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ABSTRACT With the rapid growth of social tagging systems, many research efforts are being put into
personalized search and recommendation using social tags (i.e., folksonomies). As users can freely choose
their own vocabulary, social tags can be very ambiguous (for instance, due to the use of homonyms or syn-
onyms). Machine learning techniques (such as clustering and deep neural networks) are usually applied
to overcome this tag ambiguity problem. However, the machine-learning-based solutions always need very
powerful computing facilities to train recommendation models from a large amount of data, so they are inap-
propriate to be used in lightweight recommender systems. In this paper, we propose an ontological similarity
to tackle the tag ambiguity problem without the need of model training by using contextual information. The
novelty of this ontological similarity is that it first leverages external domain ontologies to disambiguate
tag information, and then semantically quantifies the relevance between user and item profiles according to
the semantic similarity of the matching concepts of tags in the respective profiles. Our experiments show
that the proposed ontological similarity is semantically more accurate than the state-of-the-art similarity
metrics, and can thus be applied to improve the performance of content-based tag-aware personalized
recommendation on the social web. Consequently, as a model-training-free solution, ontological similarity is
a good disambiguation choice for lightweight recommender systems and a complement to machine-learning-
based recommendation solutions.

INDEX TERMS Folksonomies, ontological similarity, personalized recommendation, social tags.

I. INTRODUCTION
In recent years, there has been an exponential increase in
the popularity of the Social Web (Web 3.0), a term fre-
quently used to describe a collection of social platforms
that link people through the (World Wide) Web. The Social
Web is now the basis of many online activities: shopping
(e.g., eBay and Amazon), entertainment (e.g., YouTube and
Last.fm), and social networking (e.g., Facebook and Twit-
ter). With the continuing rapid growth of the Social Web,
users usually can no longer browse efficiently through all

the information available online due to information overload.
Thus, personalized recommender systems have arisen on the
Social Web, which automatically filter out irrelevant online
information and provide personalized user recommendations.
How to provide accurate recommendation has been widely
studied in the research community [1]–[4], and commercial
applications have been widely deployed; concrete examples
include music recommendation on Last.fm, item recom-
mendation on Amazon.com, and friend recommendation on
Twitter.
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A. MOTIVATION
To realize personalized recommendations, recommender sys-
tems are typically built based on leveraging the users’ per-
sonal interests or preferences to build user profiles. The
profiles are subsequently used for personalized re-ranking,
where items in a database are re-ranked according to the
given user profile such that items reflecting a user’s personal
interests are ranked higher [5]. In general, the users’ prefer-
ences or interests can be obtained by leveraging information
that is either explicitly or implicitly available.
Recommender systems that use explicit preference infor-

mation usually require extra efforts from users to fill in pref-
erence information or for users to provide positive or negative
feedback for the given recommendation results [6]. The qual-
ity of the resulting user profile is therefore strongly depen-
dent upon the user’s willingness and capability to provide
sufficient and appropriate preference information. As a result,
recommendation performance can be very unstable.

As an ‘‘effortless’’ alternative, implicit user activity data
such as the query history [7]–[10], the browsing history [11],
the user’s current tasks [12] or intents [13], and even
eye-tracking during search sessions [14] have been used as
supplementary information about users in the recommender
systems of modern websites and applications such as Google,
Amazon, Youtube, and Facebook. However, due to privacy,
ethical, legal, or commercial reasons, these data are usually
not accessible by external parties. By accepting a ‘‘user agree-
ment’’, usersmay allow the service provider to collect and use
their implicit activity data to develop a better user experience,
but it is normally prohibited to then share these data with
third parties, and large IT companies are generally reluctant
to release these valuable data to other parties.

Therefore, the need for publicly available and easy
accessible user data is compelling for the development of
personalized recommender systems on the Social Web. For-
tunately, users can now freely provide social annotations to
online items (e.g., Web pages, songs, videos, or other online
resources) on the Social Web via bookmarking, tagging,
rating, or commenting. In fact, such social annotations are
actually ideal user data for personalized recommendation on
the Social Web for the following reasons [15], [16]:
• Social annotations are usually publicly available online,
so they are generally easily accessible (with the permis-
sion of users and/or website owners).

• Social annotations are provided by users directly as their
individual opinions about online items, so the interests
and preferences of users can be harvested from their
social annotations.

• The aggregation of tags assigned to an item can be seen
as the social summary of this item, which is helpful for
recommending items with little textual content.

B. SOCIAL TAGGING PROBLEMS OVERVIEW
A social tagging system is an online system on the SocialWeb
that enables users to create tags to annotate and categorize
Social Web resources such as Web pages, songs, and videos.

FIGURE 1. Example of a folksonomy.

This practice is called social tagging or collaborative tag-
ging, while the classification systems derived from social
tagging activities are known as folksonomies. An example
of a folksonomy resulting from the tagging activities in a
social tagging system is shown in Figure 1, where (i) user u1
uses two tags, Apache and Jaguar, to annotate the docu-
ment d1, (ii) user u2 uses two tags, Jaguar and Mammal,
to annotate d2, and (iii) user u3 uses a tag, Mammal, to
annotate d2.
As a typical social annotation, social tags have been

widely used for tag-aware personalized recommenda-
tion on the social Web based on content-based filter-
ing [15], [17]–[21] or collaborative filtering [22], [23].
To this end, content-based filtering is especially important
and attracts more and more attention in the research commu-
nity [15], [17], [18], [20], [21] because it allows recommender
systems to incorporate tags as additional content information
to improve recommendations [24]. In this paper, we focus on
personalization using social tags, but our techniques can eas-
ily be adapted to other social annotations, such as comments
and blog posts.

As for content-based tag-aware personalized recommen-
dation, to achieve personalization, a similarity measure is
required to estimate the relevance of a user’s preferences
(described by a user profile) and the social summary of doc-
uments (described by a document profile), where the vector
space model (VSM) [25] is used to represent both profiles
as weighted vectors of tags. Precisely, a user’s profile is
usually obtained by aggregating all the social tags assigned
by this user to the online documents; it is represented as a
weighted vector of tags, where each dimension corresponds
to a tag applied by this user, and the value of each dimension
is the weight of the corresponding tag, which is influenced
by the number of times that the tag is applied by the user in
his/her bookmarking activities. For example, the user profile
of the user u1 in Figure 1 is Epu1 = {(Apache, 1), (Jaguar, 1)}.
Similarly, the document profile is obtained by aggregating
all the social tags assigned by users to this document; it is
also represented as a weighted vector, where the weight of
each dimension is influenced by the number of times that
the document is bookmarked with the corresponding tag. For
example, the document profile of d2 in Figure 1 is Epd2 =
{(Jaguar, 1), (Mammal, 2)}.
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To calculate the similarity between the weighted vectors of
these two profiles, the most widely adopted measure is cosine
similarity [15], [22]. In addition, Vallet et al. [20] propose
scalar similarity to try to improve the metric by eliminating
the vector length normalization factors in cosine similarity—
the rationale behind this modification is the belief that the
presence of a large number of related tags is correlated with
the popularity of the documents among users, and normaliza-
tion thus penalizes popular documents.

However, these two state-of-the-art similarity metrics can
only match tags literally, and use their semantic content only
to a very limited extent. Since users can freely choose their
own vocabulary of tags (without specifying their relation-
ships), the resulting tags associated with documents usually
contain much ambiguous information, e.g., as homonyms
(tags with the same spelling but with different mean-
ing) or synonyms (different tags with the same meaning).
Thus, performing a literal matching over such ambiguous
tags may lead to inaccurate similarity values between corre-
sponding profiles, which greatly degrades the performance
of the content-based recommendation system. For example,
in Figure 1, two users both use the tag ‘‘Jaguar’’, but the two
tags actually have a different meaning: u1 uses ‘‘Jaguar’’ as
a type of military aircraft, while u2 uses ‘‘Jaguar’’ to refer
to a large cat. Although these two concepts are semantically
different, the cosine and the scalar similarity of two ‘‘Jaguar’’
tags are always 1 (identical). In contrast, ‘‘College’’ and
‘‘University’’ are similar in semantics, but their cosine and
scalar similarity are 0 (irrelevant).

One existing solution to the tag ambiguity problem is
to disambiguate synonyms and homonyms using their most
related tags, which are the tags having the highest relatedness
to the given tag, measured by the similarity between their vec-
tor space representations, e.g., tag context, document context,
and user context representations [26], [27]. However, since
the social data is usually very sparse, the tag disambiguation
performance of this solution is limited. Another existing solu-
tion is to first apply machine learning techniques, e.g., clus-
tering [19] or deep neural networks [21], [28] in the tag space
to model abstract feature representations for tag-based user
and document profiles, and then use the resulting abstract
representations to estimate the similarities between users and
documents for personalized recommendation.

Although machine-learning-based solutions can overcome
the tag ambiguity problem and achieve good recommendation
performance on the Social Web, they share the following
shortcoming. In order to achieve a good recommendation
performance, machine-learning-based recommendation solu-
tions must always be trained using a large amount of data,
and this training process needs to be invoked frequently to
capture the dynamic changes on the Social Web. Conse-
quently, large user datasets and powerful computing facilities
are required to support such online recommender systems,
which would not be generally available for small-size start-
up companies or independent developers, though they are
not a problem for tech giants like Facebook or Amazon.

Therefore, this may prohibit the use of machine-learning
techniques in lightweight recommendation systems that have
very few users.

C. OUR MAIN CONTRIBUTIONS
To alleviate the need for powerful computing facilities to train
recommendation models, in this paper we leverage ontology
techniques [29] and propose ontology-based personalized
recommender systems that apply a novel similarity metric,
called ontological similarity, to tackle the tag ambiguity prob-
lem without the need for model training. The novelty of this
ontological similarity is that it first leverages external domain
ontologies to disambiguate tag information and then semanti-
cally quantifies the relevance between user and item profiles
according to the semantic similarity of the matching concepts
of tags in the respective profiles. Ontological similarity is
semanticallymore accurate than the state-of-the-art similarity
metrics, and can thus be applied to improve the performance
of content-based tag-aware personalized recommendation on
the Social Web. In addition, as a model-training-free solu-
tion, ontological similarity is a good disambiguation choice
for lightweight recommender systems and a complement to
machine-learning-based recommendation solutions.

