
Received May 7, 2018, accepted June 11, 2018, date of publication June 25, 2018, date of current version July 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2850345

Improved Session Table Architecture for Denial
of Stateful Firewall Attacks
ZOUHEIR TRABELSI1, SAFAA ZEIDAN 1, KHALED SHUAIB1, AND KHALED SALAH 2
1College of Information Technology, United Arab Emirates University, Al Ain 15551, United Arab Emirates
2Department of Electrical and Computer Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates

Corresponding author: Safaa Zeidan (safaa.z@uaeu.ac.ae)

This work was supported by UPAR under Grant 31T080.

ABSTRACT Stateful firewalls keep track of the state of network connections. The performance of stateful
firewalls depends mainly on the processing of session tables and the mechanism used for packet filtering.
This paper presents a stateful session table architecture for a splay tree firewall. A splay tree firewall
organizes firewall rules in a designated prefix length splay tree data structure, combined with a collection of
hash tables grouped by a prefix length. When using a splay tree firewall, packet filtering time is essentially
reduced through multilevel filtering paths, where unwanted packets are rejected as early as possible. The
proposed session table architecture reduces memory space consumption and packet filtering time, as it
uses one hash slot per connection. Keeping information related to each connection in one session entry
produces additional processing time, particularly for processing session timeouts. The proposed session
architecture separates session state and timeout information into different data structures. Under DoS attacks,
the proposed architecture compares non-first packets directly with a splay tree firewall. Consequently,
packets are rejected early on, and thus avoiding the extra computational overhead caused by hash function
calculation and session table processing.

INDEX TERMS Network firewalls, stateful firewall, session table, DoS attacks on session table, packet
classification, early packet rejection, splay tree, hash table.

I. INTRODUCTION
Firewalls are the first line of defense against threats and
attacks targeting private networks. The primary functionality
of a firewall is to filter traffic routed in and out of a private
network. This is done according to a predefined filtering
policy rules, which are typically constructed to allow or deny
a packet to pass through, depending on the packet’s header
information (protocol, source and destination IP addresses,
source and destination ports).

First generation of firewalls, known as packet filter, per-
form packet filtering in a sequential order starting from the
first rule until a matching rule is found. If no matching
rule is found, the packet is processed by the default rule
located at the bottom of the rule base. This type of firewalls
does not store any previous connection related information,
therefore named as stateless packet filter firewalls. In fact,
each packet is treated as an individual entity, which is either
routed if it matched the rule list or dropped if did not. Thus,
filtering decision is made separately for every packet without
taking into consideration earlier decisions for related packets.
Stateless firewalls are fast and do not keep historical records,

as they process incoming and outgoing packets independently
and with no correlation of previously seen packets. On the
other hand, for bi-directional services, such firewalls must
have rules explicitly written to allow return traffic flows,
which make them exposed to attacks, such as spoofing and
fragmentation.

Nowadays, stateful or dynamic firewalls are the most
widely used firewalls. They address limitations of state-
less firewalls, as they keep track of all packets that belong
to an existing flow from both directions using a session
table. A session table, also named state table or connec-
tion track table, is part of the firewall internal structure.
It tracks active connections and inspects packets to check
whether it is part of a previous active session or not.
If packets have the expected properties that the session
table predicts, the packets are forwarded without any pro-
cessing by the firewall filtering rules. Session table entries
related information depends on the firewall vendor. But,
they typically include <protocol (Prot), IP source (Src-IP),
source Port (Src-P), IP destination (Dst-IP), destination Port
(Dst-P), connection state and timeouts>, where connection

35528
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-4298-6483
https://orcid.org/0000-0002-2310-2558

Z. Trabelsi et al.: Improved Session Table Architecture for Denial of Stateful Firewall Attacks

state is tracked until a connection is torn down or until a
preconfigured timeout is reached. They may also include a
sequence number, an acknowledgement number and a win-
dow size. The main advantage of stateful firewall is that it is
more secure than stateless firewall, as the administrator no
longer needs to write filtering rules to allow return traffic.
This closes the security hole opened by rules that allow return
trafficwhich can be exploited by an attacker to launch a denial
of service attack (DoS). Furthermore, the rule list in stateful
firewall becomes shorter as a single rule is enough to describe
a flow; whereas two rules are needed for the same flow in the
corresponding stateless firewall [1]–[3].

Likewise, application proxy firewalls are more secure than
stateless firewalls. However, they are slower than stateful
firewalls as application layer filtering is considered. When
using a proxy firewall, two TCP connections are established
on behalf of the packet source and destination. Thus, clients
do not communicate directly with servers. The proxy fire-
wall intercepts a request from a client, examines application
payload then forward permitted packets to the destination
server [3].

Apart from stateless firewall speed and rule conflicts prob-
lems, recent research tends to propose mechanisms to reject
unwanted traffic as early as possible. Such type of traffic
has a prolong effect on stateless firewall performance as it
undergoes a long searching path until denied by the default
rule. In our recent studies [4], [5], we proposed a splay
tree firewall to address the aforementioned problems. It has
been demonstrated that the splay tree firewall achieves high
packet filtering speed, as it uses dynamic early multilevel
packet filtering mechanism. In addition, the mechanism can
be considered as a device protection technique against DoS
attacks targeting the default policy rule. However, the model
doesn’t keep track of the states of established connections
since it works as a stateless packet filter but not as a stateful
firewall.

This paper proposes a firewall session table architecture
based on an algorithm that can determine and maintain
new, active and inactive session connections. Motivations
and contributions in this paper fall into three main areas.
First, current stateful firewalls keep all connection related
information into a single session entry structure that basi-
cally consists of <Prot, Src-IP, Src-P, Dst-IP, Dst-P, state,
timeout> [3], [27]–[31]. This structure produces additional
processing time, particularly for session timeout process-
ing [27], [28], [35]. To reduce costly processing of session
timeout attribute, the proposed session architecture uses two
different data structures for session entry information, one
is used for session identifier <Prot, Src-IP, Src-P, Dst-IP,
Dst-P>, while the other is used for session state and timeout
<state, timeout>. Second, session tables such as the Con-
nection track module in Netfilter [33], use two different hash
entries per connection for the original and reply directions,
whereas the proposed session table architecture uses one
hash entry per connection. This will reduce memory space
consumption, hash computation and filtering time used to

identify if an arriving packet is part of an existing connection.
Third, research related to stateful firewalls emphasizes on
the session table architecture along with the packet filtering
mechanism used, whereas most of the filtering process is
done by comparing packet header information against the
listed rules sequentially, resulting in an overall performance
degradation [25]–[32], [34]. Existing literature either tackle
session table architecture [27]–[32], or provide algorithms for
fast packet filtering the naïve one [4], [5], [16]–[26]. How-
ever, to the best of our knowledge there is no prior work that
integrates enhanced session table architecture with fast packet
filtering mechanism. Thus we propose an enhanced session
table architecture and integrate it with a fast packet filtering
mechanism (splay tree firewall [4], [5], as well as study the
overall system behavior under normal and attack situations.
Usually, under firewall normal operation all session table
entries represent valid flows. However, some types of abnor-
mal activities can fill up the session table with invalid entries,
raising security and performance concerns. In such situations,
the proposed algorithm switches to normal filtering using a
dynamic splay tree mechanism with its early packet rejection
characteristic. The main contributions of this paper can be
summarized as follows:
• Propose an enhanced session table architecture that:

- Separates session entry into two different data
structures to improve session lookup and enhance
timeout processing (section 5.1 and 5.2).

- Uses one hash slot per connection to save memory
space, reduce hash computation, and increases fire-
wall concurrent connections (section 5.1).

- Expands the hash table vertically by reducing the
number of buckets using the same memory space to
resolve collision (section 5.3).

– Reduces the effect of a DoS attack (section 5.6).
• Propose a complete statefulness solution by integrating
the proposed session architecture with splay tree packet
filtering mechanism (section 5.5).

• Study the behavior of the overall system under normal
and attack situations (section 5.6), considering:
- Attacks such as first packet and high percentage of
non-matching traffic attacks can be mitigated using
the nature structure of the proposed session table
architecture or the splay tree firewall without any
additional overhead (section 5.6 A and B).

- Other non-first packet attacks can be miti-
gated by first verifying the splay tree firewall
(section 5.6 C).

The paper is organized as follows. Section II describes
the state of the art of stateful firewalls. Section III provides
details about splay tree firewalls. As an example, section IV
discuses factors affecting session table processing time in a
connection tracking system. SectionV describes the proposed
session table architecture. Implementation and experimental
evaluation is demonstrated in section VI. Finally, Section VII
concludes the paper with some insights and related
perspectives.

VOLUME 6, 2018 35529

Z. Trabelsi et al.: Improved Session Table Architecture for Denial of Stateful Firewall Attacks

II. RELATED WORK
Previous research work related to functional enhancement of
stateful firewalls can be categorized into four different areas,
and most of them provide straight forward adaptations of
methodology and techniques previously designed for state-
less firewalls.

A. RULE ANOMALY DETECTION AND ELIMINATION
The first area focuses on stateful firewalls rules anomaly
detection to discover and release conflict, redundant and
shadowed filtering rules. This can help in reducing policy
size, memory space consumption and packet filtering time
on a firewall. However, most previous research methods such
as [6]–[9] were limited to solve anomalies in the configura-
tion of stateless firewalls, whereas little work has been done
for stateful case.

