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ABSTRACT This paper investigates the cooperative control problem of multiple nonholonomic robots for
an escorting and patrolling mission with respect to a target with a time-varying velocity. The goal of the
multi-robot system is to orbit a moving target in a common circle with a prescribed radius and circular
velocity, while maintaining even spacing along the perimeter of the circle. This paper proposes a distributed
control strategy based on the vector field that does not require each robot to know the full state of the target.
A distributed estimation law is developed to enable each robot to estimate the position of the target, and a
tracking differentiator is used to estimate the velocity of the target. Based on these estimates of the target,
the distributed control law is designed to ensure the asymptotic convergence of the multi-robot system to
achieve the desired motion. Under some mild assumptions about the interaction graph among the target and
the robots, and the velocity of the target, explicit stability and convergence analyses are presented using
Lyapunov tools. Simulation results from test cases of a group of nonholonomic mobile robots verify the
effectiveness of the proposed distributed control algorithms.

INDEX TERMS Cooperative control, escorting and patrolling, nonholonomic robots, vector field.

I. INTRODUCTION
In recent years, cooperation in multi-robot systems has
received increasing attention. Existing literature addresses
a broad range of topics including consensus [1], formation
control [2], swarming and flocking [3], coverage [4]–[6], and
cooperative target tracking [7], [8]. Escorting and patrolling
missions are a typical application of cooperative target track-
ing and formation control.

Multiple-robot escorting and patrolling missions have
numerous applications including military robotics, robotic
surveillance security systems, and entertainment robotics [9].
The mission of escorting is the task of surrounding and
maintaining a formation around a target. As the target moves,
the formation also moves to keep the target at its center,
maintaining a set distance between the robots and the target
and evenly distributing the robots around the target. The
patrolling task can be defined as an extension of escorting in
which the formation rotates around the target for surveillance
purposes.

Studies [4], [10]–[13] investigated multiple robots uni-
formly distributed in a circle orbiting a stationary target.

However, these approaches cannot be directly extended to the
scenario of a moving target. Other studies that relied on a
single or double integrator investigated the case of a moving
target [14]–[16]. However, they have had limited success
when applied to multi-robot systems owing to nonlinearity
and nonholonomic constraints. Zhu et al. [17] studied the case
where the target was moving while all vehicles maintained
constant linear velocities.

When the velocity of the target is time-varying, the escort-
ing and patrolling control problem becomes increasingly
challenging. Lan et al. [18] proposed a distributed reconfig-
urable control law for unicycles to surround a moving target
for an escorting and patrollingmission, but the tracking errors
were locally uniformly bounded. In [19], circle formation
tracking of a time-varying center was studied, but the pro-
posed control law depended on the initial conditions of the
robots and target. In [20], a translation control was designed
to achieve the global asymptotic stabilization.

Most of the existing cooperative control schemes for
multiple nonholonomic robots on an escorting and patrolling
mission, require access to the full state of the target.
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However, owing to limitations in communication bandwidth
and range, it is reasonable to assume that target information
is only available to a subset of the robots.

This paper proposes a distributed estimation law that
enables each robot to estimate the position of the target. If the
speed of the target is unknown, we apply a tracking differen-
tiator to estimate the velocity of the target. Then, based on
the vector field, we design the distributed control law, which
achieves cooperative control of the escorting and patrolling
mission. The idea of introducing the vector field is drawn
from the vector field approach for single and double integra-
tors applied in [21]. We address the missions using multiple
nonholonomic robots that rotate around a central moving
target at a prescribed radius and circular velocity with equal
angle inter-robot spacing. The proposed distributed control
strategy enables the multi-robot system to achieve asymptotic
convergence to the desired formation. The stability and the
convergence analyses are presented using Lyapunov tools.

The remainder of this paper is organized as follows:
Section II states algebraic graph theory and distributed esti-
mation of the target’s state. Section III presents the problem
formulation. Section IV introduces the distributed control
algorithm and provides the main results. Simulation results
illustrating the effectiveness of estimator and the proposed
controller are detailed in Section V. Section VI concludes the
paper.

