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ABSTRACT Joint blind source separation (J-BSS) has emerged as a data-driven technique for multi-set data
fusion applications. In this paper, we propose a Jacobi generalized orthogonal joint diagonalization (GOJD)
algorithm for J-BSS of multiset signals. By the use of second-order statistics, we can obtain multiple sets
of auto-covariance and cross-covariance matrices from the multi-set signals, which together admit a GOJD
formulation. For computing the GOJD, we propose a computationally efficient Jacobi algorithm, which uses
a sequence of Givens rotations to simultaneously diagonalize the covariance matrices. In comparison with
other GOJD algorithms, the proposed algorithm is shown to have fast convergence. Moreover, as the optimal
Givens rotation matrix in each update is calculated in closed-form, this algorithm is computationally very
efficient. In the application aspect, we have considered the scenario where different data sets in J-BSS may
have different number of sources, among which there exist both similar components that are consistently
present in multiple data sets, and diverse components that are uniquely present in each data set. We have
shown how J-BSS based on the proposed GOJD algorithm can effectively extract both similar and diverse
source components. Simulation results are given to show the nice performance of the proposed algorithm,
with regards to both speed and accuracy, in comparison with other algorithms of similar type.

INDEX TERMS Joint blind source separation, joint diagonalization, Jacobi, Givens rotation.

I. INTRODUCTION
Recently, joint blind source separation (J-BSS) for multi-set
data fusion has attracted much attention in a large variety
of applications such as joint EEG-fMRI processing [1], [2],
multi-subject fMRI data analysis [3]–[5], speech and array
processing [6], [7], etc. In all these applications, the acquired
multiple datasets have some inherent similarity, i.e. there exist
similar source components that are consistently present in
distinct datasets. There may also be a diversity for distinct
datasets in J-BSS, i.e. each dataset may have its own spe-
cific property or component that other datasets do not have.
As such, the goal of J-BSS is to jointly identify the multi-
set source components and loading matrices by exploiting the
similarity between distinct datasets and the diversity of each
dataset.

Much effort has been made on extending classical
BSS approaches to J-BSS. To give a non-exhaustive list

of examples, we here mention independent vector anal-
ysis (IVA) [4], [6], [12], multi-set canonical correlation
analysis (MCCA) [3], [13]–[15], generalized joint diago-
nalization (GJD) [16]–[20], coupled and double coupled
canonical polyadic decomposition [21]–[26], which represent
the multi-set extensions of independent component analy-
sis (ICA), canonical correlation analysis (CCA), joint diago-
nalization (JD) and canonical polyadic decomposition (CPD),
respectively. For an overview of J-BSS we refer to [28].

Among the above J-BSS techniques, GJD is formulated
as the joint diagonalization of multiple sets of data matrices
{C(m,n)

k , k = 1, . . . ,K },m, n = 1, . . . ,M , which can be
written as:

C(m,n)
k = B(m)3

(m,n)
k B(n)H , (1)

where B(m),B(n)
∈ CN×N and Λ

(m,n)
k ∈ CN×N are

the mth and nth loading matrices and a diagonal matrix,
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respectively. A GJD is said to be a generalized orthogonal
JD (GOJD) if the loading matrices B(1), . . . ,B(M ) are uni-
tary matrices [16], [17]. The joint singular value decompo-
sition (JSVD) [19] can be considered as a simple GOJD
method, which jointly diagonalizes the cross-covariance
matrices between two datasets. On the other hand, the gen-
eralized non-orthogonal JD (GNJD) is defined as GJD with
non-orthogonal loading matrices. The data matrices (1) that
admit a GJD can be obtained via fourth-order or second-
order statistics, as addressed in [16]. Several GOJD and
GNJD algorithms have been proposed and applied to various
practical problems [16], [17], [20]. In the above-mentioned
GJD works, it is generally assumed that all the datasets have
identical number of sources, and that the sources with the
same index between distinct datasets are similar.

In this paper, we mainly focus on J-BSS based on GOJD.
The main contributions are summarized as follows:

(i) In the formulation of the GOJD model, we consider the
scenario where different datasets may have different number
of sources, and where not all the sources in each dataset
have a corresponding ‘‘similar’’ component in other datasets,
i.e., there may exist specific source components that are
uniquely present in each dataset. Correspondingly, we intro-
duce approaches to extract source signals of each dataset, and
similar source signals between each pair of datasets.

(ii) We propose a Jacobi GOJD algorithm via successive
Givens rotations. This algorithm has nice linear conver-
gence and low complexity in comparison with other exist-
ing GOJD algorithms [16], [17]. In comparison with the
Jacobi JSVD algorithm [19], which diagonalizes the cross-
covariance matrices between two datasets, the proposed algo-
rithm works on more than just two datasets and incorporates
both auto-covariance and cross-covariance terms. As will be
shown later, the incorporation of both auto-terms and cross-
terms gives the proposed GOJD algorithm advantage over
JSVD in extracting both similar components that are con-
sistently present in distinct datasets and specific components
that are uniquely present in each dataset.

The rest of the paper is organized as follows. In Section II
we present the multi-set data model for J-BSS, and explain
how to formulate a GOJD model via second-order statistics.
In Section III we present the Jacobi GOJD algorithm based on
Givens rotations. In Section IV, we introduce strategies for
extraction of source signals for each dataset, similar source
signals between each pair of datasets. Section V presents
remarks on the proposed method and Section VI provides
simulation results with comparison to several existing GOJD
algorithms and J-BSS algorithms of similar type. Section VII
concludes the paper.
Notations: vectors, matrices, tensors are denoted by low-

ercase boldface, uppercase boldface, and uppercase calli-
graphic letters, respectively. The r th column vector and the
(i, j)th entry of A are denoted by ar and ai,j, respectively.
We denote the identity matrix and all-zero matrix as IM ∈

CM×M and 0M×N ∈ CM×N , respectively. The subscripts
are omitted if no ambiguity is caused. Transpose, conjugate,

conjugated transpose, and Frobenius norm are denoted as
(·)T , (·)∗, (·)H , ‖·‖2F , respectively. Operator off(·) sets all the
diagonal elements of its input matrix to zero, and diag(·) per-
forms the inverse. Operators Re(·) and Im(·) extracts the real
and imaginary parts of its input, respectively. Mathematical
expectation is denoted as E(·).

