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ABSTRACT A fourth-order hyperchaotic hyperjerk system with no equilibria has never been reported,
whereas a search for its existence has been an open research problem. A new system in a rare type of 4D
seven-term no-equilibrium hyperchaotic systems is proposed and also compared with two existing systems
of such a rare type. The proposed system offers 10 concurrent advantages, six of which appear to be superior
to both existing systems, that is; 1) the first report of a fourth-order hyperchaotic hyperjerk system with
no equilibria; 2) a much simpler circuit based on only 21 electronic components; 3) a higher value of the
Lyapunov dimension at 3.2280; 4) a higher value of the largest Lyapunov exponent at 0.2525; 5) a large
two-parameter space of hyperchaos; and 6) a boostable variable for offset control. The other four advantages
offer either equal or better features, that is; 7) the number of nonlinear terms is two; 8) no potential dangers of
multistability; 9) hyperchaos, chaos, and periodic behavior are possible; and 10) attractors are readily hidden
attractors. The system is unique in the sense that there are no equilibria in both dynamical and hyperjerk
forms.

INDEX TERMS Hidden attractor, hyperchaos, hyperjerk, no equilibrium.

I. INTRODUCTION
Chaos has attracted much attention owing to its practical
applications to various fields of science and engineering,
e.g., [1]–[3]. A three dimensional (3D) chaotic system is
described by a set of three coupled first-order ordinary dif-
ferential equations (ODEs) in three phase space variables
(x, y, z) [4]. Such coupled ODEs may be recast into a single
third-order ODE known as a jerk ODE of the form

...
x =

f (x, ẋ, ẍ) [5]. As the expansion, an n dimensional chaotic
system for n > 3 is described by a set of n coupled first-
order ODEs, which may be recast into a single nth-order
ODE known as a hyperjerk ODE [6]. For n = 4, a fourth-
order hyperjerk ODE of the form

....
x = f (x, ẋ, ẍ,

...
x ) [7] may

exhibit either chaos e.g., [7], [8], or hyperchaos e.g., [8], [9],
where chaos has one positive Lyapunov exponent (LE), and
hyperchaos has (at least) two positive LEs.

Jerk and hyperjerk systems have been of interest because
of their simplicity and rich dynamics [9], [10]. In particu-
lar, hyperjerk systems have been prototypical examples of
complex dynamical systems in a high-dimensional phase

space [8], and therefore provide alternative methods to the
study of chaos and hyperchaos. In practice, hyperjerk systems
have demonstrated many engineering applications such as in
the design of intermittent-motion mechanisms, e.g., cams and
Geneva drives [11] and robotic arms [12].

In 2010, the first hidden attractor has been revealed [13]
and therefore attractors are typically classified as self-excited
and hidden attractors [14] depending on the basin of attrac-
tion, which is a set of initial points whose trajectories
tend to the attractor. A self-excited attractor has a basin of
attraction that intersects with a neighborhood of an equi-
librium point, whereas a hidden attractor has a basin of
attraction that does not intersect with a neighborhood of
an equilibrium point [15]. As a result, attractors of dissi-
pative flows with no equilibria [16] will readily be hidden
attractors as their basins of attraction will never intersect
with any equilibria. Hidden attractors have been displayed
in various systems, e.g., nonlinear oscillators [17], convec-
tive fluid motion in rotating cavity [15], and a multilevel
DC/DC converter [18].
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On the one hand, most existing fourth-order hyperjerk
systems for either chaos e.g., [7], [8], [19], or hyperchaos
e.g., [8] have exhibited self-excited attractors with a finite
number of equilibrium points. On the other hand, a fourth-
order hyperchaotic hyperjerk system with no equilibria
has never been reported in the literature, although chaotic
jerk [20] and chaotic hyperjerk [21] systems with no equi-
libria have been proposed. It is naturally interesting to ask
an open research question [22] whether there exists a hyper-
chaotic hyperjerk system with no equilibria.

Recently, a technique of a boostable variable [23] has been
suggested to transform a bipolar chaotic signal to a unipolar
chaotic signal or vice versa. Such a technique is useful in
practical applications where a unipolar signal is required,
e.g., to reduce hardware for a desired voltage level for signal
transmission [24]. The technique has however never been
employed for a fourth-order hyperchaotic hyperjerk system
with no equilibria.

