugging (A.3) and (A.9) to the above inequality,
we obtain{

1−
1
5

(
10

1− c

) 1
q

d
1
q−

1
2 ‖8∗ − 8̃

∗
‖op

}
‖h‖2

≤
2

5νA

(
10

1− c

) 1
q

d
1
q−

1
2 ε +

1
5

(
20

1− c

) 1
q

‖8∗T c f ‖q

+

{
1

5νA

(
10

1− c

) 1
q

d
1
q−

1
2 ‖D8∗f ‖2

(
1+ 2

1
q−

1
2

+2
1
q−

1
2 ‖8∗ − 8̃

∗
‖op

)}
‖A− Ã‖op

+
1
5

(
20

1− c

) 1
q

d
1
q−

1
2 ‖8∗ − 8̃

∗
‖op‖f ‖2.
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Here, just like (A.2), we use the operator inequality for
operators (A− Ã) and (8∗ − 8̃

∗
), respectively.

Let

τ1 = 5
(
1− c
10

) 1
q

d
1
2−

1
q ,

by controlling the disturbance level of the frame 8 such that
‖8∗ − 8̃

∗
‖op < τ1, then

1−
1
5

(
10

1− c

) 1
q

d
1
q−

1
2 ‖8∗ − 8̃

∗
‖op

= 1−
1
τ1
‖8∗ − 8̃

∗
‖op > 0.

Therefore

‖h‖2 ≤ C1ε + C2‖8
∗
T c f ‖q + C3‖A− Ã‖op + C4,

where

C1 =
2

νA

(
τ1−‖8

∗
− 8̃

∗
‖op

) , C2 =
2

1
q d

1
2−

1
q

τ1−‖8
∗
− 8̃

∗
‖op

,

C3 =

(
1+ 2

1
q−

1
2 + 2

1
q−

1
2 ‖8∗ − 8̃

∗
‖op

)
‖D8∗f ‖2

νA

(
τ1 − ‖8

∗
− 8̃

∗
‖op

) ,

C4 =
2

1
q ‖8∗ − 8̃

∗
‖op‖f ‖2

τ1 − ‖8
∗
− 8̃

∗
‖op

,

and ‖8∗T c f ‖q is the best s-term `q approximation error,
denoted by ‖8∗f − (8∗f )[s]‖q. Obviously, Ci (i = 1, 2, 3, 4)
is positive because of ‖8∗ − 8̃

∗
‖op < τ1.

So far, the proof of theorem 2 is completed. �

APPENDIX B
PROOF OF THEOREM 7
Let T be the indices of entries with s largest magnitudes in the
vector 8̃

*
f , and denote the complement of T by T c. Setting

T0 = T , we decompose T c0 into r sets of size k (to be chosen
later) where T1 corresponds to the locations of the k largest
entries in 8̃

∗

T c f , T2 to the next k largest entries and so on.
Finally, we let T01 = T0

⋃
T1 and h = f̂ − f where f̂ is the

optimal solution of (I.4) and f is the original signal.
We now begin the proof of Theorem 7.
Proof:

Step 1 (Bounding the Tail of 8∗f ): By construction of
the Tj, we have that each coefficient of 8̃

∗

Tj+1h, written

|8̃
∗

Tj+1h|(i), is at most the average of those on Tj:

|8̃
∗

Tj+1h|(i) ≤ ‖8̃
∗

Tjh‖1/k,

squaring these terms and summing, and then taking the square
root yields

‖8̃
∗

Tj+1h‖2 ≤ ‖8̃
∗

Tjh‖1/
√
k ≤ k

1
2−

1
q ‖8̃

∗

Tjh‖q,

that is, ∑
j≥2

‖8̃
∗

Tjh‖2 ≤
∑
j≥1

k
1
2−

1
q ‖8̃

∗

Tjh‖q,

so ∑
j≥2

‖8̃
∗

Tjh‖
q
2 ≤ k

q
2−1

∑
j≥1

‖8̃
∗

Tjh‖
q
q = k

q
2−1‖8̃

∗

T ch‖
q
q.