More specifically, in this work we propose a two-step top-
down disambiguation algorithm to address the tag ambiguity
problem by mapping tags to unique matching concepts in the
ontology: given either a user or an item profile, we first map
tags in its profile to all the possible concepts in the ontology
(this is called themapping step); however, due to homonyms,
it may be possible to map a certain tag to multiple concepts
(this is called multiple occurrence); e.g., ‘‘Jaguar’’ may refer
to a large cat, a brand of car, a military aircraft, or a tank
destroyer, so it can be mapped to four concepts in different
contexts. To overcome this challenge, we then propose a
top-down traversal solution to use the statistical information
of matching concepts of other tags in the same profile as
context to disambiguate tags with more than one matching
concept (this is called the disambiguation step).
After tag disambiguation, each tag will have at most one

matching concept in the ontology, which enables us to use
the semantic relevance of concepts in ontologies, called con-
cept similarity, to estimate the semantic similarity of the
corresponding tags. Consequently, the ontological similarity
is computed as the weighted sum of all individual concept
similarity values, which is an integration of the concept sim-
ilarity and the classic cosine or scalar similarity. Intuitively,
this proposed ontological similarity will be able to tackle the
tag ambiguity problem by mapping homonyms (resp., syn-
onyms) to semantically very different (resp., close) concepts
in the ontology based on the different (resp., similar) profile
context, resulting in a low (resp., high) ontological similarity
between homonyms (resp., synonyms).

In summary, this paper makes the following contributions:
• To alleviate the need for powerful computing facilities to
train recommendation models, we propose ontological
similarity to circumvent the tag ambiguity problem for
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applications in lightweight recommender systems on the
Social Web.

• A two-step top-down disambiguation algorithm is first
developed to solve the tag ambiguity problem by map-
ping tags to unique matching concepts in the ontol-
ogy. An algorithm is then proposed to use the concept
similarities in the ontology to compute the ontologi-
cal similarities between profiles. Finally, an algorithm
that uses ontological similarity for content-based tag-
aware personalized recommendation is proposed. The
computational complexity of these algorithms is also
investigated.

• We perform extensive experiments based on a pub-
lic Delicious dataset and evaluate the performance
of the proposed algorithms from three perspectives:
content-based personalized recommendation, tag dis-
ambiguation, and tag-to-ontology mapping. The experi-
mental results show that:
– (i) The proposed ontological-similarity-based

recommender systems are more effective than
the state-of-the-art cosine-similarity-based and
scalar-similarity-based recommender systems in
content-based tag-aware personalized recommen-
dations in terms of all evaluation metrics.

– (ii) The recommendation accuracy of our
ontological-similarity-based solution is better than
those of the clustering and autoencoder baselines,
but is worse than that of the DSPR baseline; how-
ever, its computational cost is much lower than
those of all machine-learning-based approaches
(especially, it is 118.4 times quicker than DSPR).
Therefore, due to its low computational cost and
reasonable recommendation accuracy, the proposed
ontology-based solution is a good disambiguation
choice for lightweight recommender systems and
a complement to machine-learning-based recom-
mendation.

– (iii) The proposed ontology-based solution greatly
outperforms (with more than double the per-
formance) the state-of-the art baselines in tag
disambiguation.

– (iv) The proposed top-down traversal tag allocation
strategy is much more efficient (around five times
quicker) than the existing tag allocation strategy,
while maintaining a similar allocation accuracy.

D. STRUCTURE OF THE PAPER
The rest of this paper is organized as follows. The follow-
ing Section II reviews related work. In Section III, we give
some preliminaries, and we recall the state-of-the-art simi-
larity measures for content-based personalization. Section IV
then describes the new ontological similarity measure, while
Section V deals with personalized recommendation based on
this ontological similarity. In Sections VI and VII we pro-
vide our experimental results and some concluding remarks,
respectively.

II. RELATED WORK
In this section we review related work on personal-
ization, folksonomy-based personalization, personalization
using ontologies, and word sense disambiguation.

A. PERSONALIZATION
Achieving personalized Web search and recommendation
that adequately consider the searcher’s personal attributes
and preferences is a very important topic of research [30].
As the first step of personalization, users’ preferences and
interests are required in order to build a user profile, which
is then used for personalization by re-ranking [5] (i.e., results
are re-ranked according to the searcher’s profile such that
personally relevant results appear higher in the search result
list) or query expansion [31] in search (i.e., a user’s query is
expanded, based on the user profile to reflect his/her particu-
lar interests).

In general, a user’s preferences or interests can be obtained
by leveraging information that is either explicitly or implicitly
provided. Explicit user preferences are usually offered by the
searcher directly by filling in relevant information or pro-
viding positive or negative relevance feedback for the given
results [6]. As explicit user preferences require extra efforts
from users, it may result in a lower quality experience,
since the amount of information that is available directly
depends on the user’s willingness to provide it directly.
Hence, as an effortless alternative for users, many approaches
have already been proposed to learn user preferences from
their implicit activities on the Web, such as the query his-
tory [7]–[10], the browsing history [11], the users’ current
tasks [12] or intent [13], and even eye-tracking during the
search session [14], which are then used for the personaliza-
tion of search results.

B. FOLKSONOMY-BASED PERSONALIZATION
One drawback of learning user preferences by aggregating
and mining users’ online activities is that these methods will
inevitably result in problems related to privacy [32]: due
to the great variety of online activities that users engage
in every day, Web logs usually contain sensitive informa-
tion such as home addresses, medical records, bank account
information, or even social security numbers. Therefore, as a
privacy-enhanced personalization technique, social annota-
tions (also known as folksonomies) have recently been at the
forefront of research efforts to enhancing Web search. This
is because social annotations are the results of users’ public
activities and contain little sensitive information about their
creators.

Existing research on using social data in information
retrieval includes folksonomies [17], [33], [34] andmore gen-
eral social media data across services [35]. Early approaches
for using social data to enhance information retrieval are the
Adapted PageRank methods, in particular SocialSimRank,
SocialPageRank [36], and Topic-Driven SocialRank [37],
which are used to compute similarities between users and
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their social networks to enhance Web search. A similar
method, called ScenticRank, which makes use of sentiment
information in addition to social graphs, has also been pro-
posed [38]. Furthermore, [39] describes a new approach
for acquiring precise resource descriptions based on social
annotations available in the social bookmarking service,
while [40] uses WordNet to determine the meaning of target
tags and their synonyms. Web search results are enhanced
using personalized social document representations in [41].

There are also several works that survey related literature.
In particular, in [42], Campana and Delmastro survey recom-
mender systems designed and implemented for online and
mobile social networks. In [43], it is given an overview of
content-based recommender systems, collaborative filtering
systems, hybrid approaches, and memory- and model-based
algorithms and features of collaborative tagging that are gen-
erally attributed to their success and popularity; a model for
tagging activities and tag-based recommender systems is also
presented. Context-aware recommender systems and their
relationship with social search are reviewed in [44] and [45].

As for folksonomy-based personalized search and recom-
mendation, the vector space model (VSM) [25] is the most
widely adopted data model for content-based personalization
solutions [15], [18], [20], [22]. VSM is a general model used
in information retrieval where the profile of a user (resp.,
a document) is mapped to a weighted vector in a universal
term space. Consequently, in order to achieve personalized
search and recommendation, VSM-based methods [15], [18],
[20], [22] usually first use folksonomies to model the docu-
ment and user profiles as weighted vectors whose dimensions
are tags and whose values in each dimension are the corre-
sponding tag weights. Then, online documents are re-ranked
according to a personalized ranking based on the similarity
between the two profiles. Specifically, [15] and [18] pro-
pose to use cosine similarity of folksonomy-based user and
document profiles to personalize search and recommendation
results on the Social Web, respectively. The work in [15]
is then extended by [22], where a social matching score is
introduced to better summarize the content of a document
and to add further information for social resources with very
little textual content (e.g., videos and images). Later, [20]
proposed to use scalar similarity as the metric for personal-
ization, which eliminates the user and the document profile
length normalization factors in the cosine similarity to avoid
penalizing popular documents.

The similarity metrics used in all these works [15], [18],
[20], [22] are either cosine or scalar similarity, which can only
match tags literally and thus leverage the semantics of tags
only to a limited extent. Due to uncontrolled vocabularies,
social tags are usually ambiguous, which leads to inaccurate
similarity values and greatly degrades the performance of
content-based tag-aware recommendation systems. A solu-
tion to this problem is to apply clustering in the tag space [19],
such that redundant tags are aggregated; this also reduces
ambiguities, since tags in the same cluster share the same
meaning. But tag clustering is usually time-consuming in

practice, so [21] further proposes a solution to use autoen-
coders to solve this problem, due to their capability to
extract abstract representations [46]. Finally, [28] proposes
a deep-semantic similarity-based personalized recommenda-
tion (DSPR) solution, which maps the tag-based user and
item profiles to an abstract deep feature space, where the
deep-semantic similarities between users and their target
items (resp., irrelevant items) are maximized (resp., min-
imized). As they are the state-of-the-art machine learning
solutions for the tag ambiguity problem, these three methods
are used as baselines in our experimental evaluation.

Besides content-based solutions, folksonomy-based rec-
ommendation can also be achieved by using collaborative fil-
tering and graph-based ranking approaches. Specifically, [47]
proposes to use model-based collaborative filtering based
on probabilistic matrix factorization for recommendation
using folksonomies. In addition, a graph-based ranking solu-
tion, called FolkRank is proposed in [33], which extends
the PageRank algorithm to folksonomies where tags, users,
and documents are treated as nodes and are connected
via assignments, and then a weight passing scheme is
used to derive the importance of these nodes. This work
focuses on content-based solutions—collaborative filtering
and graph-based solutions will be explored in future work.

C. ONTOLOGIES AND CONCEPT SIMILARITY
An ontology is a formal specification of the types, prop-
erties, and interrelationships of the entities for a particu-
lar domain of discourse [29]. Since ontologies are usually
constructed based on the consensus of domain experts, they
are highly reliable structured knowledge bases, having a
wide range of applications. However, the number of domain
ontologies are huge, and their content is various and usu-
ally inconsistent [48]; thus, in order to integrate ontologies
from different sources, many metrics have been proposed
to quantify the semantic relevance between concepts in the
ontologies.