II. PROBLEM FORMULATION
A. DATA MODEL AND ASSUMPTIONS
The multi-set data model in J-BSS can be written as follows:

x(m)(t) = A(m)s(m)(t), m = 1, . . . ,M , (2)

where x(m)(t) ∈ CN (m)
, s(m)(t) ∈ CR(m) ,A(m)

∈ CN (m)
×R(m)

denote the observed signal, source signal, and loading matrix
of themth dataset, respectively. The parametersN (m) and R(m)

denote the number of observation channels and the number of
source signals of the mth dataset, respectively.
We make the following assumptions:
(A1) Source signals s(m)u (t) and s(n)v (t) are independent for

u 6= v, u ∈ [1,R(m)], v ∈ [1,R(n)], regardless of the value of
m, n;
(A2) Sources signals s(m)u (t) and s(n)v (t) are dependent if 1 ≤

u = v ≤ R(m,n) ≤ R(m), for all m 6= n. We note that R(m,n)

may vary with different index pair (m, n). For convenience,
we here fix R(m,n) = R. The derivation remains similar in
general case where R(m,n) is different with different (m, n).

(A3) The considered J-BSS problem is overdetermined.
We further assume that N (1)

= · · · = N (M )
= N ≥ R(m),

for m = 1, . . . ,M , as a preprocessing step (e.g. prewhiten-
ing) based on principle component analysis (PCA) can be
performed to reduce the number of observation channels of
each dataset to a common number N in the overdetermined
case.

(A4) The loading matrices A(1), . . . ,A(M ) are unitary. This
is a natural result of assumption (A1) and (A3) as the loading
matrix of a prewhitened dataset is unitary.

We note that the assumption (A1) corresponds to the intra-
set independence, which has been widely adopted in BSS
and J-BSS. Assumption (A2) states that the sources with
identical channel index in different datasets are dependent,
and this inter-set dependence holds for the first R sources
of each dataset. Note that in our setting different datasets
may have different number of source signals, and there may
exist not only similar source signals across different datasets,
but also specific source signals that are uniquely present in
each dataset.We note that assumption (A2) takes into account
both the similarity among multiple datasets and the diversity
for each dataset. It generalizes the widely adopted inter-set
dependence in GJD based J-BSS [16]–[20], which considers
only the similarity.

B. FORMULATION OF J-BSS INTO A GOJD
Let us now explain how to formulate a GOJD via
second-order statistics. In addition to the assumptions in
Subsection II.A, we further assume that the source signals
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are temporally non-stationary. Then we can construct cross-
covariance matrices C(m,n)

k ∈ CN×N as follows:

C(m,n)
k E{x(m)(k)x(n)(k)H } = A(m)Σ

(m,n)
k A(n)H , (3)

where Σ (m,n)
k E{s(m)(k)s(n)(k)H } ∈ CR(m)×R(n) , k = 1, . . . ,K ,

and K is the number of time frames for which the
cross-covariance matrices are computed.

By definition, we know that Σ (m,n)
k holds the cross-

covariance coefficient E{s(m)u (k)s(n)v (k)H } as its (u, v)th entry.
According to assumption (A1) and (A2) we have the follow-
ing results:

(i) Σ (m,m)
k is a R(m) × R(m) diagonal matrix where all the

diagonal entries are non-zero;
(ii) The upper-left R × R submatrix of Σ (m,n)

k is diagonal
with non-zero diagonal entries, m 6= n. The rest entries of
Σ

(m,n)
k are all equal to zero.
We further denote the expanded loading matrix B(m) and

diagonal matrix Λ(m,n)
k as follows:

B(m) , [A(m),A⊥(m)] ∈ CN×N ,

Λ
(m,n)
k ,

[
Σ

(m,n)
k 0R(m)×(N−R(n))

0(N−R(m))×R(n) 0(N−R(m))×(N−R(n))

]
,

(4)

where A⊥(m) is a unitary matrix of size N × (N − R(m)) that
is orthogonal to A(m). Then we can rewrite (3) as follows:

C(m,n)
k = B(m)Λ

(m,n)
k B(n)H , (5)

where B(m) is an N × N unitary matrix and Λ(m,n)
k is an

N × N diagonal matrix (with zero diagonal entries). The set
of matrices {C(m,n)

k } together admits a GOJD model.
Note that by (3) we explicitly have C(m,n)

k = C(n,m)H
k .

In case that this symmetry is not readily present, we are able
to create it. More precisely, let us denote the matrices in
an unsymmetric GOJD as C′(m,n)

l = B(m)Λ′(m,n)
l B(n)H , l =

1, . . . ,L, and construct matrices C(m,n)
k , k = 1, ...,K , with

K = 2L, as:
C(m,n)
l , C′

l(m,n),C
(m,n)
L+l , C′(n,m)H

l , m < n,

C(m,n)
l , C′(n,m)H

l ,C(m,n)
L+l , C′(m,n)

l , m > n,

C(m,n)
l , Re(C′(m,n)

l ),C(m,n)
L+l , Im(C′(n,m)

l ), m = n.

(6)

Then the constructed matrices C(m,n)
k have the property that

C(m,n)
k = C(n,m)H

k .

We note that, by performing GOJD of all the matrices
{C(m,n)

k } with varying m, n, k , we do not directly identify

A(m) but an expanded loading matrices B(m), which holds
the columns of A(m) as a subset of its columns. Therefore,
to extract the source signals we need to separate the columns
of A(m) from B(m).