Most existing four dimensional (4D) hyperchaotic systems
for either self-excited attractors e.g., [25], [26] or hidden
attractors with no equilibria e.g., [16], [27] are relatively
complicated as the number of algebraic terms in the set
of four coupled first-order ODEs is more than 7 includ-
ing two or more terms of nonlinearity. However, two cases
of a rare type of 4D seven-term no-equilibrium hyper-
chaotic systems have been reported for hidden attractors
based on two [28] and three [29] terms of nonlinearity. Both
cases [28] and [29] have several unattractive disadvan-
tages. For example, both are not hyperjerk systems, nor
do both demonstrate the technique of a boostable vari-
able. In particular, as will be described, both cases have
suffered from a narrow range of hyperchaos. In addition,
other individual disadvantages of [28] and [29] are as
follows.

The first case [28] has exhibited multistability, though
without circuit realization, with a low value of the largest
Lyapunov exponent (LLE) at 0.0704 and a relatively low
value of the Lyapunov dimension (DL) at 3.0768. As mul-
tistable systems potentially allow unexpected disasters in
various systems ranging from e.g., sudden climate changes to
serious diseases, financial crises and disasters of commercial
devices [30], it is important that a multistable system be
avoided to prevent serious catastrophes. The second case [29]
has required lots of (i.e., 46) electronic components with
a low value of LLE = 0.064 and a relatively low value
of DL = 3.089.

In this paper, a fourth-order hyperchaotic hyperjerk system
with no equilibria is proposed for the first time. Its single
fourth-order ODE is based on a new set of four coupled first-
order ODEs in the rare type of 4D seven-term no-equilibrium
hyperchaotic systems. The proposed system is comparedwith
the two existing systems [28] and [29] in this type, and
introduces not only six superior advantages, but also four
advantages of either similar or improved features. All ten
advantages are simultaneously demonstrated by only a single
system.

II. THE FIRST HYPERCHAOTIC HYPERJERK SYSTEM
WITH NO EQUILIBRIA
A. A NEW 4D SEVEN-TERM NO-EQUILIBRIUM SYSTEM
Existing 3D minimum-five-term chaotic systems [31], [32]
based on a diffusionless Lorenz system can be modified
through a technique of linear feedback control resulting in
a new simple 4D, seven-term, no-equilibrium system of the
form 

ẋ = y− x + w
ẏ = −axz
ż = xy− 1
ẇ = −bx

(1)

As will be described, (1) will exhibit hyperchaos. For non-
zero parameters a and b, (1) has no equilibria and therefore
attractors are readily hidden. Equation (1) is simple in the
sense that it consists of seven algebraic terms, which appear
to be the minimum number of terms for 4D seven-term
no-equilibrium hyperchaotic systems. In addition, (1) con-
sists of two terms of nonlinearity, which also appear to be
the minimum number of nonlinear terms for 4D seven-term
no-equilibrium hyperchaotic systems.

B. A NEW NO-EQUILIBRIUM HYPERJERK SYSTEM
The 4D dynamical model in (1) can be equivalently trans-
ferred to a single fourth-order no-equilibrium hyperjerk ODE
with seven terms of the form w = f1(w, ẇ, ẅ,

...
w) as

....
w =

(
ẅ
ẇ
−1
)
...
w +

(
ẅ
ẇ
−k3ẇ2

)
ẅ−

(
k3ẇ2
+ k2wẇ−k1

)
ẇ

(2)

where constants k1, k2 and k3 are defined as

[k1 k2 k3] =
[
a a/b a/b2

]
(3)

Equation (2) appears to be the first report of a hyperjerk
system with no equilibria for hyperchaos. The phase space
variables x, y, and z in (1) can be alternatively represented by
individual functions of the form f (w, ẇ, ẅ,

...
w) as

x =
ẇ
−b
= f (ẇ) (4)

y =
−ẅ− ẇ− bw

b
= f (ẅ) (5)

z =
−
...
w − ẅ− bẇ

aẇ
= f (

...
w) (6)

where x, y, and z in (4) to (6) are, for simplicity, denoted
as f (ẇ), f (ẅ), and f (

...
w), respectively.

C. SIMPLE CIRCUIT REALIZATION
Circuit realization of (1) is shown in Fig. 1. The circuit is
simple in the sense that the number of components is 21,
which includes the required DC voltage Vb but excludes the
traditional power supply. The number of 21 appears to be
the minimum number of components ever reported not only
for the type of 4D seven-term no-equilibrium hyperchaotic
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FIGURE 1. A simple 4D seven-term no-equilibrium hyperchaotic
circuit, or a simple fourth-order no-equilibrium hyperchaotic
hyperjerk circuit.

circuits, but also for the type of fourth-order no-equilibrium
hyperchaotic hyperjerk circuits. The proposed circuit there-
fore represents the simplest circuit for such types.