In [49], Rada et al. propose the use of the length of the
shortest path between two concepts to measure their likeness,
while the solutions proposed by [50] and [51] use the relative
depths of two concepts and their least common ancestor.
Similarly, Jiang and Conrath [52] and Lin [53] propose to
use the information content of the two compared concepts
and their least common ancestor to calculate the similarity
between the two concepts. In [54], Li et al. proposes to com-
bine the shortest path with the depth of ontology information
to estimate the similarity non-linearly. As for ontologies con-
taining non-taxonomic semantic links, Hirst and St-Onge [55]
extend the taxonomic solution and take into account the
number of times that the link direction changes such that
the more changes in relation direction on the shortest path,
the lower the likeness. On the other hand, here we do not
propose new concept similarity metrics, but rather to exploit
ontology-based concept similarities to solve a novel practical
problem (inaccurate profile matching) in personalization.

35594 VOLUME 6, 2018



Z. Xu et al.: Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity

FIGURE 2. Difference between our approach and the state of art.

D. CONNECTING FOLKSONOMIES AND ONTOLOGIES
There is some work that tries to connect folksonomies with
ontologies and proposes strategies to solve the co-occurrence
problem in tag-to-ontologymappings. Specifically, [56] takes
the Open Directory Project (ODP) taxonomy1 as the under-
lying ontology (since each concept in ODP contains a set of
references to related online documents) to solve the multiple
occurrence problem, they propose to view these references as
context, and define the most appropriate concept as the one
associated with the highest number of references. However,
this method has some limitations that make its use restricted:
first, tag allocation is static, i.e., the most appropriate concept
is fixed for each tag; second, not all ontologies contain this
kind of statistical information as in the case of ODP. A more
dynamic and adaptive strategy is proposed byAngeletou et al.
in [57] based on Wu and Palmer’s [50]similarity from: it
first maps the given tag to all possible candidate concepts and
then uses the contextual information of its tag set to identify
the most relevant concept by computing the similarity of all
combinations of tags in this tag set using Wu and Palmer’s
similarity in the ontology. Given two tags with more than
one matching concept for each of them, this method selects
the two concepts having the highest similarity value above a
predefined threshold. In our work, as an alternative method
to adaptively map tags to ontologies, the strategy in [57]
is considered as the competitor of our proposed top-down
strategy in the evaluation.

There are also some studies that integrate ontologies with
folksonomies for personalized search or recommendation.
For example, the work in [56] investigates how to use domain
ontologies to model semantically more intuitive user pro-
files, and Movahedian and Khayyambashi [58] propose a
folksonomy-based recommender system based on user and
document profiles that are both semantically enriched by
an external knowledge base. Taxonomies are also leveraged
in [59] to generate semantic resource profiles for personal-
ized social tag recommendation. In summary, the purpose
of the above works is to solve the profile modeling prob-
lem in personalized search by using ontological information
to model semantically enriched user or resource profiles—
however, the metrics used in the above works to compute
the similarity between the enriched profiles are still the con-
ventional ones. Therefore, the personalized ordering is done

1http://www.dmoz.org/

by following the procedure (1) → (2) → (3), as shown
in Figure 2. On the other hand, ontologies in our work are
used to solve the tag ambiguity problem in personalization,
where an ontological similarity measure is proposed to lever-
age domain ontologies to disambiguate tags and compute
semantically more accurate similarity scores between user
and document profiles (so, our personalized ordering proce-
dure is (1) → (4) in Figure 2). Thus, we actually leverage
ontological information to solve different problems in the
process of personalization, and the techniques in our work can
be orthogonally combinedwith all the aboveworks to obtain a
further enhanced personalization (resulting in a hybrid order-
ing procedure (1)→ (2)→ (1)→ (4)).

E. TAG DISAMBIGUATION AND WORD SENSE
DISAMBIGUATION TO WIKIPEDIA
There are some works that aim to disambiguate tags in
folksonomies. Cattuto et al. [26] propose to measure the
relatedness between tags using a tag-tag co-occurrence graph,
called FolkRank, and three distributional measures with three
different vector space representations (tag context, document
context, and user context) of tags, where cosine similar-
ity is used to estimate the similarity between vectors. This
allows to disambiguate synonyms and homonyms using their
most related tags. Furthermore, the distributional measures
are extended with different aggregation methods (e.g., pro-
jection and macro-aggregation) in [27], where other simi-
larity metrics (e.g., Jaccard, Dice, and mutual information)
are also introduced. To evaluate the performance of our
ontology-based solution in disambiguating tags, these exist-
ing approaches will be used as baselines in our experiments.

Using ontologies for tag disambiguation is also sim-
ilar to the problem of word sense disambiguation
to Wikipedia, or simply disambiguation to Wikipedia
(D2W) [60]. Generally, the goal of D2W is to disambiguate a
set of explicitly identified substrings, e.g., words or phrases,
in a given document by mapping each substring to a
Wikipedia article. D2W also suffers from the multiple
occurrence problem: a substring may be mapped to mul-
tiple Wikipedia articles. To solve this problem, many
works [60]–[63] have been proposed to use the unambiguous
substrings (substrings mapped to a unique Wikipedia article)
in the same document and their mappedWikipedia articles as
semantic context to disambiguate the ambiguous substrings.
In order to improve accuracy, Li et al. [62] also introduce a
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confidence score in disambiguation and use high-confidence
disambiguated substrings as additional context to improve the
disambiguation accuracy of low-confidence disambiguated
substrings.

Therefore, it seems to be possible to apply D2W solutions
for tag disambiguation by using Wikipedia as the underly-
ing ontology (considering articles as concepts, connected by
hyperlinks or categories) and then use the uniquely matched
co-occurring tags as context to disambiguate tags. However,
in folksonomies, since each user usually annotates a docu-
ment with only a few (1–3) tags, and the portion of tags that
can be uniquely matched to the ontology is usually quite
small (e.g., in our experiments, only 10.2% of tags in the
Delicious dataset are uniquely matched to ODP, and more
than half of the user and document profiles in our experiments
have less than 3 uniquely matched tags), using only uniquely
matched tags usually cannot provide sufficient context for tag
disambiguation. Therefore, in this work we propose to use all
tags that can be matched in the ontology as context to ensure
sufficient contextual information for disambiguation.

III. PRELIMINARIES
We now briefly recall folksonomies and the vector space
model (VSM). We then formalize content-based personal-
ized recommendation in the context of these definitions;
finally, we recall two VSM-based similarity measures for
personalization.

A. FOLKSONOMIES AND VECTOR SPACE MODEL
A folksonomy is a tuple F = (U ,T ,D,A) [33], where
T = {t1, . . . , tm} is the set of tags that comprise the vocab-
ulary expressed by the folksonomy; U = {u1, . . . , uk} and
D = {d1, . . . , dk} are the sets of users and documents that
annotate and are annotated with the tags of T , respectively,
and A ⊆ U × T × D is the set of assignments (u, t, d)
of each tag t to a document d by a user u. For instance,
in the example in Figure 1, we have U = {u1, u2, u3},
T = {Apache, Jaguar,Mammal}, D = {d1, d2}, and A =
{(u1,Apache, d1), (u1, Jaguar, d1), (u2, Jaguar, d2),
(u2,Mammal, d2), (u3,Mammal, d2)}.
The vector space model (VSM) [25] is a general model

used in information retrieval where the profile of a user (resp.,
document) is mapped to a weighted vector Epu (resp., Epd ) in
a term space. As for the case of folksonomies, the terms
are tags, while the weights of terms are based on the fre-
quency of tags. So, the profile of a user u is defined as
Epu = {(t1,w1), . . . , (ti,wi), . . . , (tmu ,wmu )}, where every ti
is a tag, every wi is the number of times that u annotates
documents using ti, and mu is the number of different tags
used by u. Similarly, the profile of a document d is defined as
Epd = {(t1,w1), . . . , (tj,wj), . . . , (tmd ,wmd )}. In the example
in Figure 1, we have that Epu1 = {(Apache, 1), (Jaguar, 1)},
Epu2 = {(Jaguar, 1), (Mammal, 1)}, Epu3 = {(Mammal, 1)},
Epd1 = {(Apache, 1), (Jaguar, 1)}, and Epd2 = {(Jaguar, 1),
(Mammal, 2)}.

B. CONTENT-BASED PERSONALIZED RECOMMENDATION
IN FOLKSONOMIES
Using the above concepts, content-based personalized
recommendation in folksonomies can then be formulated as
follows. Given a user u, the system produces a ranked recom-
mendation list τ = [d1 > d2 > · · · > dk ] of all documents in
D such that di> dj if and only if Rank(di, u)>Rank(dj, u).
Here, Rank(d, u) is a ranking function measuring how rele-
vant document d is to user u:

Rank(d, u) = Sim(Epu, Epd ). (1)

Clearly, the personalization performance depends greatly
on the effectiveness of the adopted similarity measure in
Sim(Epu, Epd ).

C. SIMILARITY MEASURES FOR PERSONALIZATION
We now briefly discuss two state-of-the-art VSM-based sim-
ilarity measures for personalization in Web search, namely
cosine and scalar similarity—these are used later as baseline
methods in our experimental evaluation.

The most widely adopted similarity measure in person-
alization is cosine similarity [15], [18], [22]. Following the
VSM approach, the cosine similarity between a user profile
Epu and a document profile Epd , denoted SimCosine(Epu, Epd ),
is defined as follows:

SimCosine(Epu, Epd ) =

∑n
i=1(wui · wdi )√∑n

i=1(wui )2 ·
√∑n

i=1(wdi )2
, (2)

where n = |T | is the number of different tags, and every wui
(resp., wdi ) is the weight of tag ti in profile Epu (resp., Epd ).
Later, Vallet et al. [20] proposed the so-called scalar sim-

ilarity, which is similar to the cosine similarity, except that
it eliminates the user and the document profile length nor-
malization factors. Formally, the scalar similarity between
a user profile Epu and a document profile Epd , denoted
SimScalar (Epu, Epd ), is defined as follows:

SimScalar (Epu, Epd ) =
∑n

i=1(wui · wdi ), (3)

where n and all wui and wdi are defined as above.