In Section III, we propose a Jacobi GOJD algorithm based
on successive Givens rotations. In Section IV, we introduce a
source extraction scheme to extract the source signals of each
dataset, with the estimates of B(m).

III. JACOBI GOJD ALGORITHM
In this section we present a Jacobi GOJD algorithm.
In Subsection III.A, we introduce the criterion for the pro-
posed algorithm. Then, we present the overall framework
of the proposed algorithm in Subsection III.B, which aims
at solving the optimization problem (10) via a series of
optimized Givens rotations. In Subsection C we derive the
closed-form formula for the calculation of the optimal Givens
rotation matrices in each update. Finally, we present remarks
on the proposed algorithm in Subsection D.

A. CRITERION
To compute a GOJD, we minimize the sum of squared norm
of the off-diagonal entries of B(m)C(m,n)

k B(n)H as follows:{
B̃
(1)
, . . . , B̃

(M )
}
= argmin

B(1),...,B(M )
f , (7)

where

f ,
∑
m,n,k

∥∥∥off (B(m)C(m,n)
k B(n)H

)∥∥∥2
F
. (8)

Since matrices B(m) are unitary, we can rewrite (8) as:

f =
∑
m,n,k

∥∥∥B(m)C(m,n)
k B(n)H

∥∥∥2
F

−

∑
m,n,k

∥∥∥diag (B(m)C(m,n)
k B(n)H

)∥∥∥2
F

=

∑
m,n,k

∥∥∥C(m,n)
k

∥∥∥2
F
−

∑
m,n,k

∥∥∥diag (B(m)C(m,n)
k B(n)H

)∥∥∥2
F
, (9)

where
∑∥∥∥C(m,n)

k

∥∥∥2
F
is a constant. Therefore, the off-norm

minimization criterion (7) is equivalent to the following crite-
rion that maximizes the sum of squared norm of the diagonal
entries of B(m)C(m,n)

k B(n)H :{
B̃
(1)
, . . . , B̃

(M )
}
= argmax
B(1),...,B(M )

∑
m,n,k

∥∥∥diag (B(m)C(m,n)
k B(n)H

)∥∥∥2
F
.

(10)

B. OVERALL APPROACH
We write B(m) as the successive product of a set of Givens
rotation matrices B(m)

=
∏

u<v G
(m)
u,v ,m = 1, . . .M , where

the Givens rotation matrix G(m)
u,v with indices (u, v) is equal to

an identity matrix except for the following submatrix:[
(G(m)

u,v )u,u (G(m)
u,v )u,v

(G(m)
u,v )v,u (G(m)

u,v )v,v

]
,

[
c(m)u,v s(m)u,v

−s(m)∗u,v c(m)u,v

]
, (11)

with c(m)u,v = cos θ (m)u,v , s
(m)
u,v = exp(iα(m)u,v ) sin θ

(m)
u,v , 1 ≤ u <

v ≤ N .
We let the indices (u, v) vary, and for each choice of (u, v),

we calculate the optimal estimates G̃
(m)
u,v of G

(m)
u,v . Here we use

an alternating updating scheme for the calculation of G̃
(m)
u,v .

This scheme contains M steps. In the mth step, one Givens
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rotation matrix G̃
(m)
u,v is calculated with the other Givens rota-

tion matrices fixed, and B(m) and C(m,n)
k are updated by:

B(m)
← B(m)G̃

(m)
u,v ,C

(m,n)
k ← G̃

(m)H
u,v C(m,n)

k . (12)

We note that, due to the symmetry of C(m,n)
k , there is no

need to do the update C(n,m)
k ← C(n,m)

k G̃
(m)
u,v . Instead, we

directly let C(n,m)
k ← C(m,n)H

k once C(m,n)
k is updated.

Once all the Givens rotations matrices G̃
(m)
u,v are calculated,

and all the matrices B(m) and C(m,n)
k are updated via (12), for

a fixed index pair (u, v). We move on to the next index pair.
The updates for all the combinations of indices (u, v) together
constitute a sweep. We repeat the updates (12) for multiple
sweeps until convergence.

C. CALCULATION OF THE OPTIMAL GIVENS ROTATION
MATRICES IN EACH UPDATE
Let us now explain how to calculate the optimal G̃

(m)
u,v in each

update. Recall that each G̃
(m)
u,v is calculated with other Givens

rotation matrices fixed. Then according to (10) G̃
(m)
u,v can be

calculated by maximizing the overall squared norm of the
diagonal entries of G̃

(m)H
u,v C(m,n)

k . Here we do not consider the

diagonal entries of C(n,m)
k G̃

(m)
u,v because they are the same as

those of G̃
(m)H
u,v C(m,n)

k , due to the symmetry of C(m,n)
k .

Note that the Givens rotation G̃
(m)H
u,v C(m,n)

k only changes the
uth and vth rows of C(m,n)

k . That means, among the diagonal
entries of C(m,n)

k , only the uth and vth diagonal entries have

been changed. Therefore, G̃
(m)
u,v can actually be calculated by

maximizing the sum of squared norms of these two entries for
all the matrices G̃

(m)H
u,v C(m,n)

k , with fixed m, u, v, and varying
n and k:

G̃
(m)
u,v = argmax

G(m)
u,v

λ(m)u,v , (13)

where

λ(m)u,v ,
∑
n,k

(∣∣∣(G(m)H
u,v C(m,n)

k )u,u
∣∣∣2+∣∣∣(G(m)H

u,v C(m,n)
k )v,v

∣∣∣2).
(14)

By definition, we have the following expressions:

(G(m)H
u,v C(m,n)

k )u,u = c(m)u,v (C
(m,n)
k )u,u − s(m)u,v (C

(m,n)
k )v,u,

(G(m)H
u,v C(m,n)

k )v,v = c(m)u,v (C
(m,n)
k )v,v + s(m)∗u,v (C(m,n)

k )u,v. (15)