II. PRELIMINARIES
A. ALGEBRAIC GRAPH THEORY
Before presenting the definition of the escorting and
patrolling task and the problem statement, we introduce some
elements and results from graph theory.

Let G = {v, ε,A} be a digraph with a set of vertices
v = {1, 2, . . . n}, a set of edges ε = {(j, i) : j 6= i, i, j ∈ v},
an adjacency matrix A =

[
aij
]
n×n ∈ Rn×n. The adjacency

matrix A is defined as follows: if there is a directed link from
node j to node i, then aij > 0, otherwise aij = 0. We only
consider the case of simple digraph without self-edges, thus
aii = 0 for all i. A graph is undirected if aij > 0 implies
aji > 0 for all i, j ∈ v. If aij = aji for all i, j ∈ v, then
the weights are symmetric. The set neighbors of node i are
denoted as Ni = {j ∈ v|(i, j) ∈ ε}, which, in the case of an
undirected graph, results in a mutual adjacency relationship
among vertices, that is, i ∈ Nj ⇔ j ∈ Ni. An undirected graph
is said to be connected if there are undirected paths from every
node to every other node. The Laplacian matrix L =

[
lij
]
n×n

associated with the adjacency matrix A is defined as

lij =


−aij i 6= j

n∑
j=1,j6=i

aij i = j (1)

We assume that the robots are labeled as agents 1 to n and
the target is labeled as agent 0. The interactions among the
target and the robots can be characterized by the adjacency
weights ai0 : ai0 > 0 if the target is a neighbor of robot i,

otherwise, ai0 = 0. Denote a = [a10, a20, . . . , an0]T and
define matrix H ∈ Rn×n as

H = L + diag(a) (2)

Based on the results in [22], we make the following claim
on the matrix H :
Lemma 1: Matrix H is symmetric positive definite if, and

only if, the undirected graph G is connected, and at least one
ai0 > 0.
Given n states, xi ∈ Rm, i = 1, 2, . . . , n, the following

results of graph theory, which can be found in [22] and [23],
are used in this paper.
Proposition 1: For an undirected graph with symmetric

weights, the following fact can be proven∑
i

∑
j

aijxTi
(
xi − xj

)
=

1
2

∑
i

∑
j

aij
∥∥xi − xj∥∥2

Proposition 2: For a connected undirected graph, the follow-
ing result holds∑

i

∑
j

aij
∥∥xi − xj∥∥2 = 0⇔ xi = xj, ∀i, j ∈ v

B. DISTRIBUTED ESTIMATION OF TARGET’S STATE
Consider a system of n multiple nonholonomic robots,
the kinematics of each robot are given as

ẋi = vi cos θi
ẏi = vi sin θi
θ̇i = wi

(3)

where i = 1, 2, . . . n, qi := [xi, yi]T ∈ R2 is the absolute
position and θi ∈ [−π, π] is the heading angle in the inertial
frame. The linear velocity and angular velocity of the robot
are vi ∈ R and wi ∈ R, respectively.

Each robot has access to its own current state information
and the state of its neighbor robots. Let G = {v, ε,A} be
the undirected graph characterizing the interactions among
n robots. Let a = [a10, a20, . . . , an0]T be the weights rep-
resenting the interactions among the target and the robots
corresponding to G. As in most literature on distributed con-
trol of multi-robot systems, we operate under the following
assumption:
Assumption 1: The undirected graph G is connected with

symmetric weights, and at least one ai0 > 0.
Given a target with position qt = [xt , yt ]T ∈ R2, we denote
qit = [xit , yit ]T as the estimation of qt obtained by each

robot i. To make the estimation algorithms fully distributed,
the estimation laws must follow the graph topology and can
only use the local neighborhood information of that robot.