IV. ONTOLOGICAL SIMILARITY
As discussed in Section I, the two state-of-the-art similarity
measures apply literal matching of tags; due to ambiguous
tags in folksonomies, using these two measures may result
in inaccurate similarity values between the profiles. To over-
come this problem, we propose an ontological similarity
measure that uses ontologies to disambiguate tags and lever-
ages concept similarity in ontologies to quantify the semantic
relevance of tags in profiles.

The computation of this ontological similarity measure
mainly consists of three steps: (i) tag allocation: the tag in a
profile is first semantically matched to a single concept in an
ontology; (ii) computing concept similarities:we then use the
semantic relevance of concepts in ontologies to estimate the
semantic similarity of corresponding tags; and (iii) computing
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ontological similarities: the ontological similarity of profiles
is obtained by integrating the concept similarities with the
conventional cosine and scalar similarities.

In this work, we generally refer to the Open Directory
Project (ODP) taxonomy2 as an example of an underly-
ing domain ontology. ODP is one of the largest and most
comprehensive human-edited directories of the Web, and
is widely adopted by many other research works in Web
personalization [56]. However, the methods proposed here
are not restricted to ODP and can also be used with other
ontologies, such as WordNet.

A. TAG ALLOCATION
Ontologies can be seen as a directed graph in which concepts
are interrelated mainly via subsumption (is-a) relationships.
Therefore, concepts in the ODP ontology are organized hier-
archically as a taxonomy, forming a tree structure—it can thus
be seen as an open directory of the Web.

During tag allocation, due to homonyms, it may be possible
to map a certain tag to multiple concepts (called multiple
occurrence); therefore, solutions are needed to find the most
relevant concept as the matching concept of this tag. One
existing method [57] is to first map the given tag to all
possible candidate concepts and then use the contextual infor-
mation of its profile to identify the most relevant concept by
computing the similarity of all combinations of tags in this
profile using the Wu and Palmer similarity in the ontology.
Given two tags with more than one matching concept for
each of them, this method selects the two concepts having
the highest Wu and Palmer similarity value. Given an ontol-
ogy with r concepts and a profile with size m, assuming
the computational cost of the Wu and Palmer similarity to
be O(1), the complexity of tag allocation for each profile is
up to O(m2

· r2) in the worst case, because there are O(m2)
combinations of tag pairs, and each pair costs O(r2) in the
worst case.

Here, we thus develop a more efficient two-step top-down
disambiguation, which runs in timeO(m·r2) (O(m·r ·log(r)),
if the ontology is a balanced tree) in the worst case. Similarly
to [57], the first step of this top-down strategy is to map
the tags to all possible concepts in the ODP taxonomy; and
then, for each tag with more than one matching candidate
concept, we apply a top-down traversal from the root of
the tree structure, to iteratively narrow down the number
of candidate concepts by using the statistical information
of the matching concepts of other tags in the same profile
as context. The algorithm for tag allocation is provided in
Algorithm 1. Intuitively, it disambiguates tags in a given pro-
file by mapping the tags to concepts in the domain ontology
and using the matching concepts of other tags as context to
disambiguate the tags with ambiguity. We now describe the
detailed process.
Mapping Step (Lines 4–11): Given a profile, for each

tag, we traverse the whole taxonomy to identify all possible

2http://www.dmoz.org/

ALGORITHM 1: TagAllocation(Ep,Ont)
Input: profile (either user or document profile): Ep, domain

ontology: Ont
Output: hashmapmatch — a hashmap saving the matching

concepts of tags in Ep

1 foreach concept c ∈ Ont do
2 cwc = 0; // Initialize the concept weight of c, denoted cwc

3 hashmapmatch = ∅;
4 foreach (tag t, weight wt ) ∈ Ep do
5 // Mapping step
6 list t = ∅;
7 foreach concept c ∈ Ont that matches t do
8 list t .add(c);
9 UpdateConceptWeights(c,wt ,Ont); // Algorithm 2

10 if SizeOf (list t ) = 1 then
11 hashmapmatch.add(t, c); // set c to be the matching

concept of t;

12 foreach (t,wt ) ∈ Ep with SizeOf (list t ) > 1 do
13 // Disambiguation step

14 cs = Root(Ont);
15 do
16 MaxWeight = 0;
17 MaxConcept = null;
18 foreach concept c′ ∈ ChildrenOf (cs) do
19 if DescendantsOf (c′)

⋂
list t 6= ∅ then

20 if cwc′ 6 MaxWeight then
21 list t .remove({DescendantsOf (
22 c′)

⋂
list t })

23 else
24 if MaxConcept 6= null then
25 list t .remove({DescendantsOf (
26 MaxConcept)

⋂
list t });

27 MaxWeight = cwc′ ;
28 MaxConcept = c′;

29 cs = MaxConcept // update cs to the max child
concept

30 while SizeOf (list t ) > 1;
31 hashmapmatch.add(t, list t [0]); // set the only concept left

in list t to be the matching concept of t
32 return hashmapmatch.

ALGORITHM 2: UpdateConceptWeights(c,w,Ont)

1 cwc+ = w; // increase the concept weight of concept c by w
2 foreach concept ci ∈ AncestorsOf (c) do
3 cwci+ = w; // increase the concept weight of concept ci

by w

candidate concepts in the hierarchy (Lines 6–8), where the
matching is based on string equivalence; if there is no candi-
date concept found for a tag, we call this tag unmatched tag;
if only one candidate concept is found for a tag, it is directly
selected as the matching concept for this tag (Lines 10–11);
if more than one concept is found (multiple occurrence prob-
lem), wemark these concepts as candidate matching concepts
for this tag and eliminate its ambiguity in the second step.
To help disambiguation, we increase the concept weights
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FIGURE 3. Allocation of tags in the ODP taxonomy.

(denoted cw) of the (candidate) matching concept and all its
ancestors by the corresponding tag weights (denoted w).
Disambiguation Step (Lines 12–29): After the mapping

of all tags, a top-down disambiguation process is invoked
to resolve the multiple occurrence problem; specifically, for
each tag with multiple candidate concepts, we first (i) assign
the root of the taxonomy to a concept variable cs (Line 14),
and (ii) compare the concept weights of the child concepts of
cs that contain at least one candidate concept as its descendant
(Lines 18–26), then (iii) select a child concept with highest
concept weight as new cs (Line 27) and unmark the can-
didate concepts that are not the descendants of the new cs
(Lines 21–22 and 25–26); we repeat (ii) and (iii) until only
one candidate concept is left and select it as the matching
concept of this tag (Lines 28–29). Note that if multiple child
concepts have a same highest weight, the one first seen by the
iterator is selected.

The following example illustrates this tag allocation algo-
rithm and its advantage in dynamically allocating concepts to
tags according to their semantics.

Example 1: Consider a folksonomy extending the one of
Figure 1, and let u be a user who is a military enthusiast
(inferred from the user profile) that has a user profile Epu con-
taining two tags, Apache and Jaguar, with weights 5 and 3,
respectively—i.e., Epu = {(Apache, 3), (Jaguar, 5)}.

We would like to allocate these two tags to concepts
in the ODP ontology as shown in Figure 3. According to
Algorithm 1, we first initialize all concept weights in the
ontology to 0 (as shown in Figure 3 (1)). Then, we traverse
the whole hierarchy to find the corresponding candidate
concepts of both tags and save them in the respective lists;
since there is only one candidate concept, Apache, in the
list listApache, we directly select this concept as the (direct)
matching concept of the tag ‘‘Apache’’ and also increase the
concept weights of Apache and its ancestors by 3 (as shown
in Figure 3 (2)).
However, as for the tag ‘‘Jaguar’’, there are four candidate

concepts found in the list listJaguar (numbered for reference
purposes). So, the size of listJaguar is larger than 1. Conse-
quently, we also increase the concept weights of all Jaguar

35598 VOLUME 6, 2018



Z. Xu et al.: Lightweight Tag-Aware Personalized Recommendation on the Social Web Using Ontological Similarity

concepts and their ancestors by 5 and invoke the disambigua-
tion procedure to solve the multiple occurrence problem in
the second step. The disambiguation uses concept weights
as context to incrementally narrow the size of listJaguar .
This process is started by setting the root concept of the
ODP ontology as the current concept variable cs (as shown
in Figure 3 (3)). Then, we compare the concept weights of cs’s
child concepts, of whom at least one of these four candidate
concepts are descendants. As the child concept Military has
the highest concept weight (13 vs. 5), we remove Jaguar3
and Jaguar4, which are not the descendants ofMilitary, from
the candidate list, listJaguar , and reset conceptMilitary as the
new cs (as shown in Figure 3 (4)). As there are still two dis-
tinct candidate concepts (Jaguar1 and Jaguar2) in listJaguar ,
the do-while loop in Algorithm 1 continues to compare the
concept weights ofMilitary’s child concepts; at this iteration,
Aircraft defeats Cavalry; so, we further remove Jaguar2, and
now listJaguar contains only one concept. We thus select the
only remaining concept Jaguar1 as the matching concept of
the tag ‘‘Jaguar’’ (as shown in Figure 3 (5)).

Similarly, given an online document d about animals, with
profile Epd = {(Mammal, 2), (Jaguar, 6)}, the concept Mam-
mals can be directly identified as the matching concept of
tag ‘‘Mammals’’. However, after the disambiguation process,
Jaguar4 is selected as the matching concept of the same tag
‘‘Jaguar’’ in profile Epd (as shown in Figure 3 (6)). This exam-
ple shows the advantage of our tag allocation methodology in
dynamically allocating tags to the semantically most suitable
concepts. �

The following result states the computational cost of tag
allocation with Algorithm 1 in the worst case, in general and
when the underlying taxonomy is a balanced tree. Note that
the case where the tree structure of the taxonomy is very
unbalanced (which is the reason for the higher worst-case
complexity in general) is very rare in practice.
Proposition 1: Given a taxonomy with r concepts and a

(user or document) profile of sizem, Algorithm 1 runs in time
O(m ·r2) in the worst case. If the taxonomy is a balanced tree,
then Algorithm 1 runs in timeO(m·r ·log r) in the worst case.