(B.1)

Moreover

∑
j≥2

‖8∗Tjh− 8̃
∗

Tjh‖
q
2 =

∑
j≥2

‖8∗Tjh− 8̃
∗

Tjh‖
q
2

 2
q ·

q
2

≤

r 2
q−1

∑
j≥2

‖8∗Tjh− 8̃
∗

Tjh‖
2
2


q
2

= r1−
q
2 ‖8∗T c01

h− 8̃
∗

T c01
h‖q2, (B.2)

where the second inequality is due to the special case 4.2) of
quasi-norm inequality with r = d−s

k .
Combining (B.1) with (B.2), and utilizing the triangle

inequality, we have∑
j≥2

‖8∗Tjh‖
q
2 ≤

∑
j≥2

(
‖8∗Tjh− 8̃

∗

Tjh‖2 + ‖8̃
∗

Tjh‖2
)q

(a)
≤

∑
j≥2

‖8∗Tjh− 8̃
∗

Tjh‖
q
2 +

∑
j≥2

‖8̃
∗

Tjh‖
q
2

(b)
≤ r1−

q
2 ‖8∗T c01

h− 8̃
∗

T c01
h‖q2

+ k
q
2−1

(
‖8̃
∗

Th‖
q
q+2‖8̃

∗

T c f ‖
q
q + ‖8̃

∗
w‖qq

)
,

where (a) holds because of the special case 4.1) of quasi-norm
inequality, and (b) uses the result of (A.6).

Taking the qth root of both sides for the above inequality,
we get

∑
j≥2

‖8∗Tjh‖2 ≤

∑
j≥2

‖8∗Tjh‖
q
2

 1
q

≤ 4
1
q−1

{
r
1
q−

1
2 ‖8∗T c01

h− 8̃
∗

T c01
h‖

2
+ k

1
2−

1
q

×

(
‖8̃
∗

Th‖q+2‖8̃
∗

T c f ‖q+‖8̃
∗
w‖q

)}
,

where, the last inequality follows from the special case 4.2)
of quasi-norm inequality. There is already the upper bound of

‖8̃
∗
w‖q as (A.3), so we next give a upper bound on ‖8̃

∗

Th‖q

and ‖8̃
∗

T c f ‖q, respectively.
By the quasi-norm inequality and the triangle inequality,

it is not hard to check that

‖8̃
∗

Th‖q ≤ s
1
q−

1
2 ‖8̃

∗

Th‖2

≤ s
1
q−

1
2
(
‖8̃
∗

Th−8
∗
Th‖2 + ‖8

∗
Th‖2

)
, (B.3)
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and by (A.10), we have

‖8̃
∗

T c f ‖q ≤ 2
1
q−1

(
‖8∗f − 8̃

∗
f ‖q + ‖8∗T c f ‖q

)
≤ 2

1
q−1

(
d

1
q−

1
2 ‖8∗f − 8̃

∗
f ‖2 + ‖8∗T c f ‖q

)
≤ 2

1
q−1

(
d

1
q−

1
2 ‖8∗ − 8̃

∗
‖op‖f ‖2 + ‖8∗T c f ‖q

)
.

(B.4)

Note in particular that r = d−s
k ≈

d
k is suitable by the

partition of T c0 . Hence, by (A.3), (B.3) and (B.4), we obtain∑
j≥2

‖8∗Tjh‖2

≤ 4
1
q−1

( s
k

) 1
q−

1
2
{
‖8∗Th− 8̃

∗

Th‖2

+

(
d
s

) 1
q−

1
2

‖8∗T c01
h− 8̃

∗

T c01
h‖

2
+ ‖8∗Th‖2

+ 2
1
q

(
d
s

) 1
q−

1
2

‖8∗ − 8̃
∗
‖op‖f ‖2 + 2

1
q s

1
2−

1
q ‖8∗T c f ‖q

+
(2d/s)

1
q−

1
2

νA

(
‖8∗−8̃

∗
‖op+1

)
‖A− Ã‖op‖D8

∗f ‖2

}
.

Moreover, and based on the fact that
( d
s

) 1
q−

1
2 ≥ 1 (due to

d ≥ s and 0 < q ≤ 1), we have

‖8∗Th− 8̃
∗

Th‖2 +
(
d
s

) 1
q−

1
2

‖8∗T c01
h− 8̃

∗

T c01
h‖2

≤

(
d
s

) 1
q−

1
2 (
‖8∗Th− 8̃

∗

Th‖2 + ‖8
∗

T c01
h− 8̃

∗

T c01
h‖2

)
(a)
≤

(
d
s

) 1
q−

1
2
{
2
(
‖8∗Th− 8̃

∗

Th‖
2
2 + ‖8

∗

T c01
h− 8̃

∗

T c01
h‖22

)}1
2

=
√
2
(
d
s

) 1
q−

1
2

‖8∗h− 8̃
∗
h‖2,

where (a) is from the special case 4.2) of quasi-norm
inequality.