The neighborhood position estimation errors of robot i are
defined as

eiq =
n∑
j=1

aij
(
qit − qjt

)
+ ai0 (qit − qt) (4)
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With the neighborhood errors eiq, we consider the following
estimation algorithm for qit .

q̇it =
1
λi

−0ieiq + n∑
j=1

aijq̇jt + ai0q̇t

 (5)

where λi =
n∑
j=1

aij + ai0 and 0i ∈ R2 is a symmetric positive

definite matrix.
For the distributed estimation laws of qit , we have the

following result.
Theorem 1: Consider the estimation law (5) if Assump-

tion 1 holds, then qit exponentially converges to qt for all i.
Proof: Taking the time derivative of eiq, we obtain

ėiq =
n∑
j=1

aij
(
q̇it − q̇jt

)
+ ai0 (q̇it − q̇t)

= λiq̇it −
n∑
j=1

aijq̇jt − ai0q̇t

= −0ieiq (6)

As 0i is symmetric positive definite, it follows that eiq
exponentially converges to zero. Moreover, if we denote

eq =
[
eT1q, e

T
2q, . . . e

T
iq

]T
, q̃ =

[
q̃T1 , q̃

T
2 , . . . q̃

T
n
]T with

q̃i = qit − qt , then (4) can be rewritten as

eq = (H ⊗ I2) q̃ (7)

where H ∈ Rn×n is a matrix defined by H = L + diag(a).
Because H is a symmetric positive definite matrix, when
Assumption 1 holds by applying lemma 1, eq exponentially
converges to zero, which implies that q̃ also exponentially
converges to zero.

Therefore, each robot obtains access to the position of the
target by the distributed estimation law, but the speed of the
target remain unknown.

We can use the ‘‘tracking differentiator’’ from [24] to esti-
mate the velocity of the target, with v0(t) as the input signal
to be differentiated, where x1 tracks v0(t), x2 tracks v̇0(t), and
the parameter γ determines the speed. Thus, v0(t) = qit and
v̇0(t) = q̇it = [ẋit , ẏit ]T are obtained from (8).{

ẋ1 = x2
ẋ2 = −γ sign(x1 − v0(t)+

x2|x2|
2γ )

(8)

III. PROBLEM FORMULATION
Based on the estimated state of the target, the escorting and
patrolling task requires all robots to orbit the target in a circle
with precribed radius R. As the target moves, all robots main-
tain the target qt as the center and evenly space themselves
along the circle perimeter, as depicted in Fig. 1.

For the escorting and patrolling task, each robot is assigned
to a specific subset Ni of the robot team that comprises the
robots with which it can communicate to achieve the desired
goal.

FIGURE 1. Schematic diagram of the escorting and patrolling mission.

FIGURE 2. The escorting and patrolling mission with multiple
nonholonomic robots.

Based on the vector field theory, the spatial velocity field is
composed of multiple velocity vectors. The velocity vector `i
can be composed of `1i and `2i in the plane, where `1i is the
shortest distance from any point in space to the specified
trajectory and `2i is the tangent vector of the trajectory curve.
Fig. 2 shows the application of the concept of the velocity
field to the two-dimensional plane. We construct a new frame
X r − qt − Y r , with its origin at qt and X r axis coincident
with φi, which is the angle between robot i and the target.

In the inertial coordinate, the relative dynamics between
robot i and the target can be written as

q̃i =
[
xi − xit
yi − yit

]
=

[
x̃i
ỹi

]
(9)

˙̃qi =
[
ẋi − ẋit
ẏi − ẏit

]
=

[
˙̃xi
˙̃yi

]
(10)

In the frame of X r − qt − Y r , q̃i and ˙̃qi are turned into
q̃ri and

˙̃qri .

q̃ri =
[
x̃ri
ỹri

]
=

[
cosφi sinφi
− sinφi cosφi

] [
x̃i
ỹi

]
(11)

˙̃qri =
[
˙̃xri
˙̃yri

]
(12)

Obviously, ỹri = 0, ˙̃yri = 0.
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Thus,

˙̃xri = vi cos(θi − φi)− (ẋt cosφi + ẏt sinφi)

= vi cosαi −9i (13)

and

x̃ri φ̇i = vi sin(θi − φi)− (ẏt cosϕi − ẋt sinφi)

= vi sinαi −8i (14)

where 9i = ẋt cosφi + ẏt sinφi, 8i = ẏt cosφi − ẋt sinφi,
αi = θi − φi.
The goal of cooperative control in the escorting and

patrolling problem is to design vi and wi for each robot i,
i = 1, 2, . . . , n such that

lim
t→∞

x̃ri (t) = R, ∀i ∈ N (15)

lim
t→∞

φ̇i(t) = wd , ∀i ∈ N (16)

lim
t→∞

φi(t)− φj(t) = δij, ∀i ∈ N , j ∈ Ni (17)