In [10], an approach is proposed to describe stateful fire-
wall model which split into stateful and stateless components.
In [11], a solution is proposed based on adapting the existing
anomaly detections techniques for stateless firewalls to suit
stateful firewalls, but without considering session table man-
agement anomalies. In [12], an approach is proposed based
on semantic web technologies to model both stateless and
stateful firewalls. Cuppens et al. [13] provided algorithmic
solutions based on specifications of general automata to solve
flawed configurations, whereas in [14] they completed their
algorithmic solutions to cover intra-state rule misconfigura-
tion for stateful rules and inter-state rule misconfiguration
for both stateful and stateless rules. Basile and Lioy [15]
extended the Liu’s model of stateful firewalls [10] to the
application level, in order to detect rule pair and multi-rule
anomalies, hence reducing the likelihood of conflicting and
suboptimal configurations.

B. USE OF HIGH PERFORMANCE HARDWARE
The second area discuses high performance hardware archi-
tectures such as using FPGA for speed performance and min-
imizing memory requirements. Most research work proposed
in this area focused generally on packet classification prob-
lem. In [16], a decision tree and heuristic rule set partitioning
algorithm is used to reduce rule replication and memory
requirement. Similarly, in [17] a rule categorization algorithm
by considering rules field features is proposed based on paral-
lel and pipelined architectures on FPGA tominimize memory
requirements. In [18], a massively parallel firewall circuit is
presented to develop customized firewall circuits in the form
of synthesizable VHDL code for FPGA configuration. How-
ever, FPGA based solutions require complicated processes to
be done on the FPGA circuits in case of data structure or rules
change.

C. USE OF ADVANCED PACKET FILTERING TECHNIQUES
Research on the third area focuses on proposing filtering
techniques to enhance the search speed of stateful firewalls,
through inheriting previous research techniques proposed for

stateless firewalls adapted with session table management.
Previous work to enhance the filtering optimization problem
utilized one or more of the followings: traffic awareness
techniques, early packet rejection and acceptance techniques,
and reordering of dependent and independent filtering rules
as well as rule-fields.

1) TRAFFIC AWARENESS TECHNIQUES
Researches presented in [19]–[21], were the first to have a
special focus on the network traffic statistics and utilize the
traffic characteristics in improving the average filtering time.
In [19]–[20] an improvement of alphabetic tree is proposed
using traffic statistics. However, the statistical trees were not
able to scale well with the number of fields values. To solve
this problem, El-Atawy et al. in [21] proposed a technique
that is based on statistics collected from policy segments in
order to build Huffman trees that dynamically adapt to the
traffic statistics.

2) EARLY PACKET REJECTION AND ACCEPTANCE
TECHNIQUES
The idea of firewall optimization through early packet rejec-
tion and acceptance was introduced in [19], [20], and [22].
Hamed et al. [19], [20] were the first to exploit the idea of
early rejection of unwanted traffic flows without impacting
other flows. A technique named field value set cover (FVSC)
built a number of rejection rules that were examined before
the real firewall policy. However, this technique suited only
for small security policies with low diversity of field values.
Thus, in [22] Policy Boolean expression relaxation (PBER)
technique is proposed using binary decision diagrams (BDD)
to implement the Boolean expression of the policy acceptance
space.

3) REORDERING OF RULES AND RULES FIELDS
Wang et al. [23], [24] and Trabelsi et al. [25], [26] addressed
the case of firewall packet optimization for independent filter-
ing rules. In [23], an optimizing algorithm based on Markov
model was proposed. The algorithm rebuilt the rule list by
using firewall decision tree algorithm. However, as a result
of using Markov model, the rule order changed for every
incoming packet, consequently reducing the firewall effi-
ciency. To overcome this problem, authors in [24] improved
the firewall ordering algorithm in [23] by using a statistical
model in which there is no need for rule order adjustment for
every incoming packet. In [25] and [26], we were the first to
propose and evaluate a mechanism based on rules and rule-
fields reordering and focus on its major effect in reducing
the overall packet processing time. In [25], the rule/rule-
fields reordering processes were done at the end of each
traffic window which may produce an overhead proportional
to the number of filtering rules and rule-fields. Hence, in [26]
a disjoint system stability test was performed, one for the
filtering rules and the other for each rule-field. Also, the error
precision was used and the efficient traffic window size effect
was intensively studied.

35530 VOLUME 6, 2018

Z. Trabelsi et al.: Improved Session Table Architecture for Denial of Stateful Firewall Attacks

Our recent study in [5] encompasses all the aforementioned
sub categories, where a new type of firewall called splay tree
firewall is proposed that can handle early packet rejection
and acceptance, and can perform splay filters reordering
based on a statistical model that utilizes traffic characteris-
tic. The paper discuses an efficient solution that takes into
consideration the position of each splay filter with respect to
the previous ones. This allows best prediction of the order
of the filters, and consequently optimizes the filtering time
of the next network traffic window. Finally, the paper offers
more understanding in terms of splay filters order combi-
nations and their effect in the total packet filtering time
and on how to choose the best initial order to start with.
However, the mechanism does not keep track of connection
states.

D. SESSION TABLE PERFORMANCE
The fourth area concentrates on session table architecture and
performance to enhance session entry creation, lookup and
deletion processes. In [27], a fast session table manipulation
algorithm is proposed through enhancing the PATRICIA trie,
that is employed in some session tables, in order to improve
timeout process. Li et al. [28] generalize their proposed
algorithm in [27] to cover multi-queue architectures and
defend hosts against SYN flood attack. In [29], a connection
tracking system for tree rule firewall is proposed to reduce
memory space consumption and processing time. However,
Chomsiri et al. [30] claim that hashing computation used in
stateful tree rule firewall [29] takesmore time than comparing
packet headers with respective conditions specified in the cor-
responding firewall rule. Therefore, they proposed a hybrid
mechanism [30], in which stateful and stateless rules were
mixed together. Despite that the resulted rule set is conflict
free, the number of rules exponentially increased with the
diversity of rule fields values, which make this technique
not suitable for security policies with large numbers of rules.
In [31], a design and implementation of session management
architecture in FPGA is proposed; whereas Xu et al. [32]
presented an architecture aware session lookup scheme for
deep inspection on network processors.

However, in previous session table related work, no clarifi-
cation was given on the used packet filtering mechanism and
its integration with the proposed session table architecture.
Moreover, no solutions were proposed for session timeout
processing enhancement, number of slots used per connection
and the capability of the proposed session architecture in
thwarting DoS attacks.

To the best of our knowledge, all research work done in the
field of stateful firewall performance optimization focused on
packet filtering mechanisms and session table architectures.
However, no complete optimizationmechanisms based on the
integration of both packet filtering and session table architec-
ture had been proposed to date in the literature. The demand
for a complete integration of these two parts and the behavior
of session table under normal and attack situation motivates
this research.

In the next section, we give a brief background on splay
tree firewall (as packet filtering mechanism used in this
paper), highlighting its advantages and how to utilize such
a search technique in reducing substantially packet filter-
ing time. Then, we take it a step further to propose an
enhanced session table architecture to achieve statefulness
characteristic.

III. STATELESS SPLAY TREE FIREWALL
A traditional firewall filters network packets by comparing
packet headers sequentially against a set of predefined filter-
ing rules. Each filtering rule is defined by a set of filtering
fields, and associatedwith an action to either block or forward
a packet to its destination. A significant drawback of the
linear search is that, unwanted traffic targeting specific rules
such as the default filtering rule may cause more harm than
others by producing an overhead to the system. This overhead
is proportional to the number of rules and fields used in the
security policy. Such unwanted network traffic may cause
a DoS attack situation and consequently may degrade con-
siderably the firewall performance [4], [5], [19]–[22]. Thus,
it is very important to reject such network traffic as early as
possible.

In [4] and [5], we proposed a splay Tree firewall to opti-
mize early acceptance as well as early rejection packet filter-
ing paths. This firewall achieves a high processing speed as
the splay tree data structure changes dynamically according
to traffic flows. However, the proposed design works only
as a packet filter with empowered filtering enhancement,
treats packets individually and does not keep track of network
connections states.

Splay Tree firewall consists of several splay filters namely,
protocol, source/destination addresses, source/destination
ports, etc. More attribute filters can be added, deleted or mod-
ified easily. Each splay filter consists of a splay tree data
structure and a collection of hash tables. The splay tree data
structure adapts dynamically according to the network traffic
flows allowing early acceptance for repeated packets (opti-
mization in the acceptance path). On the other hand, splay tree
node with minimum prefix length (min-Node) is maintained
at root→left position to reject unwanted packets by at most
two memory accesses (optimization in the rejection path).
Fig.1 shows a splay tree firewall with three arbitrary ordered
splay filters named F1, F2 and F0.

All splay tree filters are connected in a consecutive order
using multi-filtering levels in which packets are rejected as
early as possible. However, the order of these filters is dynam-
ically determined by their packet rejection rate. This reduces
the time required for comparing packets with splay tree filters
as well as early rejecting packets that do not match any splay
tree filter. Packets will not propagate to the next adjacent
splay tree filter until they pass a cascaded filtering level. The
firewall will continue filtering packets using certain order of
splay tree filters under a certain threshold qualification (Chi-
Square stability test) to compromise between performance
and cost overhead. In case of a DoS attack, the order of the

VOLUME 6, 2018 35531

Z. Trabelsi et al.: Improved Session Table Architecture for Denial of Stateful Firewall Attacks

FIGURE 1. Splay Tree Firewall with three arbitrary filters.

splay filters may change according to the Chi-Square stability
test decision, which is based on the DoS attack significance.