Thus ∑
j≥2

‖8∗Tjh‖2 ≤ α(‖8
∗
Th‖2 + β), (B.5)

where

α =
1
2

(
4s
k

) 1
q−

1
2

,

β =
√
2
(
d
s

) 1
q−

1
2

‖8∗ − 8̃
∗
‖op‖h‖2

+ 2
1
q

(
d
s

) 1
q−

1
2

‖8∗ − 8̃
∗
‖op‖f ‖2 + 2

1
q s

1
2−

1
q ‖8∗T c f ‖q

+
(2d/s)

1
q−

1
2

νA

(
‖8∗ − 8̃

∗
‖op + 1

)
‖(A− Ã)D8∗f ‖2.

Step 2 (Consequence of D-RIP): Since Ã satisfies the
D-RIP, by (B.5) and the fact that ‖D‖2 =

√
λmax(DD∗) =√

λmax(2I) =
√
2, we have

2ε + ‖(A− Ã)D8∗f ‖2

≥ ‖ÃD8∗h‖2 ≥ ‖ÃD8∗T01h‖2 −
∑
j≥2

‖ÃD8∗Tjh‖2

≥

√
1− δ̃s+k‖D8∗T01h‖2 −

√
1+ δ̃k

∑
j≥2

‖D8∗Tjh‖2

≥

√
1− δ̃s+k‖D8∗T01h‖2 − α

√
2(1+ δ̃k )(‖8∗Th‖2 + β)

≥

√
1− δ̃s+k‖D8∗T01h‖2 − α

√
2(1+ δ̃k )(‖h‖2 + β).

Thus

‖D8∗T01h‖
2
2 ≤

1

1− δ̃s+k

{
2ε + ‖(A− Ã)D8∗f ‖2

+α

√
2(1+ δ̃k )(‖h‖2 + β)

}2
. (B.6)

Step 3 (Consequence of the Mutual Coherence): The fol-
lowing average inequality plays an important role and is
employed repeatedly in our proof.
Lemma 13 [7]: For any values a, b, and t > 0, we have

2ab ≤ ta2 +
b2

t
.

We next set T 1
= T ∩ {1, 2, · · · , d1},T 2

= {j − d1|j ∈
T \T 1

} and denote components of h corresponding toD1 and
D2 by h1 and h2, respectively. By applying Lemma 13 with
t1 (to be chosen later), we have

‖8∗T01h‖
2
2 = ‖D

∗

1T 1
01
h1‖22 + ‖D

∗

2T 2
01
h2‖22

= < h1,D1D∗1T 1
01
h1 > + < h2,D2D∗2T 2

01
h2 >

(a)
≤ ‖h1‖2‖D1D∗1T 1

01
h1‖2 + ‖h2‖2‖D2D∗2T 2

01
h2‖2

≤
t1‖h1‖22

2
+

‖D1D∗1T 1
01
h1‖22

2t1

+
t1‖h2‖22

2
+

‖D2D∗2T 2
01
h2‖22

2t1
, (B.7)

here, (a) is by the triangular inequality.
We adopt the mutual coherence of D1 and D2, analo-

gous to the method in [26], to estimate ‖D1D∗1T 1
01
h1‖22 +

‖D2D∗2T 2
01
h2‖22. Here, in order to avoid repeatedwork, we give

the result directly as follows:

‖D1D∗1T 1
01
h1‖22 + ‖D2D∗2T 2

01
h2‖22

≤
µ(s+ k)‖h‖22

2
+ ‖D8∗T01h‖

2
2. (B.8)
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Combining (B.6) with (B.7) and (B.8) yields

‖8∗T01h‖
2
2 ≤

t1
2
‖h‖22 +

1
2t1

{
µ(s+ k)‖h‖22

2

+
1

1− δ̃s+k

(
2ε + ‖(A− Ã)D8∗f ‖2

+α

√
2(1+ δ̃k )(‖h‖2 + β)

)2}
.