IV. MAIN RESULTS
First, we introduce a nonlinear function h(ei) with

ei =
∑
j∈Ni

aij
(
φi − φj − δij

)
(18)

As previously explained, aij = aji > 0, and h(ei) is a
nonlinear function that assumes the following:
Assumption 2: For all κ ∈ R, function h (.) processes the

following three properties:
(i) ∃h0 > 0, |h (κ)| ≤ h0
(ii) h (κ) κ ≥ 0
(iii) h′ (κ) > 0
Remark 1: Function h(ei) is responsible for angular spac-

ing. Upon achieving the angular spacing, h(ei) becomes zero.
Assumption 2 implies that h (.) is a bounded and monotone
increasing function that satisfies h (0) = 0.
Based on the vector field, we obtain

`1i = −k1
(
x̃ri − R

)
= −k1χi (19)

`2i = R (wd − h (ei)) (20)

where k1 > 0 is a positive constant and χi = x̃ri − R.
We assume that the linear velocity vi and the angle devia-

tion si satisfy the following equations.

vi cos(αi − si)−9i = −k1χi (21)

vi sin(αi − si)−8i = R (wd − h (ei)) (22)

Then, vi and βi, which is the desired value of αi, can be
obtained as

vi =
√
(−k1χi +9i)

2
+ [R (wd − h (ei))+8i]2 (23)

βi = αi − si = a tan 2
R (wd − h (ei))+8i

−k1χi +9i
(24)

Substituting (21) and (22) into (13) and (14), we establish
the error dynamics as follows:

˙̃xri = −k1χi + vi [cosαi − cos (αi − si)]

= −k1χi + visi
cosαi(1− cos si)− sinαi sin si

si
= −k1χi + visigi (25)

where gi =
cosαi(1−cos si)−sinαi sin si

si
Because sin si

si
=
∫ 1
0 cos(xsi)dx,

1−cos si
si
=
∫ 1
0 sin(xsi)dx,

it can be concluded that gi is a smooth and bounded function
in si.

x̃ri φ̇i = R(wd − h(ei))+ vi[sinαi − sin(αi − si)] (26)

ṡi = α̇i − β̇i = wi − φ̇i − β̇i (27)

Using (27), we can design the angular velocity wi as

wi = φ̇i + β̇i − k2si − k3vigiχi (28)

where k2 > 0 and k3 > 0 are positive constants. To ensure
that vi is always a nonzero value, and that β̇i always exists,
the following assumption is made:
Assumption 3: The function of the target |9i(t)| is smooth

and bounded and h0 is chosen such that

R (|wd | − h0) > max
t≥0
|9i(t)| (29)

Under Assumption 3, the following fact is applied:

vi ≥ |R(wd − h (ei))+8i| − |−k1χi +9i(t)|

≥ |R(wd − h (ei))| − |9i(t)|

≥ |R(wd − h0)| − |9i(t)|

Thus, it can be verified that the linear velocity vi is always
nonzero, and hence, β̇i is bounded. We have the following
result:
Theorem 1: Consider the system (3) with the control

laws (23) and (28). If Assumptions 2 and 3 hold, then the
error dynamics (25) and (27) are asymptotically stable and,
ultimately, the objectives in (15)-(17) are achieved.

Proof: Consider the following Lyapunov function:

V1 =
1
2

∑
i

k3χ2
i +

1
2

∑
i

s2i (30)

The time derivative of V1 along (25) and (27) is:

V̇1 =
∑
i

k3χiχ̇i +
∑
i

siṡi

=

∑
i

k3χi ˙̃xri +
∑
i

si(−k2si − k3vigiχi)

=

∑
i

k3χi(−k1χi + visigi)+
∑
i

si(−k2si − k3vigiχi)

= −

∑
i

k3k1χ2
i −

∑
i

k2s2i (31)

Hence, χi and si are bounded and exponentially convergent
to zero. We have x̃ri approaching to R, which demonstrates
that (15) holds.