The splay tree firewall uses light weight traffic adaptive
mechanism to filter unwanted expensive traffic and signifi-
cantly minimizes packet filtering time with reasonable mem-
ory space requirement; thus saving the firewall processing
power and increasing the overall throughput. Also, the over-
head of reordering the splay tree filters according to traffic
characteristic is guaranteed to be lower than the gain achieved
in filtering time.

However, the splay tree firewall is basically a stateless
packet filter in which filtering decision is made separately for
every packet and does not keep history for earlier decisions
made on related packets. Although the splay tree firewall
with its dynamic structure shows resiliency against complex
attacks targeting bottom rules [34], it may still suffer from
some DoS attack types due to the security hole opened by
rules allowing return traffic (response traffic).

To inherently provide more security for the splay tree fire-
wall and eliminate the aforementioned limitations of stateless
firewall, we propose a session table architecture that can
record and process different connections’ states to protect
the network. Connection tracking system within the Netfilter
Model is considered as an example of an open source session
table. From the discussion, we highlight connection tracking
system structural limitations and derive factors that affect
session table performance.

IV. CONNECTION TRACKING SYSTEM
Generally, the performance of stateful firewalls depends
primarily on the performance of session table processing
and the packet filtering mechanism used in the security
policy [27]–[29], [31], [46]. The session table basically
maintains entries for active connections in a memory
structure. Each entry stores the most important information
of streams that are allowed by the firewall rules’ database.

FIGURE 2. Session table entry general format.

Such information may include: Prot, Src-IP, Dst-IP, Src-P,
Dst-P, State, Timeout and other characteristics. Fig. 2 shows
the session table entry general format.

FIGURE 3. Connection tracking system session table structure.

Connection tracking system within the Netfilter, is an
example of stateful mechanism modular that is used by
IPtables [33]. As shown in Fig. 3, this system consists of
a hash table where each hash table entry has a bucket of
linked list of hash tuples. The maximum bucket length is 8.
Packets information are hashed to these tuples using a hash
function (Jenkins’ hash). It is important to mention that for
each connection there are two hash tuples in different buck-
ets. One tuple to store request packet’s information for the
original direction from source to destination, and the other to
store reply packet’s information for the reply direction from
destination to source.

FIGURE 4. Connection tracking system lookup process for first packet.

Connection tracking system lookup process illustrated
in Fig. 4, verifies the first packet of a connection against
the firewall rule database. If it matches a filtering rule with
accept action, then an entry is added to the session table,
otherwise the packet is dropped. However, non-first packets
shown in Fig. 5, will be verified directly against the session
hash table and buckets, to check if they are part of an active

35532 VOLUME 6, 2018

Z. Trabelsi et al.: Improved Session Table Architecture for Denial of Stateful Firewall Attacks

FIGURE 5. Connection tracking system lookup process for non-first
packet.

connection or not. If the non-first packet matches an entry in
the hash table and buckets, it will be forwarded to its desti-
nation without checking the rule set. Otherwise, the packet is
dropped.

Thus, if a first packet of a connection is received, it will be
verified by the IPtables rules. If the packet matches a filtering
rule, a hash function is applied to the five attributes of the
packet header to obtain hash entry number (entry 1), as shown
in Fig. 3. This entry number will indicate in which bucket the
original connection information will be stored. Also, the hash
function is applied again to obtain a hash entry number (entry
2), Fig. 3, to indicate the bucket in which reply attributes
to be stored. Similarly, terminating a connection needs two
operations to delete the corresponding connection’s tuples
from memory. Entry 1 and Entry 2 are calculated as follows:

Entry 1 = Hash(Prot, Src_IP, Dst_IP, Src_P, Dst_P, seed)
Entry 2 = Hash(Prot, Dst_IP, Src_IP, Dst_P, Src_P, seed)
Where seed is a random number generated by the IPtables.

A. STRUCTURAL FACTORS AFFECTING SESSION
TABLE PERFORMANCE
The aforementioned connection tracking system structure
raises memory and time limitation issues, that influence the
session table performance significantly. The structural factors
affecting session table performance are as follows:

1) NUMBER OF NODES PER CONNECTION
Two hash tuples are used, one to store request information for
the origin direction and the other to store reply information
for the reply direction.

2) MEMORY SPACE
Entries 1 and 2 (Fig. 3) representing the same connection,
invoke the hash function twice in case of connection tuples
insertion and deletion as well as it has to allocate or remove
memory two times for the two tuples. In this case, Netfilter
model is not able to use memory space efficiently which
reduces the maximum number of concurrent connections due
to the use of pair tuples for each connection.

3) HASH FUNCTION USAGE
The frequent use of the hash function itself, twice per con-
nection insertion and twice per connection removal, is time

consuming when dealing with a large number of network
packets requesting or terminating connections.

4) SESSION TIMEOUT PROCESSING
Another important factor is session timeout processing. Exist-
ing stateful firewalls have high timeout processing [27]. This
is due to the fact that all connection’s information is stored in a
single session entry, as shown in Fig. 2. Thus, arriving packets
are looked up in the session table for a match. If a match
is found indicating that packets are related to an existing
connection, then session state and timeout will be updated.
In normal condition, these match-update operations will be
done frequently. Moreover, in case of a DoS attack, such
as TCP SYN flooding, excessive invalid entries are added
to the session table from spoofed Src-IP, causing session
table to be filled. Therefore, this would rise security and
performance concerns. On the other hand, when a connection
is terminated or over timed, its entry will be deleted from
the session table to eliminate inactive sessions and therefore
reducing security holes. Hence, timeout processing also plays
a vital role in session table performance.

V. PROPOSED SESSION TABLE ARCHITECTURE
Considering the aforementioned factors and limitations,
we propose a new session table architecture based on session
entry attributes separation, as shown in Fig. 6. The new ses-
sion table architecture involves hash table, uses one session
node per connection to consume less memory and operates in
a faster manner under normal and attack conditions.

FIGURE 6. Proposed session table entry format.

Instead of using one session entry containing all connec-
tion information, we will use two different memory struc-
tures, DDR SDRAM and ZBT SRAM, to store relative
connection information providing only one session node
per connection. Since the session entry shown in Fig. 2 is
wider than 16 bytes and concurrent connections may reach
up to 1 million entries, over 128 MB of memory space is
required to store relative session table. Therefore, the use
of DDR SDRAM and ZBT SRAM can greatly enhance
the session table performance. The proposed session table
entry format in Fig. 6 consists of the structures, Session_ID
and Session_ST pointing to each other using Index_1 and
Index_2.

A. SESSION_ID STRUCTURE
High speed DDR SDRAM memory will be used to store the
five connection’s attributes < Prot, Src_IP, Dst_IP, Src_P,

VOLUME 6, 2018 35533

Z. Trabelsi et al.: Improved Session Table Architecture for Denial of Stateful Firewall Attacks

FIGURE 7. Proposed Session_ID node structure.

Dst_P> augmented with Index_2, in a unique Session_ID,
where Index_2 will lead to the connection <state, timeout>
attributes. Only one node per connection is used to optimize
session table memory usage. Fig. 7 illustrates Session_ID
node structure, in which packet attributes < Prot, Src-IP,
Dst-IP, Src-P, Dst-P> are hashed using a hash function to
obtain entry 3. This single entry indicates the bucket in which
Session_ID is stored. Entry 3 is calculated using the following
function:

Entry 3 = Hash(Prot, max(Src_IP, Dst_IP), min(Src_IP,
Dst_IP) , max(Src_P, Dst_P), min(Src_P, Dst_P), seed).

Jenkins hash [51] is used in the proposed session table as
it provides fast operations and is capable of distributing its
32 output bits randomly.

In the proposed architecture, a conneciton is represented
by a single node; whereby two nodes are used in the Netfilter
model, one for request and the other for reply. Thus, memory
space will be saved by 50%, which implies that the number of
concurrent connections can double than that in the Netfilter
model, Fig. 8.

Additionally, the proposed Session_ID is identified by a
single entry (entry 3); while two entries are used in Netfilter
model (Entries 1 and 2). Therefore, calculation and hash-
ing for session entry insertion or deletion are done twice
for the same connection in the Netfilter model, while hash
function is invoked only once per connection in the proposed
architecture. This can reduce session table processing time
significantly, and therefore enhances the overall firewall per-
formance greatly, Fig. 8.

FIGURE 8. Proposed Session_ID structure vs Connection tracking system.

FIGURE 9. Proposed Session_ST structure.

B. SESSION_ST STRUCTURE
Remaining session entry attributes <state, timeout> aug-
mented with Index_1 are stored in Session_ST in ZBT
SRAM using double linked list as shown in Fig. 9. Where
Index_1 will lead to the connection’s Sesion_ID.The state
attribute stores corresponding connection current state infor-
mation.Whereas, timeout attribute is used to determinewhich
session entry has to be removed if the session table is full. The
timeout attribute is updated by an internal timer object each
time the corresponding Session_ID is accessed. Differently
from the existing stateful firewalls, the proposed Session_ST
structure will avoid reading many entries when processing
connections’ timeout attribute. This is because Session_ST
is stored in increasing order of time. This is very important
as if any session entry timeout doesn’t expire, all subsequent
connections’ entries, that follow after this entry, are also valid
and do not timeout too. Thus, in case that session table is full
and new sessions cannot be allocated, instead of comparing
the time of current internal timer with timeout of each session
entry, as in existing stateful firewalls, the time of current
internal timer will be compared to the timeout of Session_ST
node at the head of the double linked list only. Therefore,
unused open sessions that consume firewall resources will
be easily identified and removed from the session table. This
structure also will help to protect the firewall against DoS
attacks targeting its session table, since old/unused/excessive

35534 VOLUME 6, 2018

Z. Trabelsi et al.: Improved Session Table Architecture for Denial of Stateful Firewall Attacks

sessions will reside close to the head of the double linked list,
according to their timeout. Therefore, they can be defined and
removed easily enhancing firewall performance and allowing
it to accept newly connection requests.