Proof: The for loop in Line 1 takes time O(r) (for
the initialization). The next loop in Line 4 (for the map-
ping) consists of O(m · r) steps for general taxonomies, and
O(m · log r) steps if the underlying taxonomy is a balanced
tree. More precisely, two for loops in Lines 4 and 7 result in
O(m) iterations, if concepts are accessible inO(1), e.g., saved
in a hashmap, and the number of matching concepts is treated
as a constant, while the worst-case cost of the concept weight
update in Line 9 is O(r) for general taxonomies and O(log r)
for balanced-tree taxonomies.

Both are dominated by the disambiguation step, whose
time complexity is O(m · r2) (resp., m · O(r log r) for
balanced-tree taxonomies) in the worst case: Line 12 is done
in O(m) steps (outer for loop in Line 12), each of them needs
O(r2) in the worst case for general taxonomies andO(r log r)
for balanced-tree taxonomies. To see that this is the case, note
that the do loop in Line 15 together with the nested for loop

in Line 18 results in O(r) (resp., O(log r) for balanced-tree
taxonomies) iterations in the worst case. This is because the
do loop iteratively selects a concept in each level of the
taxonomy (from the root to a leaf in the worst case) as cs,
and the nested for loop iteratively traverses all children of
the current cs; consequently, these two loops together result
in a top-down traversal of the taxonomy following only one
branch of the tree, and each concept in this branch will be
traversed at most once, such that the number of iterations
for the traversal is O(r) (resp., O(log r) for balanced-tree
taxonomies) in the worst case. However, in each iteration of
the for loop, we also have to obtain the descendant list of
the current traversed concept c′ (i.e., DescendantsOf (c′) in
Line 19), whose computational cost is O(r) in the worst case.
So, each iteration of the outer for loop in line 12 takes O(r2)
(resp.,O(r ·log r) for the balanced-tree case) in the worst case,
and the total worst case time complexity for Algorithm 1 is
thus O(m · r2) (resp., O(m · r · log r)). �

B. COMPUTATION OF ONTOLOGICAL SIMILARITY
After the tag allocation, we are able to compute the onto-
logical similarity between a given user profile and a given
document profile. For a matching concept cu of a user profile
tag tu, we first define its nearest concept cd as the matching
concept of a tag td in Epd that satisfies the following two
conditions: (i) the least common ancestor (lca) of cu and its
nearest concept cd must be a descendant of (or the same as)
the lca of cu and any other matching concept of a tag in Epd ;
and (ii) if there exist other matching concepts of a tag in Epd
whose lca with cu is the same as that of cd , these concepts
must be in a lower level of the hierarchy than (or the same
level as) cd . The intuition behind this definition is that concept
specifications in a taxonomy are recursively refined, so the
defined nearest concept cd is the semantically closest one to
cu compared to any other matching concept of a tag in Epd .
Then, the ontological similarity can be obtained by the

following steps: (1) For each matching concept cu of a user
profile tag tu, we use its semantic relevance to the nearest
concept cd of a tag td to estimate the semantic similarity of
tu and td . We call this similarity measure concept similarity
and use breadth-first search to find the nearest concept in
the taxonomy bottom-up. (2) We then integrate the resulting
concept similarities with the cosine or scalar similarities to
get the final ontological similarity.

We summarize the process of computing the cosine-based
ontological similarity in Algorithm 3. Generally, given a user
profile pu and a document profile pd , this algorithm estimates
the semantic similarity between the two given profiles by
using the concept similarity between the matching concepts
of the tags in pu and their nearest concepts in pd . Intuitively,
this ontology-based similarity will be able to achieve seman-
tically more accurate similarity values, because homonyms
(resp., synonyms) are mapped to semantically very differ-
ent (resp., close) concepts in the ontology, based on the
different (resp., similar) profile context, resulting in a low
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ALGORITHM 3: OntologicalSimilarity
(
Epu, Epd , hashmappu ,

hashmappd ,Ont
)

Input: User profile: Epu; document profile: Epd ; domain
ontology: Ont; hashmap saving matching concepts in
pu and pd : hashmappu and hashmappd

Output: ontSimCosine — cosine-based ontological similarity
of Epu and Epd

1 foreach concept c ∈ Ont do
2 counterc = 0; // counts the number of times c is selected

as the nearest concept
3 sumu = 0; sumd = 0; Similarity = 0;

4 foreach (tu,wu) ∈ Epu do
5 sumu += (wu)2; cu = hashmappu .get(tu); // wu is the

weight of tag tu in Epu, and cu ∈ Ont is the matching
concept of tu

6 if cu 6= null and SizeOf (hashmappd ) > 0 then

7 lca = cu; lca′ = null; cd = null; // lca is found
bottom-up from cu to root

8 do
9 foreach concept c′ ∈ Subtree(lca) with c′ 6∈

Subtree(lca′), in breadth-first exploration do
10 if c′ is the matching concept of a tag td with

(td ,wd ) ∈ Epd then
11 // wd is the weight of tag td in Epd
12 cd = c′;
13 countercd ++;
14 break;

15 if cd = null then
16 lca′ = lca;
17 lca = Parent(lca);

18 while cd = null;
19 conSim = ConSim(cu, cd ) according to Equations 4

or 5
20 else
21 // when tu is unmatched tag, or no tag in Epd has

matching concept
22 if tu = td for a (td ,wd ) ∈ Epd then
23 conSim = 1
24 else
25 conSim = 0;

26 Similarity += wu · wd · conSim;

27 foreach (td ,wd ) ∈ Epd do
28 k = 1;
29 if countercd > 1 then
30 k = countercd ;

31 sumd += k · (wd )2;

32 ontSimCosine =
Similarity

√
sumu·

√
sumd

; // according to Equation 6

33 return ontSimCosine.

(resp., high) ontological similarity between homonyms (resp.,
synonyms) in different profiles.

Each step of Algorithm 3 is explained in detail as follows:
(1) Initialization (Lines 1–2): We first set counterc = 0

for each concept c in Ont (Lines 1–2). The variable
counterc is used to record the number of times that c
is selected as the nearest concept of a tag in the user
profile.

(2) Concept Similarity Computation (Lines 4–26): For
each tag tu with a weight wu in Epu, we check whether
it has a matching concept cu in Ont , and whether at
least one tag in Epd has a matching concept (Line 6).
If not, we set the concept similarity to 1, if tu is also
in Epd , and to 0, otherwise (Lines 20–25). If a match-
ing concept is found, we conduct a bottom-up search
to find its nearest concept cd and lowest common
ancestor concept (lca), and then compute the concept
similarity of cu and cd , using the measures presented
in Section IV-B.1 (Lines 7–19). The detailed search
process is as follows:
(i) We first assume lca is cu and use lca′ to store

the lowest common ancestor selected in the last
iteration (Line 7).

(ii) For each concept c′ in the subtree with lca as
root and also not in the subtree with lca′ as root,
we check whether c′ is the matching concept of
a tag t ′ in Epd . If so, we select c′ as the nearest
concept cd of cu, increase countercd by one, and
stop the search (Lines 9–14). To make sure that
the first found matching concept of Epd is the
nearest concept of cu as defined above, we use
breadth-first search.

(iii) After the traversal of the subtree, if there is no
valid cd found, we set the value of lca′ to be lca
and use the parent concept of the current lca as
the new lca (Lines 15–17). Steps (ii) and (iii) are
repeated until a valid cd is found (Line 18).

(3) Ontological Similarity Computation (Lines 27–32):
Finally, the ontological similarity is computed accord-
ing to the proposed metric in Equation 6 in
Section IV-B.2, which integrates the concept similarity
with the traditional cosine similarity (line 32).

The algorithm of computing the scalar-based ontological
similarity is very similar to Algorithm 3, except that it does
not require the normalization factors in Lines 3, 5, and 27–31,
but returns directly the weighted sum of concept similar-
ities in Line 26 as the scalar-based ontological similarity
(cf. Equation 7).

The following result states the cost of computing ontologi-
cal similarities with Algorithm 3 (when thematching between
tags and concepts is also a part of the input in the form of an
assignment of concepts to tags and vice versa).
Proposition 2: Given a taxonomy with r concepts, user

profile of size mu, and a document profile of size md ,
Algorithm 3 runs in time O(mu · (r + md )) in the worst case.

Proof: The for loop in Line 1 takesO(r) steps. The loop
in Line 4 consists of O(mu) steps, each of which in the worst
case consists of O(r) steps. This is because the statement in
Line 9 makes sure that each concept in the ontology will be
traversed at most once in the do-while loop in Lines 8–18.
In addition, checking whether tu is also contained in Epd in
Line 22 needs O(md ). Finally, the loop in Line 27 takes
time O(md ). The total worst-case running time is therefore
O(mu · (r + md )). �
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1) CONCEPT SIMILARITY
To measure the similarity between two concepts, we make
use of two effective metrics based on two important dimen-
sions of taxonomies, i.e., the concepts’ relative depth and
their shortest path, whose effectiveness has been well-proven
in existing works [51], [54], [64]. However, the use of our
proposed technique is not restricted to these two path-based
metrics; other metrics, such as the information-content-based
Jiang-Conrath similarity [52] and the Lin similarity [53] can
also be adopted.

The relative depth in the taxonomy of the concepts is
an important dimension, because concept specifications are
recursively refined, so: (i) concepts in upper levels are less
similar than those in lower levels; and (ii) concepts sub-
sumed by an upper common ancestor are more different than
those subsumed by a lower ancestor. Consequently, a classic
hierarchy-based metric [50], [51] can be used to define the
similarity of two concepts cu and cd , namely:

ConSim1(cu, cd ) =
2 · l(lca(cu, cd ))
l(cu)+ l(cd )

, (4)

where lca(cu, cd ) denotes the lowest common ancestor of the
concepts cu and cd , and l(c) denotes the level of a concept c
(with l(root) = 0).

Moreover, since the shorter the shortest path between two
concepts is, the (semantically) closer the two concepts are,
another metric is to compute the similarity between two
concepts by the reciprocal of their shortest path length [49].
Formally, for two concepts cu and cd :

ConSim2(cu, cd ) =
1

SP(cu, cd )+ 1
, (5)

where SP(cu, cd ) is the shortest path between cu and cd ; and
we have SP(cu, cd ) = l(cu)+ l(cd )− 2 · l(lca(cu, cd )), if the
ontology forms a tree structure, like the ODP taxonomy.
Example 2: Continuing Example 1, the concept similar-

ities for the tags in Epu and Epd are computed as follows.
For Jaguar1, we conduct breadth-first search for sub-
trees, using its ancestors (bottom-up) as subtree root, and
find that its nearest concept is Mammals, and the lca is
the root concept. As l(root) = 0 and l(Jaguar1) =
l(Mammals) = 3, the concept similarity in Equation 4
is ConSim1(Jaguar1, Mammals) = 2×0

3+3 = 0. Similarly,
ConSim1(Apache,Mammals) = 0. The concept similarity in
Equation 5 for these two cases can be computed analogously.