Moreover, using the (26), we obtain

x̃ri φ̇i = R (wd − h (ei))+ vi [sinαi − sin (αi − si)]

= R (wd − h (ei))+ ζi (32)

where ζi = vi [sinαi − sin (αi − si)]
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Because si converges exponentially to zero, we have ζi
exponentially convergent to zero.

Clearly,

φ̇i =
R (wd − h (ei))+ vi[sinαi − sin(αi − si)]

x̃ri
= wd − h (ei)+ ξi (33)

where ξi =
ζi−χi(wd−h(ei))

x̃ri
Because χi and ζi are converging exponentially to zero,

we have ξi exponentially convergent to zero.
Moreover, following the definition in (18), we have

ėi = −
∑
j∈Ni

aij[h (ei)− h(ej)− (ξi − ξj)] (34)

We consider a Lyapunov function candidate

V2 =
∑
i

2
∫ ei

0
h(r)dr (35)

Taking the time derivative of V2 as

V̇2 = 2
∑
i

h(ei)ėi = −2
∑
i

∑
j∈Ni

aijh(ei)[h(ei)− h(ej)]

+ 2
∑
i

∑
j∈Ni

aijh(ei)(ξi − ξj) (36)

and applying Proposition 1, we have

V̇2 = −
∑
i

∑
j∈Ni

aij[h(ei)− h(ej)]2

+ 2
∑
i

∑
j∈Ni

aijh(ei)
(
ξi − ξj

)
≤ −

∑
i

∑
j∈Ni

aij[h(ei)− h(ej)]2

+ 2
∑
i

∑
j∈Ni

aijh0(|ξi| +
∣∣ξj∣∣) (37)

Integrating the inequality from 0 to t , yields

V2(t)+
∫ t

0

∑
i

∑
j∈Ni

aij[h(ei)− h(ej)]2dr

≤ V2(0)+ 2
∫ t

0

∑
i

∑
j∈Ni

aijh0
(
|ξi| +

∣∣ξj∣∣) dr (38)

Because function h(.) satisfies Assumption 2, V2 ≥ 0
always holds. Because ξi exponentially converges to zero
for all i, then

∫ t
0
∑
i

∑
j∈Ni

aijh0(|ξi| +
∣∣ξj∣∣)dr is bounded. With

these facts, inequality (38) implies that both V2(t) and∫ t
0
∑
i

∑
j∈Ni

aij[h(ei)− h(ej)]2dr are bounded. Thus, by apply-

ing the Barbalat’s lemma, we have

lim
t→∞

∑
i

∑
j∈Ni

aij[h(ei)− h(ej)]2 = 0 (39)

Following Proposition 2 and (39), we have h (ei) = h
(
ej
)

for all i, j when t → ∞. For all i, j, h (ei) = h
(
ej
)
gives

FIGURE 3. Estimation errors
∥∥qit − qt

∥∥. (a) Estimation errors
∥∥qit − qt

∥∥ in
case 1. (b) Estimation errors

∥∥qit − qt
∥∥ in case 2.

ei = ej using the monotonicity of function h(.). Because∑
i ei = 0, ei = ej, ∀i ∈ N , j ∈ Ni implies ei = 0,
∀i. For all i and the undirected connected graph G,

ei =
∑
j∈Ni

aij
(
φi − φj − δij

)
implies φi − φj = δij, ∀i ∈ N ,

j ∈ Ni. Finally, when ei tends to zero, hence h (ei) tends
to zero, then φ̇ tends to wd following (33), and it is shown
that (16) and (17) hold. This completes the proof.

V. SIMULATION RESULTS
In this section, we present some simulations to illustrate the
validity of the proposed estimation law and control algorithm.
We consider a multi-robot system comprised of three robots
with an undirected communication graph. The adjacency
matrix of the communication graph among the robots, and
the adjacency weights among the target and the robots are
respectively set as

A =

 0 1 0
1 0 1
0 1 0


and
a = [1, 0, 0]T .
The initial position of the three robots and the target

respectively are

q1(0) = [−2,−6]Tm, q2(0) = [−5,−2]Tm,

q3(0) = [−3,−8]Tm, qt (0) = [0, 0]Tm.
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FIGURE 4. Simulation results for case 1. (a) Robot’s trajectories.
(b) Distance between robot and target x̃r

i . (c) The circular velocity
of robot φ̇i . (d) The inter-robot angular spacing φi − φj .