It is important to mention that session timeout attribute
should be managed separately for embryonic and established
connections. Embryonic state connection, known also as half
open connection, is a connection request with unfinished TCP
handshaking; while established state connection has com-
pleted successfully the handshaking. Therefore, embryonic
connections need to have shorter timeout compared to estab-
lished connections to prevent the firewall from DoS attacks,
such as TCP SYN flooding attack. Kim et al. [35] proved that
memory allocation for embryonic TCP connection should not
exceed 10 seconds of inactivity.

FIGURE 10. Proposed session table architecture.

C. SESSION TABLE ARCHITECTURE COMBINING
SESSION_ID AND SESSION_ST NODES
Session_ID and Session_ST memory blocks are related to
each other using Index_1 and Index_2 addresses generated
by hash module generator as shown in Fig. 10. The hash
module generates indices and manages session entries based
on the five attributes extracted from the received packet using
packet parser module. Two hash functions are used in the
hash module generator, H1(k) and H2(k). H1(k) is used to
generates hash indices pointing to Session_ID located in
DDR-SDRAM memory and to solve for collision in order
to achieve faster session table lookup. H1(k) is embedded
with min() and max() functions to generate a single node per
connection. The other hash function H2(k), is used to gen-
erate addresses for corresponding Session_ST in the double
linked list in ZBT SRAM to enhance session table timeout
processing. The proposed session table architecture expands
the DDR SDRAMhash table vertically by reducing the maxi-
mum bucket length. This method will decrease hash collision
using the same memory space compared to Netfilter model,
as more hash slots will be available for new connection
requests. For instance, if the bucket size is reduced to half,

the hash table size will be doubled using the same provided
DDR SDRAM memory space, which implies that collision
can be decreased by approximately 50%. Typically, one node
per bucket is used in the proposed session table architecture
resulting in a hash table that is 8 times bigger than that in the
Netfilter model.

D. PROPOSED SESSION TABLE OPERATIONS
AND ALGORITHMS
There are 4 operations associated with session table pro-
cessing: (1) insert a new session entry (Session_ID, Ses-
sion_ST) when first packet’s acceptable request is received,
(2) lookup the session table for a matching Session_ID entry
when non-first packet is received, (3) update a Session_ST
state and timeout attribute, and (4) delete a session entry
(Session_ID, Session_ST) either when termination packet is
received or Session_ST is over timed. Lookup and update
operations are usually related to each other. When non-first
packets belonging to an existing session match a session table
entry, session state and timeout attributes will be updated.

1) SESSION ENTRY INSERTION ALGORITHM
When first packet request is received, it is verified by the
splay tree firewall. If the packet does not match a rule,
it will be rejected as early as possible via splay tree min-
Node. However, if the packet is accepted by a rule, then hash
functions H1(k) and H2(k) are applied to the packets’ five
attributes to get Index_1 and Index_2. DDR-SDRAM mem-
ory block is filled with Session_ID attributes, augmented
with ZBT SRAMmemory block address pointed by Index_2.
Session_ID node is inserted in the hash table. Also, ZBT
SRAM memory block is filled with Session_ST attributes
augmented with DDR-SDRAM memory block address
pointed by Index_1. Session_ST is inserted in the double
linked list and appended to tail.

2) SESSION TABLE LOOKUP AND ENTRY
UPDATE ALGORITHM
When non-first packet is received, hash function H1(k) is
applied to the packets’ five attributes. The hash table is
searched for matching Session_ID. If a matching is found,
Index_2 is used to reach corresponding Session_ST node.
Then, Session_ST attributes are updated with the new state
and current time. After that, Session_ST node position is
shifted to the tail of the double linked list.

3) SESSION ENTRY DELETION ALGORITHM
Defining the beginning and the end of a connection depends
mainly on the protocol used. For connection oriented pro-
tocols, such as TCP, the firewall can explicitly identify
packets requesting the beginning and the end of a session.
However, for connectionless protocols like UDP the deletion
of a session entry is determined by inactivity timeout. Since
Session_ST is stored in increasing order of time, it will be
easily to determine and remove timed out Session_ST and
corresponding Session_ID node from the session table.

VOLUME 6, 2018 35535

Z. Trabelsi et al.: Improved Session Table Architecture for Denial of Stateful Firewall Attacks

If a time interrupt is received, the first Session_ST node
pointed by head in the double linked list is read. The current
time is compared to Session_ST timeout attribute. If they are
not equal, exit the process and no need to search for other
session entries that may over timed. However, if they are
equal indicating that this Session_ST node is over timed, then
Session_ST node is deleted, and the head of the double linked
list is updated. The corresponding Sesion_ID is also deleted
using Index_1.

FIGURE 11. Stateful splay tree firewall first and non-first packet
processes.

E. FIREWALL SYSTEM INTEGRATION
Splay tree firewall is integrated into the proposed ses-
sion architecture to provide a complete statefulness solution
towards fast packets acceptance or rejection with enhanced
session management operations. First and non-first TCP
packets shown in Fig. 11 are used to illustrate packet life cycle
and operations in the overall integrated system.

Upon TCP packet arrival, if this is a first packet requesting
connection (SYN), then splay tree filters are searched for
matching as follows [5]: the first statistical splay filter is
searched using binary search on prefix length. If the packet
doesn’t match the first statistical splay filter, it will be rejected
early by its min-Node. Otherwise, the search continues to the
second statistical splay filter. If the packet matches the second
filter, then the list of matching rules will be intersected with
the list of matching rules from the previous filter (Cascaded
filtering level). If the intersection is empty, the packet will be
rejected early. Otherwise, the search continuous to the next
statistical filter, and so on. Statistics during the above stages
will be collected to be used later in reordering the splay filters
according to their rejection rate.

At this stage, the packet represents a valid flow requesting
a connection. Then, H1(K) and H2(k) generate Index_1 and
Index_2, where Session_ID and Session_ST are hashed
to their corresponding data structures using session entry
insertion algorithm. Finally, the packet is forwarded to its
destination.

However, if the TCP packet is a non-first packet (ACK),
then the session table is searched for a matching Session_ID
using session table lookup and entry update algorithm.
In which, if a matching is found, corresponding Session_ST
node attributes are updated and the node is appended to
the tail of the double linked list. Therefore, the packet is
forwarded to its destination. Otherwise, the packet is dropped.

Likewise, if a termination packet is received (FIN, RST),
then the session table is searched for a matching Session_ID
using session table lookup and entry update algorithm.
In which, if matching is found, Session_ID and correspond-
ing Session_ST will be removed using session entry deletion
algorithm. However, if the connection is idle (no packet is
received) and timeout is reached, it will be more easy to
identify such connections, as they will reside close to the
head of the double linked list. Therefore, Session_ST and
corresponding Session_ID will be removed from the session
table using session deletion algorithm.

F. PROPOSED SESSION TABLE ARCHITECTURE FOR
DEFENDING AGAINST DOS ATTACKS
To date, stateful firewalls suffer from slow rate dis-
tributed DoS attacks (DDoS), that can wreak havoc and
exhaust all of the firewall’s resources, especially the ses-
sion table [36], [37], [47]. Most of stateful firewall vendors
mitigate DoS attacks using different mechanisms such as
threshold based mechanisms and SYN cookies, as in Screen
features in Juniper Networks [38]. For instance, to save a
firewall session capacity, the total number of sessions that
can be established to/from a specific IP address is limited
via thresholds. However, if threshold activation is set high,
then attack traffic will pass through the firewall and can
consume its resources. Moreover, most of these threshold
based mechanisms are often not enabled and even if enabled,
they dramatically increase CPU and session table utilization,
such as in TCP SYN flood mechanism [39].

In this paper, DoS attacks are mitigated in the integrated
system using three different methodologies. The first method-
ology makes use of the adaptive nature of the splay tree
data structure, where no complex session table operations
and hashing are involved; saving the firewall’s resources and
improving packet filtering time. Additionally, no threshold
mechanisms are used that would produce an overhead to the
system. In the second methodology where session table is
involved, DoS attacks are mitigated using the novel archi-
tecture of the proposed session table. The third methodology
defends the system against non-first packet attacks targeting
to keep the firewall busy by doing expensive hash calculation
and session table operations. In such a situation, the system
will consult splay tree filters in order to drop the attack
packets as early as possible.

1) MITIGATING ATTACKS WITHOUT SESSION
TABLE INTERVENTION
The nature of the splay tree structure is based on using
the min-Node that allows for fast packet rejection, and the

35536 VOLUME 6, 2018

Z. Trabelsi et al.: Improved Session Table Architecture for Denial of Stateful Firewall Attacks

locality of reference that allows for fast packet acceptance for
skewed network traffic. This locality of reference is based on
the notiton that if a node in the splay tree is accessed, then it
is likely to be accessed again in the near future [5].