�

2) ONTOLOGICAL SIMILARITY
Finally, the ontological similarity between two profiles Epu
and Epd is computed as the weighted sum of all individ-
ual concept similarity values, which is an integration of
the cosine or scalar similarity and the concept similarity.
Formally, the cosine-based ontological similarity is defined
as follows:

ontSimCosine(Epu, Epd ) =
∑|Tu|

i=1 (wui ·wdi ·ConSim(cui ,cdi ))√∑|Tu|
i=1 (wui )

2·

√∑|Td |
j=1 kj·(wdj )

2
, (6)

where |Tu| and |Td | are the numbers of different tags in
Epu and Epd , respectively; cui is the matching concept of a tag
tui in Epu; cdi is cui ’s nearest concept mapped by tdi in Epd ; and
wui ,wdi , andwdj are the weights of tags tui , tdi , and tdj , respec-
tively. As some concepts in Epd may be used multiple times as
the nearest concept of different concepts in Epu (e.g.,Mammals
is used for both Apache and Jaguar1 in Example 2), kj is
the number of times that tdj ’s matching concept is used as
the nearest concept, if tdj is a multi-selected tag; otherwise,
kj= 1 (see Lines 27–29 in Algorithm 3). ConSim(cui , cdi ) is
the concept similarity of cui and cdi as predefined, if tui has a
matching concept; if tui is unmatched, then ConSim(cui , cdi )
is 1, if the same tag is in Epd , and 0, otherwise.

Similarly, the scalar-based ontological similarity is for-
mally defined as follows:

ontSimScalar (Epu, Epd ) =
∑|Tu|

i=1(wui · wdi · ConSim(cui , cdi )),

(7)

The following example illustrates the computation of the
above ontological similarity measure, as well as its advan-
tages.
Example 3: Consider again the running example, and

adopt Equation 4 for concept similarity. Then, it is straight-
forward to compute the cosine-based ontological similar-
ity between Epu and Epd as ontSimCosine(Epu, Epd ) = 0,
because ConSim1(Jaguar1, Mammals) = ConSim1(Apache,
Mammals) = 0.
However, given a new online document d ′ regarding a

military organization with Epd ′ = {(Military, 10)}, as in
Examples 1 and 2, we obtain ConSim1(Jaguar1,Military) =
ConSim1(Apache,Military) = 2×1

1+3 = 0.5. Subsequently,
we compute the ontological similarity value between Epu and
Epd ′ as follows:

ontSimCosine(Epu, Epd ′ )=
5×10×0.5+3×10×0.5√
(5)2+(3)2 ·

√
2×(10)2

= 0.485,

where the weight of Military is multiplied by k = 2 in the
normalization, because it is selected as the nearest concept
twice for both Jaguar1 and Apache.

Hence, if we only consider the personalization factor,
d ′ will be re-ranked much higher than d , which is intu-
itively consistent with the user’s preferences. On the contrary,
if we adopt the cosine or scalar similarity for personalized
re-ranking, it will result in an incorrect ranking: d is ranked
higher than d ′, as Epd shares the tag ‘‘Jaguar’’ with Epu. �

V. PERSONALIZED RECOMMENDATION BASED
ON ONTOLOGICAL SIMILARITY
We now present an algorithm using ontological similarity
between the user profile and document profiles to achieve
personalized recommendation on the Social Web.

Due to the relatively high computational cost of computing
ontological similarities, in this work, to achieve a real-time
online response of personalized search and recommendation,
we reasonably assume that the user’s preferences (described
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by the user profile) and the social summaries of documents
(described by the document profiles) are usually stable in
a short period of time. Therefore, for a given user, we first
conduct an off-line pre-processing to compute the ontological
similarities between this user’s profile and the document
profiles, and then store the resulting similarity values for
the evaluation of online personalized recommendations. Note
that, to adapt to less frequent changes of user and document
profiles, periodic profile updates can be conducted, and the
similarity computation process can be done again.

ALGORITHM 4: PrecomputeOntologicalSimilarity
(Epu, listEpd ,Ont)

Input: User profile Epu, a list of document profiles listEpd , and
domain ontology Ont

Output: listontSim — a list stores the resulting ontological
similarity values

1 hashmapEpu = TagAllocation(Epu,Ont); // Algorithm 1
2 foreach Epdi ∈ listEpd do
3 hashmapEpd = TagAllocation(Epdi ,Ont); // Algorithm 1
4 SimEpdi = OntologicalSimilarity(Epu, Epdi , hashmapEpu ,
5 hashmapEpd ,Ont); // Algorithm 3
6 listontSim.add(SimEpdi );

7 return listontSim.

The pre-computation of ontological similarities is
described in Algorithm 4. It takes as input a weighted vector
denoting a user u’s profile (Epu), a list of weighted vectors
denoting document profiles (listEpd ), and an external domain
ontology (Ont). This algorithm consists of three steps: first,
it allocates (maps) tags in Epu to concepts inOnt (Line 1); then,
for each document di in the list listEpd , it allocates tags in Epdi
to concepts in Ont , computes the ontological similarity of Epu
and Epdi , and includes the resulting ontological similarity in a
list listontSim (Lines 2–5). The list is finally returned for future
use in personalized recommendation (Line 6).

The following result states the computational cost of
Algorithm 4.
Proposition 3: Given a taxonomy Ont with r concepts,

a user profile Epu of size mu, and a document profile list
listEpd of length n, with document profiles Epdi of size md ,
Algorithm 4 runs in time O(n · md · r2 + n · mu · (r + md )+
mu · r2) in the worst case. If the underlying taxonomy is a
balanced tree, then the worst-case complexity of Algorithm 4
is O(n · md · r · log r + n · mu · (r + md )+ mu · r · log r).

Proof: According to Proposition 1, allocating user pro-
file tags in Line 1 takes O(mu · r2) (resp., O(mu · r · log r)
for a balanced-tree taxonomy) in the worst case. In addi-
tion, the for loop in Line 2 takes n steps, each of which in
the worst case needs O(md · r2 + mu · (r + md )) (resp.,
O(md · r · log r + mu · (r + md )) for the balanced-tree case):
specifically, allocating document profile tags in Line 3 takes
O(md · r2) (resp., O(md · r · log r)), and the computation of
the ontological similarity in Line 4 takes O(mu · (r + md ))
based on Proposition 2. So, the total worst-case running time

of Algorithm 4 is O(n ·md · r2 + n ·mu · (r +md )+mu · r2)
(resp., O(n ·md · r · log r + n ·mu · (r +md )+mu · r · log r)
for the balanced-tree case). �
So, based on Equation 1, personalized recommendation

can be done by sorting the documents according to onto-
logical similarity values in the returned list. The next result
states the computational cost of this ontological-similarity-
based recommendation.
Proposition 4: Given a pre-computed ontological similar-

ity list listontSim of size n, the time needed for personalized
recommendation using ontological similarity is O(n · log n)
in the worst case.

Proof: Given the ontological similarity values, for per-
sonalized recommendation we have to sort n documents,
which is possible in time O(n · log n) in the worst case. �

VI. EXPERIMENTAL STUDIES
In this section, extensive experiments are conducted to
evaluate the performance of the ontological-similarity-based
personalized recommender systems from three perspec-
tives: content-based personalized recommendation, tag dis-
ambiguation, and tag-to-ontology allocation.
Experiments are conducted over a public real-world

Delicious dataset, which is gathered from the Delicious book-
marking system, released in HetRec 2011 [65], and used in
several existing tag-aware personalized recommender sys-
tems [21], [28]. For a fair comparison, the same preprocessing
as in [21], [28] is conducted to remove infrequent tags that
are used less than 15 times. The statistical information about
the resulting dataset is as shown in Table 1, where 41.9% of
users assigned less than 50 tags; 31.3% and 22.8% of users
had 50-100 and 100-200 tags, respectively; and only 4% of
users have more than 200 tags.

TABLE 1. Dataset information.

Furthermore, as stated previously, we use the ODP tax-
onomy as the underlying ontology, which contains 802, 456
categories (i.e., concepts) in total. Note also that 1, 637 tags
(47.7% of all the tags) in the Delicious dataset can be mapped
to the ODP taxonomy. All models are implemented using
Python, and run on a server with two 8-core Haswell proces-
sors and 128 GB memory.

A. MAIN PERFORMANCE IN CONTENT-BASED
PERSONALIZED RECOMMENDATION
In this section, we evaluate the performance of the pro-
posed ontological-similarity-based recommendation model
in content-based tag-aware personalized recommenda-
tion. Here, we implement the ontological-similarity-based
recommender systems using all combinations of concept sim-
ilarity measures and ontological similarity measures intro-
duced in this chapter, resulting in two systems based on
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scalar-based ontological similarity using either concept simi-
larity ConSim1 (denoted OntoScalar1) or ConSim2 (denoted
OntoScalar2), and the other two systems based on the
cosine-based ontological similarities (denoted OntoCos1 and
OntoCos2, respectively).

1) EVALUATION METHODOLOGY
Although the relevance and/or value of personalization
depends on users’ subjective views, several studies [66]–[68]
have shown that users’ tagging behavior is closely correlated
with their personal relevance judgment; i.e., if a document
is annotated by a user with certain tags, this document is
very likely to be visited by the same user if it appears as a
recommendation result. This is the basis of our automatic
evaluation: the plausible documents in personalized recom-
mendation are the ones annotated by a user.