Substituting (15) into (14) yields the following formula
after a few derivations:

λ(m)u,v = u(m)Tu,v

∑
n,k

(
m(m,n)
u,v,km

(m,n)H
u,v,k +m

′(m,n)
u,v,km

′(m,n)H
u,v,k

)
u(m)u,v ,

(16)

where u(m)u,v , [c(m)u,v ,Re(s
(m)
u,v ), Im(s(m)u,v )]T , and m(m,n)

u,v,k ,

m′(m,n)
u,v,k are given by:

m(m,n)
u,v,k ,

 (C(m,n)
k )u,u

−(C(m,n)
k )v,u

−i(C(m,n)
k )v,u

, m′(m,n)
u,v,k ,

 (C(m,n)
k )v,v

(C(m,n)
k )u,v

−i(C(m,n)
k )u,v

. (17)

As such, the optimal u(m)u,v is chosen as the dominant eigen-
vector of

∑
n,k (m

(m,n)
u,v,km

(m,n)H
u,v,k +m

′(m,n)
u,v,km

′(m,n)H
u,v,k ). The opti-

mal parameters c(m)u,v and s(m)u,v can be computed from u(m)u,v .
Then the optimal G̃

(m)
u,v can be constructed with the obtained

c(m)u,v and s
(m)
u,v .

We summarize the proposed GOJD algorithm in TABLE I.

TABLE 1. The Jacobi GOJD algorithm.

IV. SOURCE EXTRACTION
By applying the proposed Jacobi GOJD algorithm on the
covariance matrices (5), we can jointly identify the expanded
loading matrices B(1), . . . ,B(M )(4). To further extract the
source signals of each dataset, we need to separate the
columns that are associated with the true loading matrices
A(1), . . . ,A(M ) from the estimates of B(1), . . . ,B(M ). In the
noiseless case, we know by (4) that the columns of A(m) are
associated with non-zero diagonal entries of Λ(m,m)

k ,m =
1, . . . ,M , and this knowledge can be used to identify the
columns of Ã

(m)
from the estimate of B̃

(m)
. E.g., we can select

columns of B̃
(m)
, associated with diagonal entries of Λ(m,m)

k

that are significantly larger, as columns of Ã
(m)
. Here Ã

(m)

and B̃
(m)

denote the estimate of A(m) and B(m), respectively.
In practice, however, due to noise andmodel errors (e.g. the

finite sample effects), it may be difficult to identify the diag-
onal entries of Λ(m,m)

k that are associated with the columns

of Ã
(m)
. Therefore, in this section we introduce subspace

projection based methods for the extraction of (i) the source
signals of each dataset, and (ii) similar source signals between
each pair of datasets.

A. SOURCE EXTRACTION FOR EACH DATASET
To extract source signals of each dataset, we calculate the
overall covariance matrix of the observed signal in the mth
dataset as C(m,m) ,

∑
k C

(m,m)
k . In the noiseless case,

we note that the column space of C(m,m) is identical to that
of A(m), ϒ (m), which is denoted as the signal subspace. In the
noisy case, we estimate a set of basis vectors u(m)1 , . . . ,u(m)

R(m)

of ϒ (m) as the R(m) dominant eigenvectors of C(m,m), and
construct a projectionmatrixP(m) ,

∑
r u

(m)
r u(m)Hr ∈ CN×N .
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Then we perform vector projection of each column of B̃
(m)

intoϒ (m): b̃
(m)
r → P(m)b̃

(m)
r ∈ ϒ

(m). The R(m) column vectors
of Ã

(m)
can be chosen as those for which the norm of the

projected vectors ||P(m)b̃
(m)
r ||F is significantly larger.

By applying the above subspace projection approach to
each dataset, we are able to identify Ã

(m)
from the estimates

of the expanded loading matrix B̃
(m)
. Finally, we obtain the

source signals of each dataset as s̃(m)(t) = Ã
(m)†

x(m)(t).

B. EXTRACTION OF SIMILAR SOURCES BETWEEN
EACH PAIR OF DATASETS
In some applications, it is of interest to extract similar source
signals between each pair of datasets. To achieve this goal, we
construct subspace projectionmatrices from the overall cross-
covariance matrix and then perform subspace projection.

For example, to extract the similar source signals between
the mth and the nth datasets, m 6= n, we calculate the overall
cross-covariance matrix C(m,n) ,

∑
k C

(m,n)
k . By (4) and (5)

we know that in the noiseless case, the column space ofC(m,n)

is identical to the vector space spanned by the R columns
of Ã

(m)
, which are associated with the source signals in the

mth dataset that have a corresponding similar source signal
in the nth dataset. Analogously, the row space of C(m,n) is
identical to the vector space spanned by the R columns of
Ã
(m)

(up to a conjugation), which are associated with the
source signals in the nth dataset that have a corresponding
similar source signal in themth dataset. For clarity, we denote
these two subspaces asϒ (m|n) andϒ (n|m), respectively. In the
noisy case, we can estimate the basis vectors of ϒ (m|n) and
ϒ (n|m) as the R dominant left and right singular vectors of
C(m,n), respectively.

Then for each of B̃
(m)

and B̃
(n)
, we construct a projection

matrix with the obtained basis vectors, perform subspace
projection for each column into the corresponding subspace,
and choose the R columns for which the norm of the pro-
jected vectors is significantly larger. Note that the chosen
columns constitute submatrices of Ã

(m)
and Ã

(n)
, denoted as

Ã
(m|n)

and Ã
(n|m)

, respectively, that correspond to the similar
source signals between these two datasets. Therefore, the
similar source signals between the mth and nth datasets can
finally be obtained as: s̃(m|n)(t) = Ã

(m|n)H
x(m)(t), s̃(n|m)(t) =

Ã
(n|m)H

x(n)(t).

V. DISCUSSION
In this section we provide several remarks on the proposed
GOJD algorithm and the corresponding J-BSS method.

