
Received May 24, 2018, accepted June 20, 2018, date of publication June 25, 2018, date of current version July 25, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2850307

Joint Two-Dimensional DOA and Frequency
Estimation for L-Shaped Array via Compressed
Sensing PARAFAC Method
LE XU 1, RIHENG WU2, (Member, IEEE), XIAOFEI ZHANG 3,4, AND ZHAN SHI1
1College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China
2Department of Information Engineering, Wenjing College, Yantai University, Yantai 264005, China
3College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China
4State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China

Corresponding author: Riheng Wu (riheng_w@163.com)

This work was supported in part by China NSF under Grant 61371169, in part by Shandong Province NSF under Grant ZR2016FM43, and
in part by the Graduate Innovative Base (Laboratory) Open Funding of the Nanjing University of Aeronautics and Astronautics under
Grant kfjj20170412.

ABSTRACT In this paper, we combine the compressed sensing theory with the parallel factor (PARAFAC)
model to present a 2-D direction of arrival (2D-DOA) and a frequency estimation algorithm for an L-shaped
array. We first build the multi-delay outputs data as the PARAFACmodel, then compress it with partitioning
and perform the PARAFAC decomposition through a trilinear alternating least square algorithm. Finally,
we reconstruct the received data with sparsity to obtain the automatically paired 2D-DOA and frequency.
The proposed algorithm is effective for both uniform and non-uniform L-shaped array, and owing to the
compression process, it holds the properties of lower computational complexity and smaller capacity for data
storage, compared with a traditional PARAFAC algorithm. The angle and frequency estimation performance
of the proposed algorithm is close to the traditional PARAFACmethod, and outperforms the estimating signal
parameters via a rotational invariance techniques algorithm and a propagator method. Simulation results
verify the effectiveness and superiority of our approach.

INDEX TERMS Direction of arrival (DOA), compressed sensing, frequency, parallel factor (PARAFAC),
L-shaped array.

I. INTRODUCTION
Joint multi-parameter estimations of received signals has
aroused considerable concerns recently and has been inves-
tigated for numerous engineering applications containing
radar, sonar, satellite communication and so on [1]–[4].
The direction of arrival (DOA) and frequency estimation
is a fundamental problem of array signal processing and
is becoming a hot topic. Till now, many novel algorithms
have been proposed for the problem of joint DOA and fre-
quency estimation [5]–[13], which includes multiple signal
classification (MUSIC) algorithm [5], [6], estimating signal
parameters via rotational invariance techniques (ESPRIT)
[7], [8], Propagator method (PM) [9]. Compared to MUSIC
algorithm which requires multi-dimensional spectrum-peak
search, ESPRIT algorithm and PM algorithm provide a
reduced computational burden as they have no need for
spectrum-peak search. The algorithms mentioned above are
all for one-dimensional DOA and frequency estimation,

and some other algorithms like unitary ESPRIT in [10],
3D-ESPRIT in [11] and quadrilinear decomposition method
mentioned in [12] and [13] can provide two-dimensional
direction of arrival(2D-DOA) and frequency estimation.

The trilinear decomposition, which is also referred to as
parallel factor (PARAFAC) analysis [14], [15], has been
success- fully used to deal with the problem of DOA and fre-
quency estimation. The algorithms proposed in [16] and [17]
obtain the DOA and frequency estimation through PARAFAC
decomposition of oversampled output, while the PARAFAC
method in [18] utilizes the multi-delay outputs to get
the angle and frequency estimation. However, the tradi-
tional PARAFAC decomposition-based algorithm suffers
from heavy computa- tional load as well as large capacity for
data storage.

Compressed sensing (CS) [19], [20] has attracted plenty
of attention recently, and it has been successfully introduced
to image processing, radar imaging, channel estimation and
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some other fields [21]. According to the compressed sensing
theory, a signal can be reconstructed via fewer samples than
required by the Nyquist sampling theorem if it’s sparse in
some domains. Coincidentally, the DOA and frequency of
sources form a sparse vector in the potential signal space,
therefore, compress- ed sensing is applicable to the problem
of joint DOA and frequency estimation [22]. Reference [23]
has already proposed an angle and frequency estimation
method with linear array via compressed sensing parallel
factor(CS-PARAFAC) model, whereas it only can obtain the
one-dimensional DOA of received signals.

In this paper, we combine the compressed sens-
ing theory with PARAFAC model and derive an effi-
cient 2D-DOA and frequency estimation algorithm for
L-shaped array. The proposed algorithm first constructs the
received data for L-shaped array with multi-delay outputs,
then to avoid constructing two-dimensional overcomplete
dictionary for signal recovery, we make some changes of
the compression process in [23] and compress the received
data with partition, then utilizes trilinear alternating least
square (TALS) algorithm [14], [15] to estimate the com-
pressed parameter matrices. Finally, we obtain the 2D-DOA
and frequency estimation via sparsity. For the multi-delay
outputs system, we build a delay matrix which changes with
the antenna size, and it’s implemented via hardware and
located behind the RF receiving channel. In addition, we can
use the direct RF sampling method of software radio to obtain
the digital signal of real carrier frequency.