Step 4 (Bounding the Error): Since 8 is a tight frame,
we have

‖h‖22 = ‖8
∗h‖22 = ‖8

∗
T01h‖

2
2 + ‖8

∗

T c01
h‖22,

and

‖8∗T c01
h‖22 ≤

∑
j≥2

‖8∗Tjh‖2

2

≤ α2(‖8∗Th‖2 + β)
2

≤ α2(‖h‖2 + β)2

= α2‖h‖22+2α
2β‖h‖2+α2β2.

Thus, by some simple calculations, we can show that

‖h‖22

≤

{
t1
2
+
µ(s+ k)

4t1
+
α2(1+ δ̃k )

t1(1− δ̃s+k )
+ α2

}
‖h‖22

+

{
2ε+‖(A− Ã)D8∗f ‖2

}2
2t1(1− δ̃s+k )

+

{
α2(1+ δ̃k )

t1(1− δ̃s+k )
+ α2

}
β2

+
α

√
2(1+ δ̃k )

2t1(1− δ̃s+k )
· 2
{
2ε + ‖(A− Ã)D8∗f ‖2

}
β

+
α

√
2(1+ δ̃k )

t1(1− δ̃s+k )
· 2
{
2ε + ‖(A− Ã)D8∗f ‖2

}
‖h‖2

+

{
α2(1+ δ̃k )

t1(1− δ̃s+k )
+ α2

}
· 2β‖h‖2.

Utilizing Lemma 13 to the latter three terms of the above
inequality (with constants t2, t3 to be chosen later), we have

‖h‖22

≤

{
t1
2
+
µ(s+ k)

4t1
+
α2(1+ δ̃k )

t1(1− δ̃s+k )
+ α2

}
‖h‖22

+

{
2ε + ‖(A− Ã)D8∗f ‖2

}2
2t1(1− δ̃s+k )

+

{
α2(1+ δ̃k )

t1(1− δ̃s+k )
+α2

}
β2

+
α

√
2(1+ δ̃k )

2t1(1− δ̃s+k )

{(
2ε + ‖(A− Ã)D8∗f ‖2

)2
+ β2

}

+
α

√
2(1+ δ̃k )

2t1(1− δ̃s+k )


(
2ε+‖(A− Ã)D8∗f ‖2

)2
t2

+t2‖h‖22


+

{
α2(1+ δ̃k )

t1(1− δ̃s+k )
+ α2

}(
β2

t3
+ t3‖h‖22

)
.

Simplifying, this yields

V1‖h‖22 ≤ V2
{
2ε + ‖(A− Ã)D8∗f ‖2

}2
+ V3β2,

where

V1 = 1−
t1
2
−
µ(s+ k)

4t1
−
α2(1+ δ̃k )

t1(1− δ̃s+k )
− α2

−
t2α
√
2(1+ δ̃k )

2t1(1− δ̃s+k )
−
t3α2(1+ δ̃k )

t1(1− δ̃s+k )
− t3α2,

V2 =
1

2t1(1− δ̃s+k )
+
α

√
2(1+ δ̃k )

2t1(1− δ̃s+k )
+

α

√
2(1+ δ̃k )

2t1t2(1− δ̃s+k )
,

V3 =
α2(1+ δ̃k )

t1(1− δ̃s+k )
+ α2 +

α

√
2(1+ δ̃k )

2t1(1− δ̃s+k )

+
α2(1+ δ̃k )

t1t3(1− δ̃s+k )
+
α2

t3
. (B.9)

Assuming V1 > 0 (to be analyzed later), we obtain

‖h‖2 ≤

√
V2
V1

{
2ε + ‖(A− Ã)D8∗f ‖2

}
+

√
V3
V1
β.

Introducing the expression of β and arranging yields{
1−

(
d
s

) 1
q−

1
2

√
2V3
V1
‖8∗ − 8̃

∗
‖op

}
‖h‖2

≤ 2

√
V2
V1
ε + 2

1
q s

1
2−

1
q

√
V3
V1
‖8∗T c f ‖q

+

{√
V2
V1
+

(2d/s)
1
q−

1
2

νA

√
V3
V1

+
(2d/s)

1
q−

1
2

νA

√
V3
V1
‖8∗ − 8̃

∗
‖op

}
‖D8∗f ‖2‖A− Ã‖op

+ 2
1
q

(
d
s

) 1
q−

1
2

√
V3
V1
‖8∗ − 8̃

∗
‖op‖f ‖2.