A. STOPPING CRITERION FOR GOJD
In the proposed GOJD algorithm, the Jacobi iteration is
terminated when the overall squared norm of the diagonal
entries of C(m,n)

k is not further improved. To put in more
details, we denote the overall squared norm of the diagonal
entries of C(m,n)

k in the sth sweep as λs. The iteration is

terminated if

|λs − λs−1|

λs−1
≤ ξ, (18)

where ξ is the tolerance for the stopping criterion. We may
also terminate the update if c(m)u,v and s(m)u,v defined in (11)
are smaller than a given tolerance ξ , which indicates
that the Givens rotation matrix is close to an identity
matrix.

B. COMPUTATIONAL COMPLEXITY OF GOJD
We present the computational cost of each sweep for the
proposed GOJD algorithm. We note that each sweep con-
sists of Givens rotations for N (N − 1)/2 index pairs (u,
v), and for each index pair, we calculate M optimal
Givens rotation matrices. In the calculation of one Givens
rotation matrix, the complexity of the construction of∑

n,k (m
(m,n)
u,v,km

(m,n)H
u,v,k +m

′(m,n)
u,v,km

′(m,n)H
u,v,k ) is O(18MK ) flops.

The EVD of this matrix has complexity of 6∗33 = 162 flops.
Note that B(m)G̃

(m)
u,v only changes the uth and vth column of

B(m), and thus this step has complexity ofO(4N ) flops. Anal-
ogously, as G̃

(m)H
u,v D(m,n)

k only changes the uth and vth row
of D(m,n)

k , therefore this step has complexity of O(4N ) flops.
As a result, the computational complexity of each sweep is
O(MN (N −1)(9KM+4KN +81)) flops. The expression can
be simplified to O(9KM2N 2

+ 4KMN 3
+ 81MN 2) flops.

With an analogous analysis, we have that the GOJD algo-
rithm in [16] has complexity of O(KM2N 2

+ 12MN 3
+

4KM2N 3) flops per sweep, and the complexity of the GOJD
algorithm in [17] isO(1.5KM2N 3

+28MN 3) flops per sweep.
We note that the per-sweep complexity of the proposed algo-
rithm has a lower-order dependence on parameters K , M ,
and N than the ones in [16] and [17]. In addition, we have
observed through experiments that the proposed GOJD algo-
rithm takes less sweeps until convergence than the ones
in [16] and [17], if they are initialized with identity matrices.
In general, we have observed that the proposed algorithm is
computationally more efficient.

C. INITIALIZATION OF GOJD
Prior knowledge of B(1), . . . ,B(M ), if available, can be
used to initialize the proposed GOJD algorithm. More pre-
cisely, denoting the prior estimates of B(1), . . . ,B(M ) as
B(1)
0 , . . . ,B

(M )
0 , we can initially update the covariance data

matrices as: C′(m,n)
k ← B(m)H

0 C(m,n)
k B(n)

0 . GOJD can then be
performed on the initialized data matrices C′(m,n)

k to obtain a
set of matrices B′(1), . . . ,B′(M )

. Estimates of B(1), . . . ,B(M )

can finally be obtained as: B(m)
= B(m)

0 B′(m).
We note that the initial knowledge may be obtained

via a low-cost J-BSS algorithm, e.g. MCCA, or via BSS
of each separate dataset, e.g. joint approximate diago-
nalization of eigenmatrices (JADE). If no such informa-
tion is available, we initialize the algorithm with identity
matrices.
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D. CROSS-TERM VS. AUTO-TERM
In the proposed algorithm, GOJD jointly diagonalizes all
the covariance matrices {C(m,n)

k ,m, n = 1, . . . ,M , k =
1, . . . ,K } to accomplish J-BSS of multi-set signals. We note
that, with varying indices m and n, there are in fact two types
of terms in GOJD, which play different roles in J-BSS: (i) the
cross-term {C(m,n)

k ,m 6= n} and (ii) the auto-term {C(m,m)
k }.

More specifically, in the expression of a cross-term C(m,n)
k ,

as shown in (3), only the first R columns of A(m) and A(n)

are associated with non-zero diagonal entries in Σ (m,n)
k , and

these columns are in fact mixing vectors corresponding to
source signals that are similar between the mth and nth
dataset. Hence, in a GJD based method, diagonalization of
cross-termsmainly exploits the pairwise similarity among the
multiset signals. In addition, if only the cross-terms are used,
a GJD based J-BSS method can only find the similar source
components that are consistently present in multiple datasets,
i.e., it does not find specific source signals that are uniquely
present in each dataset.

The auto-term, on the other hand, is calculated from each
dataset itself. Therefore, the auto-term contains specific infor-
mation of each dataset, but does not indicate the similar-
ity between different datasets. As a result, in a GJD based
method, diagonalization of auto-terms can extract specific
source signals that are uniquely present in each dataset.
However, if only the auto-terms are used, the inter-set sim-
ilarity is not exploited, and the GJD based J-BSS method will
have worsened accuracy and misaligned permutation for the
estimation of similar sources signals in different datasets.

Based on the above analysis, we know that the cross-term
and the auto-term characterize the similarity and diversity of
a J-BSS problem, respectively. And only when both of them
are jointly exploited, can a GJD method extract both similar
sources between different datasets and specific sources that
are uniquely present in each dataset.

VI. SIMULATION
In this section, we present simulation results to demon-
strate the performance of the proposed algorithm (GOJD-
JCB) in comparison with two existing GOJD algorithms,
namely GOJD based on sequential orthogonal procrustes
(GOJD-SOP) [16], and orthogonal joint blind separa-
tion (GOJD-OJB) [17]. In the second and third simulations,
we also include JSVD [19] andMCCA [3] in the comparison.
All the simulations are performed under the following con-
figurations: CPU–Intel Xeon E5-2640 2.4 GHz; Memory–
64 GB; System–64 bit Windows 10; Matlab R2016b.