Therefore, we assume that the target documents of a given
user are those annotated by this user. Thus, for each user u in
the dataset, we randomly select 1 to 3 documents d annotated
by this user as his/her target document and put the selected
(u, d) pairs in a testing dataset, where we aim at recommend-
ing d given u in the testing. Please note that the reason of
selecting only a few (1 to 3) user-item testing samples for each
user is to better simulate the practical usage of lightweight
recommender systems. Then, for each (u, d) pair in the testing
set, we remove from the dataset all the assignments given by
u to d ; the remaining assignments in the dataset are used as
a historical dataset, which is used to construct user and item
profiles for content-based tag-aware personalized recommen-
dations and also used for training in machine-learning-based
baselines. Finally, we get 3, 529 user-item pairs in the testing
dataset and 274, 362 assignments in the history dataset.
As for the evaluation of the personalized recommenda-

tion, the most popular metrics are precision, recall, and
F1-score [24]. Since most users usually only browse the
topmost recommended news, we apply these metrics at a
given cut-off rank k , i.e., considering only the top-k results on
the recommendation list, called precision at k (P@k), recall
at k (R@k), and F1-score at k (F@k). Formally,

P@k = 1
|U ′|

∑
u∈U ′ Pu@k, Pu@k = Cu@k

k , (8)

R@k = 1
|U ′|

∑
u∈U ′ Ru@k, Ru@k = Cu@k

Nu
, (9)

F@k = 2·P@k·R@k
P@k+R@k , (10)

where k is the length of the recommendation list, U ′ is the
set of users in the test (sub)sets, Pu@k and Ru@k are the
precision and recall at k for a given user u, respectively,Cu@k
is the number of u’s target news in the recommendation list,
and Nu is the total number of u’s target news in test (sub)sets.
Although precision, recall, and F1-score are very useful

metrics, they do not consider the positions of the target doc-
uments in a recommendation list. In practice, users always
prefer to have their target documents ranked as top as pos-
sible in a recommendation list; therefore, we also employ
the mean reciprocal rank (MRR) [69] as evaluation metric,
which gives greater importance to documents ranked higher.

MRR measures the performance of a personalized function
by assigning a value 1/r for each test sample and then com-
puting the mean value. Formally,

MRR =
1
n

n∑
j=1

1
rj
, (11)

where rj is the ranking position of the target document of the
j-th test sample in the personalized recommendation list, and
n is the total number of test samples.

2) EVALUATION VS. CONVENTIONAL
SIMILARITY SOLUTIONS
We first compare the personalized recommendation perfor-
mance of tag-aware content-based recommender systems
using ontological similarities to those using the conventional
cosine and scalar similarities. Therefore, two content-based
tag-aware personalized recommender systems based on the
widely used state-of-the-art similarity metrics, cosine simi-
larity [15] and scalar similarity [20], are selected as baselines.

Figure 4 depicts in detail the personalized recommendation
performance of the four ontological-similarity-based recom-
mender systems (denotedOntScalar1,OntScalar2,OntCos1,
and OntCos2) and the cosine-similarity-based and scalar-
similarity-based recommender systems (denoted Cosine and
Scalar , respectively) on the Delicious dataset, in terms of
MRR, P@k , R@k , and F@k with cut-off ranks k = 5,
10, . . . , 40. In addition, to evaluate their general perfor-
mance, we further calculate the average P@k , R@k , and
F@k of these recommender systems, which are then sum-
marized, together with their numerical values of MRR,
in Table 2.
Generally, as shown in Figure 4 and Table 2, the

recommender systems based on the scalar-based similarity
metrics, Scalar , OntScalar1, and OntScalar2, greatly out-
perform those based on the cosine-based similarity metrics,
Cosine, OntCos1, and OntCos2. This is consistent with the
results reported in [20] that scalar similarity can outperform
cosine similarity in content-based tag-aware personalized
recommendation by eliminating the profile length normal-
ization factors. In addition, the recommender systems based
on the scalar-based ontological similarities, OntScalar1 and
OntScalar2, always outperform the recommender system
based on the traditional scalar similarity, Scalar , at all cut-off
ranks k and in terms of all evaluation metrics. Similarly,
the recommender systems using the cosine-based ontological
similarities, OntCos1 and OntCos2, also outperform the one
using the cosine similarity, Cosine, in all cases. This finding
demonstrates our conclusion that the proposed ontological
similarity can significantly improve the performance of tradi-
tional similarity metrics in content-based tag-aware person-
alized recommendation by using ontologies to address the
tag ambiguity and redundancy problems, and to semantically
measure the profile similarities.

Finally, the recommender systems using ontological
similarities that are based on Consim1, i.e., OntScalar1
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FIGURE 4. The recommendation performance of Scalar , OntScalar1, OntScalar2, Cosine, OntCosine1, and OntScalar2. (a) Precision at k .
(b) Recall at k . (c) F1-score at k . (d) Mean Average Precision at k .

TABLE 2. Average P@k , R@k , F @k , and MRR of Scalar , OntScalar1, OntScalar2, Cosine, OntCos1, and OntCos2 when k = 5, 10, . . . , 40.

and OntCos1, generally outperforms those using Consim2
based ontological similarities, i.e., OntScalar2 and OntCos2.
Specifically, OntScalar1 achieves the best performance
among scalar-based recommender systems: its performance
is 16.0%, 20.2%, 15.5%, and 17.1% (resp., 29.5%, 34.3%,
28.3%, and 32.0%) higher than that of OntScalar2 (resp.,
Scalar) in terms of the average P@k , R@k , F@k , and MRR,
respectively. Similarly, the performance ofOntCos1 is 20.2%,
19.0%, 19.4%, and 26.3% (resp., 43.0%, 52.7%, 44.7%,
and 49.6%) higher than that of OntCos2 (resp., Cosine) in
the average P@k , R@k , F@k , and MRR, respectively. This
observation asserts that the concept similarity Consim1, that

is based on relative concept depth (as defined in Equation 4),
may be more effective than the shortest-path-based concept
similarity Consim2 (as defined in Equation 5) in measur-
ing the semantic relevance between matching concepts of
tags in profiles, and thus achieves better performance in
ontology-based personalized recommendation.

3) EVALUATION VS. MACHINE-LEARNING-
BASED SOLUTIONS
We further evaluate the personalized recommendation per-
formance of the ontological-similarity-based recommender
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TABLE 3. OntScalar1 vs. Clustering, Autoencoder, and DSPR.

systems to those using machine-learning-based solu-
tions. To this end, we use three state-of-the-art machine-
learning-based solutions for the tag ambiguity problem
(i.e., clustering [19], autoencoders [21], and DSPR [28]) as
baselines: (i) Clustering-based solution: hierarchical clus-
tering [19] is applied to model the users and documents
as cluster-based feature vectors, upon which content-based
filtering using scalar similarity is applied for recommenda-
tions. (ii) Autoencoder-based solution: an autoencoder [21] is
used to obtain abstract representations of user and document
profiles, upon which content-based filtering using scalar sim-
ilarity is applied for recommendations. (iii) Deep-semantic
similarity-based personalized recommendation (DSPR) [28]:
two neural networks are applied to learn abstract fea-
ture representations of user and document profiles, which
are trained to maximize (resp., minimize) the similarities
between users and their target items (resp., irrelevant items);
then, the learned deep-semantic similarity was directly used
to generate recommendations. The model parameters of
hierarchical clustering, autoencoder, and DSPR follow the
settings in [19], [21], and [28], respectively.

Table 3 shows the content-based tag-aware recommen-
dation performance of the best ontological-similarity-based
recommender system, OntScalar1, and the state-of-the-
art machine-learning-based tag-aware recommender systems
using clustering, autoencoder, and DSPR in terms of average
time-cost of a testing case, P@k , R@k , F@k , and MRR.
The comparative results of clustering, autoencoder, and

DSPR in Table 3 is consistent with the results reported in [28],
and we generally have the following observations from
Table 3. (i) The recommender system based on scalar-based
ontological similarity has much lower time-cost for recom-
mendation than the machine-learning-based recommender
systems: the recommendation processing of OntScalar1 is
about 6.4, 7.5, and 118.4 times quicker than those of clus-
tering, autoencoder, and DSPR models, respectively. This
observation supports our argument that, due to the need
of model training, the machine-learning-based solutions are
usually much more computationally expensive than the pro-
posed ontological-similarity-based solution. (ii) The recom-
mendation accuracy of OntScalar1 is better than those of
clustering and autoencoders, but is worse than the one of
DSPR, in terms of P@k , R@k , F@k , and MRR. This is
because, by using recommendation-oriented learning objec-
tive, DSPR can learn very effective latent feature representa-
tions for personalized recommendation, while the proposed
ontology-based solution only relies on human-input feature

information, which is sometimes not comprehensive enough
to achieve the most effective feature representations. How-
ever, please also note that although the recommendation accu-
racy of OntScalar1 is lower than DSPR, its recommendation
processing is 118.4 times quicker than the one of DSPR.
Therefore, we can assert that the proposed ontology-based
solution may not be the best choice, if large datasets and
powerful computational facilities are easily accessible; how-
ever, due to its low computational cost and reasonable recom-
mendation accuracy, the proposed ontology-based solution is
a good disambiguation choice for lightweight recommender
systems and a complement to machine-learning-based rec-
ommendation solutions.

B. PERFORMANCE IN TAG DISAMBIGUATION
1) BASELINES
As discussed in Section II, there are existing works also
focusing on the similarity between tags, which can be applied
to disambiguate synonyms and homonyms using their most
related tags. According to the results in [26] and [27], dis-
tributional measures generally have the best performance in
measuring tag relatedness. Therefore, to show the strength of
the proposed ontology-based solution in solving the tag ambi-
guity problem, tag-context-based, document-context-based,
and user-context-based distributional measures (denoted tag-
Cont, docCont, and userCont, respectively) as defined in [26]
are selected as the baselines of the tag disambiguation perfor-
mance evaluation.