The circuit consists of four op-amps U1 to U4 for four
integration channels, an op-ampU5 for an inverting amplifier,
and two analog multipliers U6 and U7 (using AD633) for
the two terms of quadratic nonlinearity. All op-amps are
µ741 powered by ±15 V. The DC voltage Vb is +1 V. A set
of four coupled first-order ODEs of the circuit is

ẋ = −
1

R4C1
(
R5
R1
x −

R5
R2
y−

R5
R3
w)

ẏ = −
1

R6C2
(
xz
10

)

ż =
1

R7C3
(
xy
10

)−
1

R8C3
(Vb)

ẇ = −
1

R9C4
(x)

(7)

Equation (7) corresponds to (1), where the phase space
variables x, y, z, and w represent the output voltages of
the four integration channels (U1 − U4) and the inverting
amplifier (U5). Coefficients in (1) and (7) are compared
as R5/(R4R1C1) = R5/(R4R2C1) = R5/(R4R3C1) = 1,
a = 1/(10R6C2), 1/(10R7C3) = 1, Vb/(R8C3) = 1, and
b = 1/R9C4. For clarity, all coefficients in (7) will be scaled
by a certain factor, e.g., 10×103.

III. NUMERICAL AND EXPERIMENTAL RESULTS
A. HYPERCHAOS AND A HIDDEN ATTRACTOR
The proposed 4D seven-term no-equilibrium system in (1) is
numerically simulated by using the fourth-order Runge-Kutta
integrator with an adaptive step size (time step ≤ 0.001).
As mentioned earlier, for non-zero parameters a and b,

system (1) is a no-equilibrium system and attractors are read-
ily hidden. As will be described in this section, parameters
a = 18.13 and b = 0.994 are chosen so as to enable the
maximum hyperchaos.

Numerical trajectories of a hidden attractor are illustrated
in Figs. 2(a)−2(d) on (x, y), (x, z), (x, w), and (y, z) planes,
respectively, where (x, y, z) refer to [f (ẇ), f (ẅ) , f (

...
w)]

as shown in (4) to (6). Three colored trajectories in red,
blue and green indicate positive, negative and zero values

FIGURE 2. Trajectories of system (1) on (x, y), (x, z), (x, w), and (y, z)
planes respectively for (a)−(d) on numerical results, and for (e)−(h) on
oscilloscope traces (H. 2V/cm, and V. 5V/cm), where (x, y, z) refer to[
f

(
ẇ

)
, f

(
ẅ

)
, f

( ...
w

)]
as shown in (4) to (6). Three colored trajectories in

red, blue and green indicate positive, negative and zero values of local
LLEs, respectively.
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of local LLEs, respectively. Although initial conditions
are not critical, they are chosen at (x0, y0, z0, w0) =
(1, −1, 1, −1) close to the attractors in order to reduce
initial transients. Similarly, for a = 18.13 and b = 0.994,
oscilloscope traces are illustrated in Figs. 2(e)−2(h) on
(x, y), (x, z), (x, w), and (y, z) planes, respectively, using
C1 = C2 = C3 = C4 = 10 nF, R1 = R2 = R3 = R4 =
R5 = R8 = R9 = 10 k�, R6 = 55 �, and R7 = 1 k�.
The experimental results are in good agreement with the
numerical results.

Based on the Wolf algorithm [33] at b = 0.994, Fig. 3
illustrates the spectrum of LEs (L1, L2, L3, L4), ordered from
large to small values, versus parameter ‘a’ from 2 to 26. The
resistor R6 is a potentiometer between 38� to 100� in order
to adjust the parameter ‘a’ for a wide-range bifurcation from
a = 2 to 26. The step size of parameter ‘a’ is 0.015, and
the initial conditions are at (x0, y0, z0, w0) = (1, −1, 1, −1).
The calculations also employ the fourth-order Runge-Kutta
integrator with an adaptive step size (time step ≤ 0.001).
To ensure that chaos or hyperchaos is neither transients nor
numerical artifacts, the calculations take a sufficiently longer
time up to time t = 1 × 108. In Fig. 3, two positive LEs
(L1, L2) are evidenced and therefore system (1) is a hyper-
chaotic system with no equilibria for 10.0 ≤ a ≤ 26.0,
indicating a wide range of parameter space, with a small
window of periodic behavior. An existing criterion in [28]
has suggested that the maximum hyperchaos occurs where
the ratio of L2 (the second largest LE) to L4 (the most neg-
ative LE) is maximum. Following such a criterion, the max-
imum hyperchaos occurs at a = 18.13 and b = 0.994 and
becomes the reason for choosing both values for Fig. 2.