A. COMPARISON OF CONVERGENCE PATTERNS
In this simulation, we compare the convergence patterns of
the compared GOJD algorithms in the exact case. We con-
struct N × N data matrices C(m,n)

k ∈ CN×N according to (1)
where diagonal entries of N × N matrices Λ(m,n)

k are drawn
from a standard normal distribution. The loading matrices
B(m)
∈ CN×N are randomly generated unitary matrices, with

1 ≤ m, n ≤ M , 1 ≤ k ≤ K .We use the overall off-norm to
evaluate the algorithms:

ORON (it) =

∑
m,n,k

∥∥∥off(B(m)H
it C(m,n)

k B(n)
it )
∥∥∥2
F∑

m,n,k

∥∥∥diag(B(m)H
it C(m,n)

k B(n)
it )
∥∥∥2
F

, (19)

whereB(m)
it denotes themth updated loadingmatrix in the it-th

sweep.
We use the stopping criterion (18) for the compared algo-

rithms, where the tolerance is set to ξ = 10−6. The curves
of 10 independent runs are drawn in Fig. 1 in following cases:
(a) M = 5,N = 10,K = 20; (b) M = 5,N = 20,K = 20;
(c) M = 20,N = 5,K = 20; (d) M = 20,N = 20,K = 20.

FIGURE 1. Overall off-norm versus the number of sweeps in the exact
case, under four settings with different M and N . It is generally shown
that the proposed GOJD-JCB algorithm has better and more consistent
convergence pattern than GOJD-SOP and GOJD-OJB.
(a) M = 5,N = 5,K = 20. (b) M = 5,N = 20,K = 20.
(c) M = 20,N = 5,K = 20. (d) M = 20,N = 20,K = 20.

From FIGURE 1, we see that GOJD-JCB takes less sweeps
than GOJD-SOP and GOJD-OJB, and that the convergence
pattern of GOJD-JCB is less affected by M and N . This
observation clearly suggests that the proposed algorithm
has a better and more consistent convergence pattern than
GOJD-SOP and GOJD-OJB.

B. J-BSS OF HYBRID MULTISET SIGNALS
In this simulation, we apply GOJD-JCB, GOJD-SOP,
GOJD-OJB, JSVD and MCCA in J-BSS of hybrid multi-set
signals. The term ‘‘hybrid’’ means that the generated multi-
set signals contain both similar source components that are
consistently present in different datasets, and diverse source
components that are specifically present in each dataset. The
multi-set signals are generated as follows:

X (m)
= σsA(m) S(m)T∥∥S(m)T∥∥F + σn

N (m)∥∥N (m)
∥∥
F

, (20)
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where A(m),m = 1, . . . ,M of size N × R(m) are randomly
generated unitary matrices. For each sampled time instant t ,
we define a new source matrix:

Sr , [s(1)r , . . . , s
(M )
r ] ∈ CQ×M , (21)

where s(m)r is the r th column of S(m) ∈ CQ×R(m) , and Q
denotes the number of time samples. We generate Sr for all
the values of r = 1, . . . ,R, with R < R(m), as follows:

Sr = S′rQr , (22)

Qr ∈ CM×M is a full rank matrix used to introduce inter-
set dependence between the corresponding source signals
in different datasets. Both the real and imaginary part of
each entry of Qr are drawn from a standard normal distri-
bution. The underlying generating source matrix S′r (t) ,
[s′(1)r , . . . , s′(M )

r ] consists of complex binary phase shift key-
ing (BPSK) signals that are amplitude modulated across P
time slots of length L ′:

s′(m)r = [η1 · s′
(m)T
r,1 , . . . , ηP · s′

(m)T
r,P ]T ∈ CQ, (23)

where η1, . . . , ηP are amplitude modulation coefficients that
are randomly drawn from a uniform distribution over [0, 1],
and where Q = PL ′. The sub-vector s′(m)r,p of length L ′ is a
complex BPSK sequence with entries chosen from symbols
{−1, 1} with equal probability. By definition, s′(m)r is the
concatenation of PBPSK sequences, the amplitudes of which
have been modulated by coefficients η1, . . . , ηP.
Note that the above source construction procedure is con-

ducted for r = 1, . . . ,R, indicating that the first R source
signals of identical channel index of different datasets are
statistically dependent. In fact, the above procedure only
generates the ‘similar’ components in the multi-set signals.

For r = R + 1, . . . ,R(m), we generate the source signals
s(m)r independently for each dataset, as amplitude modulated
BPSK signals.

By definition, we know that for each dataset, the first
R source signals correspond to the similar part, while the
rest correspond to the diverse part, of the source compo-
nents, respectively. Correspondingly, we denote the first R
columns and the last (R(m) − R) columns of A(m) as the sim-
ilar part and diverse part of the mixing matrix, respectively,
m = 1, . . . ,M .

The noise term N (m)
∈ CN×Q is generated as white

Gaussian noise. We define the signal-to-noise ratio (SNR)
with the signal level σs and noise level σn, as follows:

SNR = 20 log
(
σs
/
σn
)
. (24)

We calculate the data matrices C(m,n)
k by a finite sampling

version of (3) as follows:

C(m,n)
k =

1
L
·

[∑L

l=1

(
X (m,k)

)
(:,l)

(
X (n,k)

)H
(:,l)

]
, (25)

whereX (m,k)
∈ CN×L denotes the kth temporal frame ofX (m)

with frame length L, overlapped with adjacent frames with an
overlapping rate α ∈ [0, 1].