The specified radius and the circular velocity of the
circle around the target are R = 3m, wd = 2.5rad/s.

FIGURE 5. Simulation results for case 2. (a) Robot’s trajectories.
(b) Distance between robot and target x̃r

i . (c) The circular velocity
of robot φ̇i . (d) The inter-robot angular spacing φi − φj .

The inter-robot angular spacing is specified as
δ12 = δ23 =

2π
3 . The nonlinear function h is set as

41888 VOLUME 6, 2018
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FIGURE 6. Simulation results for case 3. (a) Robot’s trajectories.
(b) Distance between robot and target x̃r

i . (c) The circular velocity
of robot φ̇i . (d) The inter-robot angular spacing φi − φj .

h (ei) = 0.8 tanh (ei), and the control gains are chosen as
k1 = 5, k2 = 5, k3 = 2.

FIGURE 7. Simulation results for case 4. (a) Robot’s trajectories.
(b) Distance between robot and target x̃r

i . (c) The circular velocity
of robot φ̇i . (d) The inter-robot angular spacing φi − φj .

We first investigate the performance of the estimation
algorithm. Two cases are simulated:

(i) qt (t) = [2t, 0.5t]T

VOLUME 6, 2018 41889
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(ii) qt (t) =
[
5 sin

(
0.4t − π

8

)
, 3− 0.7 tanh(−0.3t)2

]T
Second, based on the estimators, the following four cases

are simulated:
(i) Target with constant velocity and the initial orientations

of robots are zero.

qt (t) = [2t, 0.5t]T

θ1 (0) = 0, θ2 (0) = 0, θ3 (0) = 0

(ii) Target with time-varying velocity and the initial orienta-
tions of robots are zero.

qt (t) =
[
5 sin

(
0.4t −

π

8

)
, 3− 0.7 tanh(−0.3t)2

]T
θ1 (0) = 0, θ2 (0) = 0, θ3 (0) = 0

(iii) Target with constant velocity and the initial orientations
of robots are nonzero.

qt (t) = [2t, 0.5t]T

θ1 (0) =
π

2
, θ2 (0) =

π

2
, θ3 (0) = −

π

2

(iv) Target with time-varying velocity and the initial orienta-
tions of robots are nonzero.

qt (t) =
[
5 sin

(
0.4t −

π

8

)
, 3− 0.7 tanh(−0.3t)2

]T
θ1 (0) =

π

2
, θ2 (0) =

π

2
, θ3 (0) = −

π

2

As shown in Fig. 3, we find that the estimation errors
‖qit − qt‖ exponentially converge to zero. Using control
algorithms (23) and (28), the simulation results are described
in Figs. 4- Figs. 7. As shown in Figs. 4(a)–(d) and
Figs. 5(a)–(d), when the initial orientations of all robots are
zero, the robots implement the objectives of the escorting
and patrolling mission prescribed in (15)–(17), under con-
ditions of constant and time-varying target’s speed, respec-
tively. As described in Figs. 6(a)–(d) and Figs. 7(a)–(d),
the robots achieve the objectives when the initial orientations
are nonzero. The simulation results demonstrate good control
performance of the proposed control laws.

VI. CONCLUSION
This paper discussed the escorting and patrolling problem of
multiple nonholonomic robots such that they can travel as
a common circle centered on a moving target and maintain
even spacing along the circle perimeter. By estimating the
position and the velocity of the target, and coordinating with
other robots, the control law based on vector field for each
robot was designed to function without information on the
full state of the target. Simulation results of different cases
verified the effectiveness of the proposed algorithms. Our
future work will focus on extending the proposed control
laws to robots with mechanical dynamics to generate the real
torque or force control inputs. It is also interesting to consider
the estimation of the position and velocity of the target using
distance measurement in the proposed control strategy.
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