FIGURE 3. The spectrum of LEs (L1, L2, L3, L4) of system (1), ordered from
large to small values, against parameter ‘a’ showing hyperchaos.

B. HIGHER VALUES OF DL AND LLE
At b=0.994, the Lyapunov dimension DL (or the
Kaplan-Yorke dimension Dky) of the proposed system (1)
is numerically shown in Fig. 4 versus parameter ‘a’ from
2 to 26. In Fig. 4, the highest value is at DL = 3.2280,
where a = 18.13 and the spectrum of LEs is (L1, L2, L3,
L4) = (0.2525, 0.0428, 0, −1.2953) where L1 is the LLE.
The sum of the calculated LEs is −1 as required by the trace

FIGURE 4. Plots of the Lyapunov dimension (DL) against parameter ‘a’
showing the highest value at DL = 3.2280 where a = 18.13,
for b = 0.994.

of the Jacobian of Eq. (1). Although the values of (DL , L1)
are normally not critical, it is interesting to directly compare
them (without changing any scale through anymultiplication)
with values of (DL , L1) of the two existing 4D seven-term no-
equilibrium hyperchaotic systems [28] and [29].

As a result, this paper offers relatively higher values
of (DL , L1) = (3.2280, 0.2525), compared to (DL , L1) =
(3.0768, 0.0704) of [28], and (DL , L1) = (3.089, 0.064)
of [29]. In particular, most values of DL in Fig. 4 are rel-
atively high and maintained near 3.2280 for 6 ≤ a ≤ 20.
At b = 0.994, a bifurcation diagram of the vertex of x (xm)
is numerically shown in Fig. 5 against parameter ‘a’ from
2 to 26. Two tiny windows of periodic behavior are observed.

FIGURE 5. A bifurcation diagram of the vertex of x (xm) versus
parameter ‘a’.

C. NO MULTISTABILITY
On the one hand, multistability may offer flexibility in sys-
tem performance, through proper control of initial condi-
tions without changes in system parameters, by inducing
proper switching between different coexisting states. On the
other hand, as mentioned earlier in Section I, multistability
may potentially allow unexpecteed disasters in various sys-
tems [30] and therefore, without the proper control, multista-
bility should be avoided to prevent serious catastrophes [30].
It can be shown that the proposed system (1) does not exhibit
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multistability and therefore does not encounter potential dan-
gers associated with the multistability.

For example, in the hyperchaos at a = 18.13, and
b= 0.994, Fig. 6 simultaneously visualizes both the Poincaré
section in red and its basin of attraction in yellow, on the same
(x, y) plane at z = 0. Fig. 6 shows that only a single basin
of attraction in yellow emerges and there is no other basins
of attraction (in other colors) in parallel with the yellow.
In addition, only a single Poincaré section in red appears and
there is no other Poincaré sections (in other colors) in parallel
with the red. The system therefore does not exhibit multista-
bility. In addition, Fig. 7 visualizes the Poincaré section on
a (y, z) plane at w = 0 with initial conditions (1, −1, 1, −1)
and, unlike Fig. 6, the basin of attraction is omitted for clarity.
Fig. 7 shows that system (1) has rich dynamical behavior on
this plane as there is no regular limbs [16].

FIGURE 6. The Poincare section in red and its basin of attraction in
yellow on the same (x, y) plane at z = 0 for a = 18.13, b = 0.994.

FIGURE 7. The Poincare section on a (y, z) plane at w = 0 for a = 18.13,
b = 0.994 and initial conditions (1, −1, 1, −1).

D. A LARGE TWO-PARAMETER SPACE OF HYPERCHAOS
Based on the spectrum of LEs (L1, L2, L3, L4), Fig. 8 illus-
trates dynamical behavior of system (1) in three color
pixels on an (a, b) plane of a two-parameter space where
10 ≤ a ≤ 26 and 0.1 ≤ b ≤ 1. Pixels in red, black,
and blue represent hyperchaos, chaos, and periodic behav-
ior, respectively. Initial conditions are chosen from a Gaus-
sian distribution with zero mean and unit variance in every
parameter space of 400×400 pixels. For b = 0.994 and
10 ≤ a ≤ 26 in Fig. 8, the red pixels refer to the hyperchaos
described in Fig. 3. It can be seen from Fig. 8 that the red
pixels of hyperchaos occupy a large two-parameter space
compared with a smaller area of the black pixels of chaos.
In addition, the blue pixels of periodic behavior form a much
smaller area surrounded by the black and red pixels.