We adopt the inter-symbol-interference (ISI) [7] to evalu-
ate the compared algorithms. More exactly, for the estimate
J̃ of a unitary matrix J, ISI is defined as follows:

ISI (F)
1

2N (N − 1)

 N∑
i=1

 N∑
j=1

fij
maxk fik

− 1


+

N∑
j=1

(
N∑
i=1

fij
maxk fkj

− 1

), (26)

where F , |J̃
H
J |. In the simulation, we calculate the ISI

for the estimates of the similar part of the mixing matrix of
each dataset and average over all the datasets. The obtained
metric is denoted as the mean ISI(sim) (M-ISI(sim)), with
subscript ‘(sim)’ suggesting that it evaluates the estimation of
the similar part of the mixing matrix. Similarly, we calculate
the mean ISI for the diverse part of each dataset, denoted as
M-ISI(div).
In the simulation, we let R(1) = R(2) = · · · = R(M )

= N ,
and R = 0.5N . First we fix M = 8, N = 4, Q = 5000,
and set the frame length to L = Q/20, and the overlapping
factor to α = 0.5. With varying SNR, we draw the curves of
M-ISI(sim), M-ISI(div), number of sweeps, and CPU time in
FIGURE 2. Note that each point in the curves is calculated
as the average of 200 Monte-Carlo runs. In the simulation,
we use the stopping criterion (18) for the compared algo-
rithms, where the tolerance is set to ξ = 10−6.

FIGURE 2. M-ISI(sim), M-ISI(div), number of sweeps, and mean CPU time
versus SNR, with M = 8,N = 4, T = 5000, R(m) = 2,R = 2. It is in general
shown that GOJD-JCB yields accurate estimates of both the similar and
diverse components of the multi-set source signals, and that GOJD-JCB is
also computationally very efficient. (a) M-ISI(sim) versus SNR.
(b) M-ISI(div) versus SNR. (c) Number of sweeps versus SNR. (d) Mean
CPU time versus SNR.

It is shown in FIGURE 2 (a) that all the compared algo-
rithms generate reasonably accurate estimates of the simi-
lar part of the mixing matrices. We note that GOJD-JCB
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and GOJD-SOP provide more accurate results in low SNR.
In high SNR, all the GOJD algorithms have almost identical
accuracy, which is slightly better than that of JSVD and
MCCA. This observation generally suggests that the com-
pared algorithms can be used to extract the similar source
components that are consistently present in different datasets.

In FIGURE 2 (b), we see that the three GOJD algorithms
provide correct results for the estimation of the diverse part of
each mixing matrix, while JSVD and MCCA do not generate
correct results. This is precisely due to the fact that the
auto-term, which characterizes the diversity of each dataset,
is not included in JSVD and MCCA, as explained in Subsec-
tion V.D. In addition, we see that the proposed GOJD-JCB
algorithm is more accurate than GOJD-SOP and GOJD-OJB.

In FIGURE 2 (c), we see that GOJD-JCB takes much
fewer sweeps than GOJD-SOP, GOJD-OJB, and MCCA.
This observation shows that the proposed algorithm has nice
convergence pattern. Note that the number of sweeps for
GOJD-JCB is slightly more than that for JSVD, while the
former algorithm is significantlymore accurate than the latter,
as shown in FIGURE 2 (a) and FIGURE 2 (b).

In FIGURE 2 (d), we see that GOJD-JCB is much faster
than GOJD-SOP and GOJD-OJB. This is not only because
the proposed method has better convergence pattern than the
latter two methods, but also due to the fact that the per-
sweep complexity of GOJD-JCB is lower, as explained in
Sub-section V.B. In comparison with JSVD and MCCA,
we note that GOJD-JCB is slightly slower, but significantly
more accurate. In general, we observe in the four sub-
figures of FIGURE 2, that the proposed GOJD-JCB algo-
rithm yields accurate estimates of both similar and diverse
components of the multi-set source signals, and it is also
computationally very efficient with varying SNR.

Then, we fix SNR = 20dB, T = 5000, N = 4, and draw
the curves ofM-ISI(sim), M-ISI(div), number of sweeps and the
mean CPU time of the compared algorithms with M varying
from 2 to 10, in FIGURE 3. We observe from FIGURE 3 (a)
and FIGURE 3 (b) that the GOJD algorithms yield reasonably
accurate estimates for both similar and diverse components.
JSVD obtains correct results in the estimation of the similar
source components, but fails to extract the diverse compo-
nents. MCCA only yields correct estimates of the similar
components when M is sufficiently large.
From FIGURE 3 (c) and FIGURE 3 (d) we note that

GOJD-JCB takes much fewer sweeps and less CPU time
than GOJD-SOP and GOJD-OJB. In comparison with JSVD,
GOJD-JCB is only slightly slower while significantly more
accurate. In comparison withMCCA, GOJD-JCB is faster for
small M while slightly slower when M exceeds the number
of six. The results in FIGURE 3 generally demonstrate the
nice performance of GOJD-JCB in handling large number of
datasets.

Last, we fix SNR= 20dB, T = 5000,M = 8, and draw the
curves of M-ISI(sim), M-ISI(div), number of sweeps and the
mean CPU time of the compared algorithms with N varying
from 4 to 10, in FIGURE 4. We note that in the simulation

FIGURE 3. M-ISI(sim), M-ISI(div), number of sweeps, and mean CPU time
versus M, with SNR = 20dB, N = 4, T = 5000, R(m) = 2, R = 2. It is shown
that GOJD-JCB is much faster than GOJD-OJB and GOJD-SOP, with either
small or large number of datasets. GOJD-JCB is only slightly slower while
significantly more accurate than MCCA and JSVD. (a) M-ISI(sim) versus M.
(b) M-ISI(div) versus M. (c) Number of sweeps versus M. (d) Mean CPU
time versus M.

FIGURE 4. M-ISI(sim), M-ISI(div), number of sweeps, and mean CPU time
versus N , with SNR = 20dB, M = 8, T = 5000,R(m) = N , R = 0.5N . It is
shown that GOJD-JCB is much faster than GOJD-OJB and GOJD-SOP, with
either small or large N . GOJD-JCB is only slightly slower while significantly
more accurate than MCCA and JSVD. (a) M-ISI(sim) versus N . (b) M-ISI(div)
versus N . (c) Number of sweeps versus N . (d) Mean CPU time versus N .

we keep R(1) = R(2) = · · · = R(M )
= N , and R = 0.5N .