2) EVALUATION METHODOLOGY
As distributional measures rely on the most related tags for
tag disambiguation, their tag disambiguation performance
depends on the semantic distance in the ontology between
tags and their most related tags. Similarly, as for the proposed
ontology-based solution, the most related tag for a tag can be
defined as the tag whose mapping concept has the highest
concept similarity with the matching concept of the given
tag. Consequently, we use the average semantic distance
between tags and their most related tags to evaluate the tag
disambiguation performance of the proposed ontology-based
solution and the three baselines. For a fair comparison,
the semantic distance is estimated by the shortest-path-based
semantic grounding measurement as used in [26] and [27];
here, ODP is used as the underlying ontology for semantic
grounding, and cosine similarity is used to estimate the simi-
larity between distributional vectors for the baselines.
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The shortest-path-based semantic grounding is conducted
using the same process as in [26]: for each tag in the Delicious
dataset, we first find its most related tags using the distribu-
tional measures tagCont, docCont, and userCont, as well as
the ontology-based solution. Then, for each tag with match-
ing concept in the ODP taxonomy, if its most related tag also
has matching concepts, we estimate the semantic distance
between the matching concepts of this tag and its most related
tag by the length of the shortest path between the concepts.
If either the original or the most related tag has more than
one matching concept, we compute the semantic distance for
all possible combinations of matching concepts and select
the minimal value. As for the proposed ontology-based solu-
tion, both concept measures based on the relative depth of
concepts and the shortest path (as defined in Equation (4)
and (5)) are used and denoted as Onto-based1 and Onto-
based2, respectively.

3) RESULTS
Figure 5 depicts the average semantic distance in terms of
the average length of the shortest paths in the ODP taxonomy
from the matching concepts of original tags to those of the
most related tags generated by the docCont, tagCont, user-
Cont, and Onto-based methods. Generally, the shorter the
average shortest path, the closer the semantics of the most
related tags are to the ordinal tags and the better disambigua-
tion performance in synonyms and homonyms the solution
will have.

FIGURE 5. Average semantic distance based on the average length of the
shortest paths between the matching concepts of original tags and those
of their most related tags in the ODP taxonomy generated by the docCont,
tagCont, userCont, and Onto-based solutions.

As shown in Figure 5, both Onto-based1 and Onto-based2
greatly outperform all the baselines: their average shortest
path is less than half of that of the best baseline, docCont,
while the performance of Onto-based2 is slightly better than
Onto-based1. The superior performance of ontology-based
methods is mainly because of the following reason: for a
given tag, the ontology-based methods find their most related
tag as the tag mapping to the concept with highest concept
similarity to the original tag’s matching concept in ODP;
especially, forOnto-based2, the matching concept of the most
related tag found by Onto-based2 is guaranteed to always
have the best shortest path to the original tag’s matching

concept among all matching concepts in ODP; so, its average
shortest path is guaranteed to be optimal.

Despite achieving superior performance in tag disam-
biguation, the ontology-based solution has still some lim-
itations: due to the need of mapping tags to ontologies,
only the ambiguity in tags that can be mapped to ontolo-
gies are handled. Although we have considered the simi-
larity between unmatched tags using the cosine similarity
(Lines 20-25 in Algorithm 1), it will still be beneficial to
integrate the non-ontology-based disambiguation solutions,
such as co-occurrence tags and distributional measures [27],
to further address the ambiguity problem in the unmatched
tags, so as to further enhance the recommendation perfor-
mance. As we focus on an ontology-based solution in this
work, this hybrid solution will be investigated in future work.

C. PERFORMANCE IN TAG-TO-ONTOLOGY MAPPING
1) BASELINE
As for allocating tags to the underlying ontology, the main
challenge is the multiple occurrence of matching concepts
due to homonyms. The state-of-the-art tag allocation strat-
egy [57] first maps a given tag to all possible candidate
concepts in the ontology and then uses the contextual infor-
mation of its profile to identify the most relevant concept by
computing the similarity of all combinations of the given tag
and other tags in this profile using theWu and Palmer similar-
ity [50] in the ontology. This strategy is denotedWu & Palmer
and considered as the competitor to the proposed top-down
traversal tag allocation strategy in evaluating its tag allocation
performance.

2) EVALUATION METHODOLOGY
To evaluate the tag-to-ontology allocation accuracy, we inves-
tigate how semantically relevant the matching concept
selected by a given tag allocation strategy is to the profile
context of the given tag, such that the more the selected
matching concept is semantically relevant to the profile con-
text, the better the tag allocation strategy.

Therefore, we design an automatic quantitative evaluation
based on the following assumption: for a given tag in a given
profile, its selected matching concept is believed to be seman-
tically relevant to the context of the profile, if this matching
concept’s average semantic distance to the matching concepts
of all other tags in this profile is low; so, the lower the
average semantic distance, the more semantically relevant the
matching concept to the profile context.

Therefore, for each tag in a given user or document pro-
file having a matching concept selected by a tag allocation
strategy, we compute the average semantic distance between
its matching concept to all other selected matching concepts
in the same profile. Then, the tag-to-ontology allocation
performance of the two strategies are evaluated based on a
mean average semantic distance (denoted MASD), formally
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defined as follows:

MASD =
1
Np

Np∑
a=1

1
N t
a

N t
a∑

j=1

aveSemDis(ca,j), (12)

where Np is the number of profiles, N t
a is the number of

tags with matching concepts in profile a, ca,j is the selected
matching concept of tag j in profile a, and aveSemDis(ca,j)
is the average semantic distance of ca,j to all other selected
matching concepts in profile a. Here, as in Section VI-B,
the shortest path is used as the measure of semantic distance.

In addition, as the first step for computing the ontolog-
ical similarity, tag allocation is invoked very frequently in
ontology-based recommendation; therefore, besides alloca-
tion accuracy, the allocation efficiency is also a very criti-
cal factor to ensure the quick response for real-time online
recommendation. Actually, as stated in Section IV-A, the
purpose of proposing the top-down traversal tag allocation
strategy in this work is to overcome the high computational
complexity problem in the existing strategy [57]. Therefore,
we record the average tag allocation time-cost of both strate-
gies, where the top-down traversal strategy is expected to
have much shorter allocation time than the baseline.

3) EXPERIMENTAL RESULTS
Table 4 shows the mean average semantic distance (MASD)
of allocating tags in all document and user profiles (denoted
MASDd andMASDu, respectively), using the existing strategy
based on Wu and Palmer similarity (denoted Wu & Palmer)
and the proposed top-down traversal strategy (denoted
Top-Down), as well as their average time-costs for allocating
tags for each user and document profile (denoted timed and
timeu, respectively).

TABLE 4. Accuracy and efficiency of tag-to-ontology allocation.

As shown in Table 4, for tag allocation in document
profiles, the MASDd ’s of Wu & Palmer and Top-Down are
very close (3.708 vs. 4.069), while the time needed for
Wu & Palmer is 4.9 times as long as the one of Top-Down
(0.280 vs. 0.057 seconds). Similarly, for the user profiles,
the MASDu of Top-Down is only 7.1% higher than the one
ofWu & Palmer (8.785 vs. 9.415), but its mapping efficiency
is about 5.1 times quicker than the one of Wu & Palmer
(2.69 vs. 0.44 seconds). These results prove that the proposed
top-down traversal tag allocation strategy is much more effi-
cient (around 5 times quicker) than the existing tag allocation
baseline [57], while maintaining a very close allocation accu-
racy. This is also consistent with our computational complex-
ity analysis in Section IV-A.

VII. SUMMARY AND OUTLOOK
In this paper, we have proposed an effective ontological
similarity measure that uses ontologies to solve the tag ambi-
guity problem and to semantically measure the similarity
between user and document profiles. More precisely, its
novelty lies in its use of concept similarity in ontologies to
estimate the semantic relevance of tags in profiles. We have
first developed a two-step top-down disambiguation algo-
rithm in order to solve the multiple occurrence challenge
at the stage of tag allocation. Then, we have proposed an
algorithm using the concept similarity in the ontology to
compute the ontological similarity. Finally, we have also
presented methods of personalized recommendation on the
Social Web using ontological similarity. A complexity anal-
ysis of these algorithms has shown that the approach of
using ontological similarity for personalization is practi-
cally tractable. In addition, extensive experimental studies
based on a public real-world dataset have shown that: (i) the
proposed ontological-similarity-based recommender systems
are more effective than the state-of-the-art cosine-similarity-
based and scalar-similarity-based recommender systems in
content-based tag-aware personalized recommendations in
terms of all evaluation metrics; (ii) the recommendation accu-
racy of our ontological-similarity-based solution is better than
those of the clustering and autoencoder baselines, but is worse
than that of DSPR-based baseline; however, its computa-
tional cost is much lower than those of all machine-learning-
based lines (in particular, it is 118.4 times quicker than
DSPR); (iii) the proposed ontology-based solution greatly
outperforms (with more than double the performance) the
state-of-the art baselines in tag disambiguation; and (iv) the
proposed top-down traversal tag allocation strategy is much
more efficient (around five times quicker) than the existing
tag allocation strategy, while maintaining a similar allocation
accuracy.

A. ADVANTAGES AND DISADVANTAGES
The main advantage of our approach is that no training is
required for personalized recommendation; the only require-
ment is that we have a well-defined ontology or taxonomy.
This is very useful in cases in which we do not have resources
for training the model, such as in mobile apps, or if the data
are so fast-changing that re-training is needed very often and
becoming very expensive.

Another advantage of our algorithms is that the recom-
mendation results of this work are much more transparent
and explainable than the ones provided by machine-learning
approaches, especially those that use deep learning. Conse-
quently, users are likely to be more willing to trust the results
of our systems, because they tend to be easier to understand.

The main drawback in our work is that it only relies on
human input feature information, which is sometimes not
comprehensive enough to achieve the most effective feature
representations. Therefore, the recommendation accuracy of
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our ontology-based solution is sometimes lower than some
of the machine-learning based solutions, which are capable
of discovering the latent features of users to provide suffi-
cient and comprehensive feature information. The proposed
ontology-based solution may thus not be the best choice,
if large datasets and powerful computational facilities are
easily accessible; however, it is a good disambiguation choice
for lightweight recommender systems and a complement to
machine-learning-based recommendation solutions, because
of its low computational cost and reasonable recommendation
accuracy.

B. FUTURE WORK
In the future, we will conduct further experiments involving
other Social Web datasets, different ontologies, and other
concept similarity metrics to investigate the change of effec-
tiveness of ontological similarity for various social Web
resources and ontologies. In addition, another topic for future
research is to further orthogonally consider the tag related-
ness measures (e.g., co-occurrence tags and distributional
measures [27]) as solutions to further address the ambiguity
problem for the tags that cannot be matched to ontologies.
Finally, apart from content-based solutions, we will also
work on improving collaborative filtering-based (e.g., matrix
factorization) and graph-based (e.g., FolkRank) solutions in
folksonomy-based personalized recommendation.
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