FIGURE 8. Dynamical behavior of system (1) with pixels in red, black and
blue for hyperchaos, chaos and periodic behavior, respectively.

E. A BOOSTABLE VARIABLE WITH A SINGLE CONTROL
CONSTANT
As the phase space variable z appears only once in (1), z can
be conveniently controlled as an offset boostable variable by
replacing z with z + k where k is a single control constant.
System (1) can be rewritten as

ẋ = y− x + w
ẏ = −ax(z+ k)
ż = xy− 1
ẇ = −bx

(8)

Fig. 9 illustrates three examples of hyperchaotic trajectories
of zwith a = 18.13 and b = 0.994: (i) a bipolar trajectory z in
blue at the center for k = 0, (ii) a positively unipolar (shifted-
up) trajectory z in black at the upper half for k = −1.9, and
(iii) a negatively unipolar (shifted-down) trajectory z in red
at the lower half for k = 1.9. Fig. 10 shows mean values
of x, y, z and w versus the single control constant k . It can
be seen from Fig. 10 that k only changes the mean value
of z, but does not influence the mean values of x, y and w.
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FIGURE 9. A bipolar signal in blue for k = 0, a positively unipolar
(shifted-up) signal in black for k = −1.9, and a negatively unipolar
(shifted-down) signal in red for k = 1.9.

FIGURE 10. Mean values of x, y, z and w versus the single control
constant k from −2 to 2, for a = 18.13, b = 0.994.

In particular, the spectrum of LEs (L1, L2, L3, L4) remains
relatively unchanged for −2 ≤ k ≤ 2, as shown in Fig. 11.
As a result, the change of k introduces no effects on the
dynamics but provides a controllable level shift for practical
applications where a unipolar signal is required, e.g., [34].

IV. A COMPARISON OF 4D SEVEN-TERM
NO-EQUILIBRIUM HYPERCHAOTIC SYSTEMS
Table 1 shows a comparison of 4D seven-term no-equilibrium
hyperchaotic systems between the proposed system (1) and
the two existing systems [28], [29]. Table 1 shows that this
paper offers 10 simultaneous advantages, whereas each of the
existing systems [28] and [29] offers less than 10. As shown
in Table 1, six advantages in this paper appear to be superior
to [28] and [29], i.e., the less (and minimum) number of
circuit components, the larger values of Lyapunov dimension
(DL) and LLE (L1), the large two-parameter space of hyper-
chaos, and the boostable variable.

In particular, another advantage is the first report of a single
fourth-order hyperchaotic hyperjerk ODE in a system with

FIGURE 11. The relatively unchanged spectrum of LEs (L1, L2, L3, L4)
versus the single control constant from −2 to 2, for a = 18.13, b = 0.994.

TABLE 1. A comparison of 4D 7-term no-equilibrium hyperchaotic
systems.

no equilibria, as shown in (2). Such a single ODE enables an
alternative model for the study of a no-equilibrium system for
hyperchaos. The other four advantages in this paper present
equal or superior features compared to those of [28] and [29],
i.e., the number of nonlinear terms, no multistability (and its
potential dangers), and the hidden attractors are possible for
hyperchaos, chaos, and periodic behavior.

V. CONCLUSIONS
A new set of four coupled first-order ODEs for a rare
type of 4D seven-term no-equilibrium hyperchaotic systems
has been presented and compared with the two existing
systems [28] and [29] in the same type. The six advantages,
which are superior to the existing systems, are the first report
of a fourth-order hyperchaotic hyperjerk systemwith no equi-
libria, the simple circuit realization using only 21 electronic
components, the Lyapunov dimension of 3.2280, the largest
Lyapunov exponent of 0.2525, the large two-parameter space
of hyperchaos, and the technique of a boostable variable.

35454 VOLUME 6, 2018



I. Ahmad et al.: On the First Hyperchaotic Hyperjerk System With No Equilibria: A Simple Circuit for Hidden Attractors

In addition, the four advantages, which are either similar
or better characteristics compared to the existing systems,
are that the number of nonlinear terms is two, the multista-
bility does not exist, the hyperchaotic, chaotic and periodic
attractors are feasible, and all attractors are hidden attractors
due to the absence of equilibria. All of the aforementioned
advantages enable the proposed system and circuit to be well-
suited for chaotic applications such as chaos-based commu-
nications.
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