Therefore, with N increasing, the number of both similar and
diverse source components also increases, and the problem
actually becomes more challenging.

We see from FIGURE 4 (a) and FIGURE 4 (b) that
the GOJD algorithms can accurately estimate both similar
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and diverse source signals, while JSVD and MCCA only
extract the similar source signals. From FIGURE 4 (c) we
see that with N increasing the number of sweeps increases
for all the compared algorithms, implying that the prob-
lem indeed becomes more challenging. Note that the num-
ber of sweeps that GOJD-JCB takes is much smaller than
that of GOJD-SOP, GOJD-OJB and MCCA. It is slightly
larger than that of JSVD. From FIGURE 4 (d) we note that
GOJD-JCB consumes much less CPU time than GOJD-SOP
and GOJD-OJB. In comparison with JSVD and MCCA,
GOJD-JCB is slightly slower while significantly more accu-
rate. The results in FIGURE 4 generally show the nice per-
formance of GOJD-JCB in challenging problems where the
number of observation channels and the number of source
signals are large.

C. J-BSS OF MULTI-SUBJECT FMRI SIGNALS
In this simulation, we apply the proposed GOJD-JCB algo-
rithm in J-BSS of multi-subject fMRI signals. We adopt
the benchmark simulated complex fMRI sources, obtained
from [30], to generate the multi-subject fMRI signals. The
magnitude images of the simulated fMRI spatial maps (SM)
and their corresponding time courses (TC) are shown in FIG-
URE 5.

FIGURE 5. The amplitude of the simulated fMRI spatial maps (SM) and
their corresponding time courses (TC). The eight sources are placed in two
columns. The left column holds the SMs and TCs corresponding to sources
1–4 and the right column holds the SMs and TCs corresponding to
sources 5–8. In each column, the left sub-column holds the SMs and the
right sub-column holds the TCs.

The multi-subject fMRI signal is generated as follows:

X (m)
= σs

∑
r∈�(m)

arsTr + σnN
(m), (27)

where X (m),N (m)
∈ CN×T denotes the observed signal and

noise term of the mth subject, respectively, m = 1, . . . ,M .
The vector ar ∈ CN denotes the r th TC, and sr ∈ CT

denotes the vectorized version of the r th SM, r = 1, . . . , 8.
For the benchmark fMRI source signals used here, we note
that N = 100, and T = 3600. The source index set �(m)

of the mth subject is a subset of {1, . . . , 8}, indicating which
sources (TCs and SMs) exist in themixture of themth subject.
By definition, the number of sources of the mth subject is
equal to the cardinality of �(m)

: R(m) = card(�(m)).
In the simulation, we consider that there are M = 6

subjects. We set the source index set �(m) for each sub-
ject as: �(1)

= {1, 2, 5, 6, 7};�(2)
= {1, 2, 4};�(3)

=

{1, 2, 4, 5};�(4)
= {1, 2, 8};�(5)

= {1, 2, 3, 5};�(6)
=

{1, 2, 3, 4}. Note that the first and second source signals are
consistently present in all the datasets and thus are the similar
source components.

We fix SNR = 50dB. The amplitude of the SM estimates
for all the datasets via GOJD-JCB is shown in TABLE I.
In addition, we calculate the ISI (ISI) for both the SM
and TC estimates, averaged over 100 Monte-Carlo runs, for
GOJD-JCB, MCCA, and JSVD. The results are given in
FIGURE 6. We see from TABLE II that J-BSS based on the
proposed GOJD-JCB algorithm extracts both similar compo-
nents and diverse components for all the datasets. We note
that, due to the exploitation of the similarity among dis-
tinct subjects, the similar source components across different
datasets are naturally aligned. The diverse components for
each dataset, on the other hand, are identified due to the
use of auto-terms in the proposed algorithm. We also note
that there exist a certain level of cross-talk artifact in some
extracted components. This is mainly due to the fact that
the source SMs are not mutually independent in the strict
sense.

TABLE 2. Magnitude of SM estimates via GOJD-JCB.

FIGURE 6 generally shows that GOJD-JCB has very good
performance with regards to both TC and SM estimation.
MCCA fails to generate reasonable results, mainly because it
does not make use of the non-stationarity structure of the SM
components, and it does not make use of the auto-covariance
terms. The performance of JSVD is also worse than that
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FIGURE 6. ISI for both SM and TC estimates for each subject, with
SNR = 50dB, M = 6, T = 3600, N = 100. It is shown that GOJD-JCB is
more accurate than MCCA and JSVD. (c) ISI for SM estimates (d) ISI for
TC estimates.

of GOJD. In addition, we note that the similar components
extracted by JSVD are not aligned, due to the fact that the
method works on two datasets each time.

VII. CONCLUTION
J-BSS is an emerging topic with applications in multi-set
data fusion problems, and GOJD is an important tool for
performing J-BSS. In this study, we have proposed a Jacobi
GOJD algorithm by using Givens rotations. The proposed
algorithm alternates between updates of different loading
matrices, each solved by a sequence of elementary Givens
rotations obtained in closed-form. We have considered the
scenario where different datasets in J-BSSmay have different
number of sources, among which there exist both similar
components that are consistently present in multiple datasets,
and diverse components that are uniquely present in each
dataset. We have shown how J-BSS based on the proposed
GOJD algorithm can effectively extract both similar and
diverse source components. Analysis and simulation results
have shown that, in comparison with two existing GOJD
algorithms, the proposed GOJD algorithm has lower com-
plexity, faster convergence, and slightly better accuracy in the
extraction of the diverse source components. In comparison
with MCCA and JSVD, the proposed GOJD algorithm is
slightly slower, yet significantly more accurate.
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