Splay tree maintains the min-Node at root→left position.
Any attack traffic with high percentage of non-matching
packets will be dropped earlier via splay filter min-Node,
by at most two memory accesses (root→min-Node→Null).
Even if such attack with high percentage of non-matching
traffic is designed to target a specific splay filter with high
position, to increase the filtering time, it will also be rejected
earlier. The reason is that splay filters are also reordered
according to their min-Node and cascaded rejection rate. This
reordering will adjust the targeted splay filter position to
reside at lower ones, and consequently the attack is rejected
earlier by its min-Node.

Furthermore, in crafted attacks designed to flood a specific
splay filter via huge matching traffic, the benefits of splay
tree locality of reference are used. However, the cascaded
level at the next splay filter will prevent such attacks from
propagating deep in the consequent splay filters [5].

Let SFp,w (i) represents splay tree filter i at position p
in a certain traffic window w, where i ε{1, 2, . . . , I} repre-
sents tuples used in the firewall <Prot, Src-IP, Src-P, Dst-IP,
Dst-P>, respectively. Where I in this case equal to five.
If packet t is rejected by SFp,w (i) min-Node, then its min-
Node counter represented bymSFp,w(i) is incremented by ‘‘1’’,
that is:

mSFp,w(i) = mSFp,w(i) + 1 (1)

where the initial state of mSFp,w(i)at the beginning of each
window w is ‘‘0’’.

Likewise, if packet t is rejected by SFp,w (i) cascaded
level, then its cascaded counter represented by xSFp,w(i) is
incremented by ‘‘1’’, that is:

xSFp,w(i) = xSFp,w(i) + 1 (2)

where the initial state of xSFp,w(i) at the beginning of each
window w is ‘‘0’’.

At the end of each network traffic window, the amount
of packets entered, tin (p), and left, tout (p), each splay filter
SFp,w (i) at position p, can be defined in terms of min-Node
and cascaded rejection as follows:

tin(p) =

{
T , p = 1
tin(p− 1)− [m (p− 1)+ x(p− 1), 1 < p ≤ I

(3)

tout (p) =

{
T − m(p), p = 1
tin(p− 1)− [m (p− 1)+ x(p− 1), 1 < p ≤ I

(4)

Where T represents the total number of filtering packets in
window w.

Using tin (p) and tout (p) defined in Eq. 3 and 4, the proba-
bility of splay filter SFp,w (i) to reject a packet can be defined

as follows:

Pw (p) =
tin (p)− tout (p)

tin (p)
, 1 < p ≤ I (5)

To check whether or not there is a need to reorder the
splay filters, a Chi-square test of homogeneity is carried on
previous and current windows (w− 1)th and wth, respectively
as follows:

χ2
=

w∑
w−1

I∑
p=1

(m (p)− e_m(p))2

e_m(p)
+

(x (p)− e_x(p))2

e_x(p)

+

w∑
w−1

(tout (I)− e_tout (I))2

tout (I)
(6)

Where the symbol e represents the expected value of
the corresponding variable, refer to [40] for expected value
calculations. Splay filter are reordered in descending order
according to their rejection rate, Eq. (5), if indicated by the
chi-square test.

At this level, attacks are preventedwithout any intervention
of threshold mechanisms or session table operations and
hashing. As a result, the filtering time can be saved and the
system throughput is enhanced.

2) MITIGATING ATTACKS WITH SESSION
TABLE INTERVENTION
The difference in session timeout for initial and established
sessions allows the firewall to remove entries generated by
first packet attacks, which depend mostly on spoofed src_IP
with no expected reply, such as TCP SYN Flood, while
maintaining legitimate entries. The entries removal process
can even get enhanced a lot using the proposed session table
architecture, as it separates Session_ID and Session_ST into
two different data structures. This separationwill help in solv-
ing the problem of highly cost timeout attribute processing
found in most stateful firewalls [27]. Sessions that timed out
are easy to identify and remove from Session_ST, as they
reside close to the head of the double linked list. If first packet
attack targets to fill the proposed session architecture with
excessive sessions, then old Session_STs close to the head of
the double linked list will be rapidly removed, using session
entry deletion algorithm. Since these sessionswere inserted in
increasing time order, Fig. 9. By this, the firewall can continue
accepting newly connection request.

3) MITIGATING NON-FIRST PACKET ATTACKS BY
VERIFYING THE SPLAY TREE FILTERS FIRST
In the two previous attack prevention methodologies, attacks
are mitigated using the nature of the splay tree firewall or the
proposed session architecture. However, there are other types
of attacks that are designed to make the firewall intensively
performs expensive hash calculations and session lookups.
These attacks are defined as non-first packet attacks, such
as Reset flood attack [41] and Ack flood attack [42]. For
instance, in an ACK flood attack, attackers send spoofed
ACK packets at very high rates that do not match any session

VOLUME 6, 2018 35537

Z. Trabelsi et al.: Improved Session Table Architecture for Denial of Stateful Firewall Attacks

entry within the firewall session table. Therefore, exhaust-
ing the firewall by forcing it to perform intensive session
table lookups. Since such attacks are considered as non-first
packets, they will be verified against the session table using
hashing and session table operations, as shown in Fig. 11.
This would result in performance degradation. Therefore,
if such attack packets are verified by splay tree filters and are
rejected, then hashing calculation time can be saved. This is
based on the fact that if a non-first packet is denied by splay
tree filters, then there is no need to further check the session
table; since no chance that this packet information will have
an entry in the hash table.

This methodology depends mainly on monitoring the net-
work traffic to understand its normal operating behavior and
establish baseline measurements to detect abnormal activi-
ties. Therefore, any changes in the baseline measurements
due to abnormal or burst non-first packet traffic will indicate
that the system is under DoS attack. Hence, the proposed
system will verify the traffic firstly against splay tree firewall
instead of the session table.

FIGURE 12. System behaviour in case of non-first packet attack.

Here, the system should distinguish between attack and
legitimate packets. As shown in Fig. 12, if packets do
not match the splay tree firewall, then this attack is miti-
gated without session table intervention, section A. However,
if packets match the splay filters, then packets should be
verified by session table to check if they belong to any current
session or not. If match is not found in the session table,
then this attack is mitigated with session table intervention,
section B. However, if entry is found in the session table
indicating legitimate traffic, then packets are forwarded to its
destination.

Adaptive threshold algorithm [43] is used in this methodol-
ogy to measure ACK packets and compare it with previously
defined threshold. Let at represents ACK packets arrival rate
at time t . The mean of at is computed using Exponential
Weighted Moving Average (EWMA) as follows:

µt = βµt−1+(1−β)at (7)

Where β is the EWMA factor.
If at ≥ (∝ +1)µt−1 for ∝≥ 0, then the system will switch

to splay filters to filter the packets firstly instead of the session
table as indicated in Fig. 12.

FIGURE 13. Experiment test bed.

VI. PERFORMANCE EVALUATION
The test environment of the splay tree firewall and the pro-
posed session table architecture is deployed with a modified
version of Linux CentOS 7.3. Modifications were made to
Linux kernel using C language. The testbed consists of six
clients and a server, as shown in Fig. 13. All machines use
Intel Core i7 with 2.6 GHzCPU and 16GBRAM. Clients and
server are connected to the firewall via Gigabit LAN links.
Within the server, two virtual machines are created to serve
as Web servers. Clients generate a number of simultaneous
queries to request data from Web servers. Packet generator
hping3 [44] is used in five of the clients to generate traffic
and corresponding processing time is computed. In order to
measure the processing time, packet arrival time is recorded
in the beginning of the hook_fun(); then again end time is
recorded before accepting or dropping the packets, return
NF_ACCEPT and return NF_DROP. Attacker machine uses
packet generator frameip [45] to generate DoS attack traffic.
In all experiments case studies, rules that allow http traffic
for the first server is placed at the beginning of the rule
base. Whereas, rules allowing traffic for the second server are
used in DoS experiments. All experiments are conducted for
10 independent trials, then the averages are plotted.

In the first study case, two different experiments are per-
formed to illustrate the impact of the proposed session table
architecture on the splay tree firewall packet processing time.
In the first experiment, the session table is removed from
the test bed. That is, stateless splay tree firewall is activated.
In this case, all incoming traffic is treated as isolated traffic,
and filtered without any background history of related pack-
ets. Whereas, in the second experiment, proposed session
table module is enabled to activate the dynamic statefulness
behavior of the splay tree firewall using the proposed session
architecture. In both cases, the clients generate the same
number of simultaneous TCP connections per second in a
continuous and a constant interval of time starting at 10 and
ending at 1,000 connections per second. Fig. 14 shows how
much extra time is need by the stateful splay tree firewall to
filter packets and perform session operations. Stateful splay
tree firewall shows an average packet processing time ranges
between 0.7 and 0.9 ms depending on whether connection’s

35538 VOLUME 6, 2018

Z. Trabelsi et al.: Improved Session Table Architecture for Denial of Stateful Firewall Attacks

FIGURE 14. Average processing time for stateless and stateful splay tree
firewall.

entry has to be inserted on the session table or not, while for
stateless splay tree firewall it is almost around 0.5 ms. The
extra time added by the stateful firewall is expected; as state-
less firewalls are generally faster than stateful firewalls, but
less secure. In our case, this extra time is insignificant com-
pared to the security provided using the proposed session
table architecture.

FIGURE 15. Cumulative processing time.