Let

τ2 =

(
d
s

) 1
2−

1
q

√
V1
2V3

,

by controlling the disturbance level of the frame 8 such that
‖8∗ − 8̃

∗
‖op < τ2, then

1−
(
d
s

) 1
q−

1
2

√
2V3
V1
‖8∗−8̃

∗
‖op

= 1−
1
τ2
‖8∗ − 8̃

∗
‖op > 0.

Therefore

‖h‖2 ≤ C5ε + C6‖8
∗
T c f ‖q + C7‖A− Ã‖op + C8,
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where

C5 =

( d
s

) 1
2−

1
q
√

2V2
V3

τ2 − ‖8
∗
− 8̃

∗
‖op

, C6 =
(d/2)

1
2−

1
q

τ2 − ‖8
∗
− 8̃

∗
‖op

,

C7 =

( d
s

) 1
2−

1
q
√

V2
2V3
+

2
1
q−1

νA
+

2
1
q−1

νA
‖8∗ − 8̃

∗
‖op

τ2 − ‖8
∗
− 8̃

∗
‖op

,

C8 =
2

1
q−

1
2 ‖8∗ − 8̃

∗
‖op‖f ‖2

τ2 − ‖8
∗
− 8̃

∗
‖op

.

Obviously, Ci (i = 5, 6, 7, 8) is positive because of

‖8∗ − 8̃
∗
‖op < τ2.

Step 5 (The Choice of the Parameters): Now we need
to choose parameters to make sure that our hypothesis
V1 > 0 is valid. There are many parameters, i.e., s, µ, k , q,
δ̃k , δ̃s+k , t1, t2, t3, in the expression of V1 (α = 1

2 (
4s
k )

1
q−

1
2 is

a function of s, k and q). It seems to cause trouble for our
analysis. But we notice that the sparsity s and the mutual
coherence µ can be small (the latter from Example II.1
in [26]). Moreover, V1(t1, t2, t3) decreases as t2, t3 increase.
Hence, we take t2, t3 arbitrarily small, i.e., t2, t3 → 0+, then
V1(t1, t2, t3) degenerates to

V1(t1) = 1−
t1
2
−
µ(s+ k)

4t1
−
α2(1+ δ̃k )

t1(1− δ̃s+k )
− α2.

Thus, let t1 take the maximum point of V1(t1), namely,

t1 =
{
µ(s+k)

2 +
2α2(1+δ̃k )
1−δ̃s+k

} 1
2
. The remaining parameters are

constrained to

1− α2 −

{
µ(s+ k)

2
+

2α2(1+ δ̃k )

1− δ̃s+k

} 1
2

> 0, (B.10)

such that V1 > 0. Further mathematical deriva-
tion shows that (B.10) is equivalent to the following
constraint

δ̃s+k < W (s, µ, k, q) :=
2(1− α2)

2
− µ (s+ k)− 4α2

2(1− α2)2 − µ (s+ k)+ 4α2
.

Specifically, we provide the choice of the parameters in the
following four cases (but not all).

• Case 1: When k = 4s, α = 1
2 and W (s, µ, k, q) reduces

to W (s, µ) = 1−40µs
17−40µs . If µs <

1
40 and µs → 0, then

δ̃5s < W (s, µ)→ 1
17 ≈ 0.059.

• Case 2: when k = 8s and q = 1, α =
√
2
4 and

W (s, µ, k, q) reduces to W (s, µ) = 33−288µs
65−288µs . If µs <

11
96 and µs→ 0, then δ̃9s < W (s, µ)→ 33

65 ≈ 0.508.

• Case 3: when k = 8s and q = 1
2 , α =

√
2
8 and

W (s, µ, k, q) reduces toW (s, µ) = 1794−9216µs
2050−9216µs . Ifµs <

299
1536 and µs→ 0, then δ̃9s < W (s, µ)→ 897

1025 ≈ 0.875.

• Case 4: when k = 8s and q → 0, α → 0 and
W (s, µ, k, q) reduces to W (s, µ, q), then

δ̃9s < W (s, µ, q)

=

2
{
1−

(
1
2

) 2
q+1

}2
− 9µs− ( 12 )

2
q−1

2
{
1− ( 12 )

2
q+1

}2
− 9µs+ ( 12 )

2
q−1
→ 1.

Up to now, this completes the proof of Theorem 7. �
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