In the second case study, three different experiments are
conducted to calculate cumulative packet processing time
for IPtables with connection tracking module enabled, splay
tree firewall with proposed session table architecture module
enabled, and stateless splay tree firewall. A window size
of 500 K packets is used, and the cumulative packet pro-
cessing time is calculated for each system separately over
100windows. From Fig. 15, Stateful splay tree firewall shows
a gain about 18% compared to IPtables. This time gain is due
to the use of one hash slot per connection, less hash functions
usage, and fast timeout processing in the proposed session
table architecture compared to the structures used in IPtables
connection tracking system. On the other hand, the stateless
splay tree firewall shows a gain of 2.2% compared to stateful
splay tree firewall. This gain is negligible, which proves the
superior structure of the proposed session table architecture

that does not add significant overhead to the system due to
connections tracking and related calculation operations.

In the third case study, four experiments are conducted to
compare stateful splay tree firewall with the proposed session
table module enabled and IPtables. These experiment stud-
ies both systems’ speed against normal packet traces shown
in Fig. 4, 5 and 11. To summarize, there are four different
packet traces for both systems:

Trace #1 (First packet is accepted by both firewalls): First
packet→ Verify against splay tree/ IPtables listed rules→
Accept → Store relative packet information in session
table→ Allow

Trace #2 (First packet is denied by both firewalls): First
packet→ Verify against splay tree/ IPtables listed rules→
Deny→ Drop

Trace #3 (Non-first packet is accepted by both firewalls):
Non-First packet → Lookup process against Proposed ses-
sion table/ connection tracking system→ Exist→ Allow
Trace #4 (Non-first packet is denied by both firewalls):

Non-First packet → Lookup process against Proposed ses-
sion table/ Connection tracking system→ Not exist→ Drop
Hping commandwith –S parameter is used to generate first

packets requesting connections that suits traces 1 and 2 as
follows:
hping3 -a 10.10.10.3 -p 80 -S -s+1 -d 64 -i u1000.
This command will generate SYN packets with increased

base source port by one using packet size of 64 bytes. This
packet size was chosen in order to generate the maximum
traffic rate. The parameter −i specifies the time interval for
each packet. In this case, 100 packets for second. For traces
3 and 4 the same command is used, but SYN flag is not set.

FIGURE 16. Average processing time for each trace for stateful splay tree
firewall and IPtables.

Packets that suit each one of the four traces are sent for
both systems, and corresponding packet processing times for
10 trials are recorded in nanoseconds. Recorded times are
written to a file using PRINTK, and average packet pro-
cessing time for each trace is calculated separately for each
system. Results are displayed in Fig. 16. Stateful splay tree
firewall shows lower average packet processing time than
IPtables for all the four traces. Trace 1 has the most higher

VOLUME 6, 2018 35539

Z. Trabelsi et al.: Improved Session Table Architecture for Denial of Stateful Firewall Attacks

average packet processing time for both systems. This is due
to the time required for verifying packet header against fil-
tering rules then storing packet information in hash tables for
both systems. However, Stateful splay tree firewall completed
trace 1 by 76% faster than IPtables. The most relevent factors
that degrade the performance of IPtables in this trace is the
sequential search for its listed rule; specially for increased
number of rules. In addition, hashing calculation is performed
two times for both packet directions, and packet information
is stored twice in the two created nodes. On the other hand,
stateful splay tree firewall uses the proposed session table
architecture along with filtering rules structured using splay
tree with O(log n) amortized time, where n is the number of
splay tree nodes [5] . Theoretically, Traces 3 and 4 are the
same for each system. These traces focus on comparing the
performance of the proposed session table architecture and
the connection tracking system apart from the packet filtering
method used. In contrast, trace 2 focuses on comparing the
filtering method used on both systems apart from the session
architecture used. Hence, trace 2 takes less time as no hashing
calculation is required. To conclude, stateful splay tree fire-
wall shows a gain of 75% as an average for all the four traces
over IPtables.

In the fourth case study, different DoS attacks experiments
are conducted to study the behavior of stateful splay tree
firewall and IPtables. Open source frameip [45] is used to
craft DoS attacks traffic. Generally, attacks may target a spe-
cific firewall rule or its session table. The worst form of rule
attack is the complexity-algorithmic attack that specifically
target bottom rules and degrade considerably the firewall
performance. Firewall session table attacks target to fill the
session table with illegitimate entries preventing legitimate
flows to be established.

FIGURE 17. Statful splay tree firewall and IPtables throughput for
different DoS attack rates targeting rule 4000.

To study the effect of the DoS rule attack, a ruleset is
created using 5K rules. The rules that allow normal clients
request for server 1 are positioned at the beginning of the
rule set, whereas the rule for attacker request for server
2 is placed at position 4000. In between, there are dummy
UDP rules with random Src-IP. Then, stateful splay tree
firewall and IPtables are subjected to DoS attacks of different
rates targeting rule 4000. Fig. 17 shows the throughput of
both systems when the DoS attack targets filtering rule at

position 4000. IPtables shows a dramatic speed decrease
of 86%, when DoS attack rate reaches 20 Kpps. This reflects
time spent in sequential search; specially for large number
of rules. Whereas, for the stateful splay tree firewall, this
attack is prevented without session table intervention using
early rejection and acceptance of packets, and splay filters
reordering processes, as explained in section 5.6.A. This will
keep the firewall almost at steady state with slightly speed
degradation of 12.7% at 20 Kpps attack rate.

FIGURE 18. Statful splay tree firewall and IPtables session utilization for
different SYN attack rates.

Likewise, to study the effect of DoS attacks targeting fire-
wall session table, two experiments are performed on stateful
splay tree firewall and IPtables to determine session alloca-
tion against different attack rates. SYN attack traffic targeting
server 2 is crafted using frameip. Rule that allows traffic to
server 2 in this experiment is positioned in the beginning of
the rule base, immediately after rules allowing normal traffic
to server 1. The reason is that, we want to study the robustness
of the proposed session table against regressive demand of
session allocation request, and the speed in which the ses-
sion table tends to reach its maximum utilization, without
intervention of the rule position influence. As shown from
Fig. 18, IPtables reaches 100% session utilization at 5 kpps.
At this particular point, it is observed from Fig. 17 that
IPtables throughput is dropped off by almost 50%. While for
stateful splay tree firewall, session utilization kept beyond
50% with slight increase until reaching 17 kpps. At 20 Kpps,
session utilization reaches ∼63% with an average increase
of 42%. This is due to attack mitigation using the separation
of Session_ST and Session_ID in the proposed architecture,
as explained in section 5.6.B. It is important to mention here
that the stateful splay tree firewall results for this experiment
differ depending on time in which the results are collected.
Since fake session removal using Session_ST depends on the
kernel timer object. As time increase, timeout attribute in
Session_ST will decrease, and the proposed algorithm will
free more session entries. Thus, session utilization is reported
after 1, 2, 3 and 4 seconds of the attack. The average result
for each attack rate is plotted in the stateful splay tree firewall
graph, shown in Fig. 18.

Finally, ACK flood attack is launched using frameip to
study the effect of mitigating non- first packet attacks by ver-
ifying firstly the splay tree filters, explained in section 5.6.C.

35540 VOLUME 6, 2018

Z. Trabelsi et al.: Improved Session Table Architecture for Denial of Stateful Firewall Attacks

Once the ACK stability test indicates that the stateful splay
tree firewall is under non-first packet attack, packets arrive
at the firewall may follow one of the following traces shown
in Fig. 12:

Trace #5 (Non-first packet is denied by splay Tree):
Non-First packet → verify against splay tree → Deny →
Drop. This trace is similar to trace 2, except that trace 2 is
for SYN packet, while trace 5 is for ACK packet.

Trace #6 (Non-first packet is accepted by splay tree and
entry exists in the session table): Non-First packet→ verify
against splay tree→Accept→ verify against session table→
Exist→ Allow

Trace #7 (Non-first packet is accepted by splay tree and
entry does not exist in the session table): Non-First packet→
verify against splay tree→ Accept→ verify against session
table→ Not Exist→ Drop.

FIGURE 19. Stateful splay tree firewall under non-first packet attack
when ACK stability test is enabled (a) and disabled (b).

Fig. 19 (a) and 19 (b) show packet processing time for 500
packets sent with one second interval for 200 windows, when
stateful splay tree firewall ACK stability test is enabled and
disabled, respectively. In case of disabling the stability test,
all ACK flood attack packets will be verified against session
table using expensive hashing and session table operations,
which require more processing time by the firewall. While,
when enabling stability test, ACKflood attack packets will be
distributed among traces 5, 6 and 7. Where, packets are veri-
fied by the splay tree filters andmost were got rejected, saving
hashing calculation. The result shows that average packet pro-
cessing time for traces 6 and 7 are 1.27 and 1.31ms, which are
24.1% and 25.5% larger than trace 5. However, when stability

test is disabled, average packet processing time increased to
3.5 ms, which is 2.6 times more than when stability test is
enabled. This means that the firewall needs more than twice
the processing power to handle the attack. This is based on
the fact that if a non-first packet is denied by splay tree filters
no need to further check the session table, because no chance
that this packet information to have an entry in the hash table.

VII. CONCLUSION
In this paper, we have proposed a session table architecture
and then integrated it with a splay tree firewall to provide
a complete statefulness solution. The proposed session table
architecture uses one hash slot per connection to save mem-
ory space, reduce hash computation, and increase firewall
concurrent connections. The session hash table is expanded
vertically be reducing the number of buckets using the same
memory space to resolve collisions. Moreover, session entry
is separated into two different data structures to improve
session lookup and enhance timeout processing.

Experiments conducted in this study have shown that the
proposed session architecture enhances the packet filtering
process compared to IPtables, without adding significant
overhead. Furthermore, we studied the impact of different
DoS attacks and showed that some of these attacks (such as
splay filter highmatching and high non-matching attacks) can
be mitigated using the nature of the splay tree without session
table intervention. While others (such as first packet attacks)
can be mitigated using the proposed session architecture,
where Session_ST is used to clear massive barged connec-
tions trying to fulfill the session table. However, for non-first
packets attacks (such as ACK flood attack), an ACK stability
test is proposed where the system first checks the splay filters,
reducing hashing calculation time by 66%. In future work,
we plan to extend the proposed session table architecture
to include network address translation (NAT) and quality of
service (QoS). Usually, the stateful packet filtering of routers
carries out first NAT translation to map between internal
and external addresses. Then, session table lookup process is
performed. Afterward, QoS classification is done and priority
value will be set. Finally, the routing table is looked up and
the packet is forwarded accordingly to the next hop. All these
operations perform redundant packet header manipulations
during lookup processes, which obviously wastes computing
resources and increases processing delay. Thus, to increase
processing capacity, the needed information for NAT andQoS
classification can be integrated with Session_ID attributes.
Hence, all needed information will be available with a single
search process [48]–[50].

REFERENCES
[1] S. Northcutt, L. Zeltser, S. Winters, K. Kent, R. W. Ritchey, Eds., Inside

Network Perimeter Security: Stateful Firewalls, 2nd ed. Indianapolis, IN,
USA: Sams, Mar. 2005.

[2] Avishai Wool. Packet Filtering and Stateful Firewalls. Accessed:
Apr. 28, 2018. [Online]. Available: http://www.eng.tau.ac.il/~yash/hinsec-
171.pdf

[3] Hank and Foo. (2016). Stateful Firewalls. [Online]. Available: http://
docplayer.net/3420645-Stateful-firewalls-hank-and-foo.html

VOLUME 6, 2018 35541

Z. Trabelsi et al.: Improved Session Table Architecture for Denial of Stateful Firewall Attacks

[4] Z. Trabelsi and S. Zeidan, ‘‘Multilevel early packet filtering technique
based on traffic statistics and splay trees for firewall performance improve-
ment,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Ottawa, ON, Canada,
Jun. 2012, pp. 1089–1093.

[5] Z. Trabelsi, S. Zeidan, M. M. Masud, and K. Ghoudi, ‘‘Statistical dynamic
splay tree filters towards multilevel firewall packet filtering enhancement,’’
Comput. Secur., vol. 53, pp. 109–131, Sep. 2015.

[6] J. G. Alfaro, N. Boulahia-Cuppens, and F. Cuppens, ‘‘Complete analysis
of configuration rules to guarantee reliable network security policies,’’ Int.
J. Inf. Secur., vol. 7, no. 2, pp. 103–122, 2008.

[7] A. Hari, S. Suri, and G. Parulkar, ‘‘Detecting and resolving packet
filter conflicts,’’ in Proc. INFOCOM, Tel Aviv, Israel, Mar. 2000,
pp. 1203–1212.

[8] E. S. Al-Shaer and H. H. Hamed, ‘‘Discovery of policy anomalies in
distributed firewalls,’’ in Proc. INFOCOM, Hong Kong, Mar. 2004,
pp. 2605–2616.

[9] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra,
‘‘FIREMAN: A toolkit for firewall modeling and analysis,’’ in Proc. IEEE
Symp. Secur. Privacy, Berkeley, CA, USA, May 2006, pp. 199–213.

[10] M. G. Gouda and A. X. Liu, ‘‘A model of stateful firewalls and its
properties,’’ in Proc. 35th Int. Conf. Dependable Syst. Netw. (DSN),
Jun./Jul. 2005, pp. 128–137.

[11] L. Buttyán, G. Pék, and T. V. Thong, ‘‘Consistency verification of stateful
firewalls is not harder than the stateless case,’’ Inf. Commun. J., vol. LXIV,
pp. 1–7, Nov. 2009.

[12] W. M. Fitzgerald, S. N. Foley, and M. Ó. Foghlú, ‘‘Network access control
interoperation using semantic Web technique,’’ in Proc. WOSIS, 2008,
pp. 26–37.

[13] F. Cuppens, N. Cuppens-Boulahia, J. Garcia-Alfaro, T. Moataz, and
X. Rimasson, ‘‘Handling stateful firewall anomalies,’’ in Proc. 27th
IFIP Int. Inf. Secur. Privacy Conf. (SEC), Heraklion, Greece, Jun. 2012,
pp. 174–186.

[14] J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, S. Martinez, and
J. Cabot, ‘‘Management of stateful firewall misconfiguration,’’ Comput.
Secur., vol. 39, pp. 64–85, Nov. 2013.

[15] C. Basile and A. Lioy, ‘‘Analysis of application-layer filtering policies with
application to HTTP,’’ IEEE/ACM Trans. Netw., vol. 23, no. 1, pp. 28–41,
Feb. 2015

[16] J. Fong, X. Wang, Y. Qi, J. Li, and W. Jiang, ‘‘ParaSplit: A scalable
architecture on FPGA for terabit packet classification,’’ in Proc. IEEE 20th
Annu. Symp. High-Perform. Interconnects (HOTI), Aug. 2012, pp. 1–8.

[17] O. Erdem and A. Carus, ‘‘Multi-pipelined and memory-efficient packet
classification engines on FPGAs,’’ Comput. Commun., vol. 67, pp. 75–91,
Aug. 2015.

[18] S. Hager, F. Winkler, B. Scheuermann, and K. Reinhardt, ‘‘MPFC: Mas-
sively parallel firewall circuits,’’ in Proc. 39th Annu. IEEE Conf. Local
Comput. Netw., Sep. 2014, pp. 305–313.

[19] H. Hamed, A. El-Atawy, and E. Al-Shaer, ‘‘On dynamic optimization of
packet matching in high-speed firewalls,’’ IEEE J. Sel. Areas Commun.,
vol. 24, no. 10, pp. 1817–1830, Oct. 2006.

[20] H. Hamed, A. El-Atawy, and E. Al-Shaer, ‘‘Adaptive statistical optimiza-
tion techniques for firewall packet filtering,’’ in Proc. IEEE INFOCOM,
Apr. 2006, pp. 1–12.

[21] A. El-Atawy, T. Samak, E. Al-Shaer, and H. Li, ‘‘Using online traffic
statistical matching for optimizing packet filtering performance,’’ in Proc.
IEEE INFOCOM, May 2007, pp. 866–874.

[22] A. El-Atawy, E. Al-Shaer, T. Tran, and R. Boutaba, ‘‘Adaptive early
packet filtering for defending firewalls against DoS attacks,’’ inProc. IEEE
INFOCOM, Apr. 2009, pp. 1–9.

[23] W. Wang, R. Ji, W. Chen, B. Chen, and Z. Li, ‘‘Firewall rules sorting
based on Markov model,’’ in Proc. Int. Symp. Data Privacy E-Commerce,
Nov. 2007, pp. 203–208.

[24] W. Wang, H. Chen, J. Chen, and B. Liu, ‘‘Firewall rule ordering based on
statistical model,’’ in Proc. Int. Conf. Comput. Eng. Technol., Jan. 2009,
pp. 185–188.

[25] Z. Trabelsi, L. Zhang, and S. Zeidan, ‘‘Dynamic rule and rule-field opti-
misation for improving firewall performance and security,’’ IET Inf. Secur.
J., vol. 8, no. 4, pp. 250–257, Jul. 2013.

[26] Z. Trabelsi, L. Zhang, S. Zeidan, and K. Ghoudi, ‘‘Dynamic traffic aware-
ness statistical model for firewall performance enhancement,’’ Comput.
Secur., vol. 39, pp. 160–172, Nov. 2013.

[27] X. Li, Z.-Z. Ji, and M.-Z. Hu, ‘‘Stateful Inspection firewall session table
processing,’’ in Proc. Int. Conf. Inf. Technol., Coding Comput. (ITCC),
vol. 2, Apr. 2005, pp. 615–620.

[28] X. Li, Z. Ji, and M. Hu, ‘‘Session table architecture for defending SYN
flood attack,’’ in Proc. 7th Int. Conf. Inf. Commun. Secur. (ICICS), 2005,
pp. 220–230.

[29] T. Chomsiri, X. He, P. Nanda, and Z. Tan, ‘‘A stateful mechanism for the
tree-rule firewall,’’ in Proc. IEEE 13th Int. Conf. Trust, Secur. Privacy
Comput. Commun. (TrustCom), Sep. 2014, pp. 122–129.

[30] T. Chomsiri, X. He, P. Nanda, and Z. Tan, ‘‘Hybrid tree-rule firewall for
high speed data transmission,’’ IEEE Trans. Cloud Comput., Apr. 2016

[31] S. Yoon, B. Kim, J. Oh, and J. Jang, ‘‘H/W based stateful packet inspec-
tion using a novel session architecture,’’ Int. J. Comput., vol. 2, no. 3,
pp. 310–319, 2008.

[32] B. Xu, F. He, Y. Xue, and J. Li, ‘‘Architecture-Aware session lookup design
for inline deep inspection on network processors,’’ Tsinghua Sci. Technol.,
vol. 14, no. 1, pp. 19–28, Feb. 2009.

[33] P. N. Ayuso, ‘‘Netfilter’s connection tracking system,’’ USENIX Mag.,
vol. 31, no. 3, pp. 40–45, 2006.

[34] K. Salah, K. Elbadawi, and R. Boutaba, ‘‘Performance modeling and
analysis of network firewalls,’’ IEEE Trans. Netw. Service Manag., vol. 9,
no. 1, pp. 12–21, Mar. 2012.

[35] H. Kim, J.-H. Kim, I. Kang, and S. Bahk, ‘‘Preventing session table
explosion in packet inspection computers,’’ IEEE Trans. Comput., vol. 54,
no. 2, pp. 238–240, Feb. 2005.

[36] (Sep. 2015).Denial-of-Service Attacks Feature Guide for Security Devices.
[Online]. Available: http://www.juniper.net/techpubs/en_US/junos12.../
security-attack-denial-of-service.pdf

[37] Maximizing Firewall Availability: Techniques on Improving Resilience to
Session Table DoS Attacks, Version 1.8, Jul. 2002.

[38] Juniper.net. (2008). Protecting the Network From Denial of Service
Floods. [Online]. Available: https://jncie.files.wordpress.com/2008/09/
801003_protecting-the-network-from-denial-of-service-floods.pdf

[39] Redwolfsecurity.com. (Dec. 2016). The Next BIG Thing: ‘Small’ DDoS
Attacks are Often Hardest to Block. [Online]. Available: https://www.
redwolfsecurity.com/small-ddos-attacks/

[40] Math.tutorvista.com. Chi Square Test. Accessed: Apr. 28, 2018. [Online].
Available: http://math.tutorvista.com/statistics/chi-square-test.html

[41] A. Anand and B. Patel, ‘‘An overview on intrusion detection system and
types of attacks it can detect considering different protocols,’’ in Proc. Int.
J. Adv. Res. Comput. Sci. Softw. Eng., vol. 2, no. 8, pp. 94–98, Aug. 2012.

[42] Corero.com. Common DDoS Attack Types. Accessed:
Apr. 28, 2018. [Online]. Available: https://www.corero.com/resources/
glossary.html

[43] S. Nemade, M. Kumar, and Z. Jamaluddin, ‘‘A novel method for early
detection of SYN flooding based DoS attack in mobile ad hoc network,’’
Int. J. Eng. Trends Technol., vol. 7, no. 4, pp. 187–191, Jan. 2014.

[44] Hping.org. (2006). Hping Packet Generator. [Online]. Available: http://
www.hping.org

[45] Frameip.com. (2018). Frameip Packet Generator. [Online]. Available:
http://www.frameip.com

[46] A. Czubak and M. Szymanek, ‘‘Algorithmic complexity vulnerability
analysis of a stateful firewall,’’ in Proc. 37th Int. Conf. Inf. Syst. Archit.
Technol. (ISAT-Part II), in Advances in Intelligent Systems andComputing,
vol. 522. Springer, Sep. 2017, pp. 77–97, doi: 10.1007/978-3-319-46586-
9_7.

[47] A. X. Liu, A. R. Khakpour, J. W. Hulst, Z. Ge, D. Pei, and J. Wang,
‘‘Firewall fingerprinting and denial of firewalling attacks,’’ IEEE Trans.
Inf. Forensics Security, vol. 12, no. 7, pp. 1699–1712, Jul. 2017.

[48] P. Rengaraju, S. S. Kumar, and C.-H. Lung, ‘‘Investigation of security and
QoS on SDN firewall using MAC filtering,’’ in Proc. Int. Conf. Comput.
Commun. Inform. (ICCCI), Jan. 2017, pp. 1–5.

[49] M. Mostafa, A. A. El Kalam, D. Minuta, and C. Fraboul, ‘‘QoS-aware
firewall session table,’’ in Proc. Int. Conf. Risks Secur. Internet Syst.,
Sep. 2011, pp. 1–7.

[50] J. Pettit and T. Graf. (2014). Stateful Connection Tracking & Stateful Nat.
[Online]. Available: http://www.openvswitch.org/support/ovscon2014/
17/1030-conntrack_nat.pdf

[51] B. Jenkins. A Hash Function for Hash Table Lookup. Accessed:
Mar. 17, 2016. [Online]. Available: http://www.burtleburtle.net/bob/hash/
doobs.html

35542 VOLUME 6, 2018

Z. Trabelsi et al.: Improved Session Table Architecture for Denial of Stateful Firewall Attacks

ZOUHEIR TRABELSI received the Ph.D. degree
in computer science from the Tokyo University
of Technology and Agriculture, Japan. He is cur-
rently a Professor of information security with the
College of Information Technology, UAE Univer-
sity. His research interests include network secu-
rity, intrusion detection and prevention, firewalls,
TCP/IP covert channels, and information security
education.

SAFAA ZEIDAN received the B.Sc. degree (Hons.) in computer engineering
from the University of Sharjah, United Arab Emirates. She is currently
a Research Assistant with the College of Information Technology, United
Arab Emirates University. She has around 13 publications in well-known
conferences and journals. Her research interests focus mainly on firewall
optimization techniques during normal and attack situations.

KHALED SHUAIB received the B.E. and M.S.
degrees in electrical engineering from The City
College of New York in 1991 and 1993, respec-
tively, and the Ph.D. degree in electrical engineer-
ing/communication networks from the Graduate
Center, The City University of New York, in 1999.
Since 2002, he has been with the College of Infor-
mation Technology (CIT), United Arab Emirates
University, where he is currently an Associate
Professor. During his career at CIT, he held vari-

ous administrative positions, including a Network Engineering/Networking
Track Coordinator from 2004 to 2009, an Associate Dean from 2009 to 2010,
an Assistant Dean for Students from 2011 to 2013, and currently he is the
Coordinator of three tracks (Information Security, Enterprise Systems, and
e-Commerce). He has also been serving as the Director of the Cisco
Academy, United Arab Emirates University since 2004. He has over 65 ref-
ereed publications in journals and conferences and two U.S. patents. His
research interests are in the areas of communication networks, network
security, and smart grid.

KHALED SALAH received the B.S. degree in
computer engineering with a minor in computer
science from Iowa State University, USA, in 1990,
and the M.S. degree in computer systems engi-
neering and the Ph.D. degree in computer sci-
ence from the Illinois Institute of Technology,
USA, in 1994 and 2000, respectively. He has
over 10 years of industrial experience in embed-
ded systems and software and firmware develop-
ment. He was with the Department of Information

and Computer Science, King Fahd University of Petroleum and Miner-
als (KFUPM), Saudi Arabia, for 10 years. He joined Khalifa University
in 2010, and is teaching graduate and undergraduate courses in the areas
of cloud computing, computer and network security, computer networks,
operating systems, and performance modeling and analysis. He is currently
an Associate Professor with the Department of Electrical and Computer
Engineering, Khalifa University, United Arab Emirates. He was a recipi-
ent of the Khalifa University Outstanding Research Award in 2014/2015,
the KFUPM University Excellence in Research Award in 2008/2009, and
the KFUPM Best Research Project Award in 2009/2010, and also a recipient
of the departmental awards for distinguished research and teaching in prior
years.

VOLUME 6, 2018 35543

	INTRODUCTION
	RELATED WORK
	RULE ANOMALY DETECTION AND ELIMINATION
	USE OF HIGH PERFORMANCE HARDWARE
	USE OF ADVANCED PACKET FILTERING TECHNIQUES
	TRAFFIC AWARENESS TECHNIQUES
	EARLY PACKET REJECTION AND ACCEPTANCE TECHNIQUES
	REORDERING OF RULES AND RULES FIELDS

	SESSION TABLE PERFORMANCE

	STATELESS SPLAY TREE FIREWALL
	CONNECTION TRACKING SYSTEM
	STRUCTURAL FACTORS AFFECTING SESSION TABLE PERFORMANCE
	NUMBER OF NODES PER CONNECTION
	MEMORY SPACE
	HASH FUNCTION USAGE
	SESSION TIMEOUT PROCESSING

	PROPOSED SESSION TABLE ARCHITECTURE
	SESSION_ID STRUCTURE
	SESSION_ST STRUCTURE
	SESSION TABLE ARCHITECTURE COMBINING SESSION_ID AND SESSION_ST NODES
	PROPOSED SESSION TABLE OPERATIONS AND ALGORITHMS
	SESSION ENTRY INSERTION ALGORITHM
	SESSION TABLE LOOKUP AND ENTRY UPDATE ALGORITHM
	SESSION ENTRY DELETION ALGORITHM

	FIREWALL SYSTEM INTEGRATION
	PROPOSED SESSION TABLE ARCHITECTURE FOR DEFENDING AGAINST DOS ATTACKS
	MITIGATING ATTACKS WITHOUT SESSION TABLE INTERVENTION
	MITIGATING ATTACKS WITH SESSION TABLE INTERVENTION
	MITIGATING NON-FIRST PACKET ATTACKS BY VERIFYING THE SPLAY TREE FILTERS FIRST

	PERFORMANCE EVALUATION
	CONCLUSION
	REFERENCES
	Biographies
	ZOUHEIR TRABELSI
	SAFAA ZEIDAN
	KHALED SHUAIB
	KHALED SALAH