In our paper, we also evaluate the theoretical performance
of angle and frequency estimations for L-shaped array via
Cramér-Rao bound (CRB) [24], [26], which is employed as
a benchmark for the lower bound on the mean square error
(MSE) of unbiased angle and frequency estimation. The main
contributions of our research are summarized as follows:

1)We construct the received data for L-shaped array which
is suitable for 2D-DOA and frequency estimation.

2) we improve the compression process in [23] and
compress the PARAFAC model of received data with parti-
tion, which avoids two-dimensional overcomplete dictionary
constructing and achieves a substantial low computational
complexity.

3) we propose an efficient 2D-DOA and frequency estima-
tion algorithm for L-shaped array which has close angle and
frequency estimation performance compared with conven-
tional PARAFAC method, and outperforms the ESPRIT
algorithm in [8] and PM algorithm in [9].

The remainder of our paper is structured as follows:
section II presents the received data model of multi-delay
received signals for L-shaped array. Based on this model,
section III derives the proposed CS-PARAFAC algorithm
and section IV provides the CRB as well as the complexity
analysis. Numerical simulations are exhibited in section V to
demons- trate the performance of the proposed approach and
we conclude this paper in section VI.
Notation: Matrices and vectors are represented by bold-

faced capital letters and lower case letters respectively.

⊗, ◦ and⊕ stand for Kronecker product, Khatri–Rao product
and Hadamard product, respectively. (.)∗, (.)T , (.)H and (.)−1

denote the operations of complex conjugation, transpose,
conjugate-transpose and inverse, respectively. (·)† denotes
the Moore-Penrose pseudoinverse. ‖·‖F and ‖·‖0 represent
the Forbenius norm and l0–norm. Dn(A) denotes a diagonal
matrix consisting of then-th row of A. IM and 0M stand
for a M × M identity matrix and zero matrix, respectively.
abs(.) stands for the modulus value symbol and angle(.) is
the phase angle operator. Re(·) and Im(·) represent the real
part and imaginary part of a complex number.

II. DATA MODEL
Assume that there are K signals impinging on a L-shaped
array which consists of two orthogonal M -element and
N -element uniform linear arrays with inter-sensor spacing
along x-axis and y-axis, respectively. The reference element
is placed at the origin. The structure of the L-shaped array
is shown in Fig.1. For the sensors on the x-axis, the distance
between the m-th sensor and the reference element (m = 1)
is dxm, while for the y-axis, the distance between the n-th
sensor and the reference element (n = 1) is dyn .

FIGURE 1. The structure of signal receiving array with L-shaped
configuration.

Assume that the received noise is additive white Gaussian
independent and uncorrelated with incident signals. The
K signals are all uncorrelated narrow-band plane waves with
different frequency. For the k-th signal, the real carrier fre-
quency is fk and the 2D-DOA is (ϕk , θk ), where ϕk and θk
are the azimuth angle and elevation angle, respectively. The
received data of x-axis and y-axis subarrays at the t-th snap-
shot can be written as [27]

x(t) = Axs(t)+ nx(t), (1)
y(t) = Ays(t)+ ny(t), (2)

where s(t) = [s1(t), s2(t), · · · , sK (t)]T is the K sources
vector. AM×K

x = [ax(ϕ1, θ1, f1), ax(ϕ2, θ2, f2), · · · , ax(ϕK ,
θK , fK )] is the x-axis subarray steering matrix with
ax(ϕk , θk , fk ) = [1, exp(−j2πdx2 fk cosϕk sin θk/c), · · · ,
exp(−j2πdxM fk cosϕk sin θk/c)]

T . A(N−1)×K
y = [ay(ϕ1,

θ1, f1), ay(ϕ2, θ2, f2), · · · , ay(ϕK , θK , fK )] is the steer-
ing matrix of the N − 1 sensors on y-axis (not
including the reference element) with ay(ϕk , θk , fk ) =
[exp(−j2πdy2 fk sinϕk sin θk/c), · · · , exp(−j2πd

y
N fk sinϕk

sin θk/c) ]T . c is the signal propagation velocity and nx(t) ∈
CM×1, ny(t) ∈ C(N−1)×1 are the received noise. Combining
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the received data matrix of two subarrays [28], [29]

z0(t) =
[
x(t)
y(t)

]
= As(t)+ n(t), (3)

where A =
[
Ax
Ay

]
is the two subarrays steering matrix and

n(t) =
[
nx(t)
ny(t)

]
is the noise of L-shaped array at t-th time.

To estimate the frequency, we introduce multi-delay out-
puts for the received signals. We consider P−1 delays where
the delay time of the p-th delay is τp = pτ and τ satisfies
0 < τ < 1/[(P− 1)max(f1, . . . , fK )] [9]. The structure of
the multi- delay receiving array is shown in Fig. 2.

FIGURE 2. The received signals of multiple delay outputs [8].

For the p-th delay τp, the outputs data can be written as [9]

zp(t) = z0(t − pτ )

= As(t − pτ )+ n(t − pτ )

= ADp+1(F)s(t)+ np(t), (4)

where np(t) = n(t − pτ ) is the noise of p-th delay outputs,
and FP×K is the delay matrix defined by

F ,


1 1 · · · 1

e−j2π f1τ e−j2π f2τ · · · e−j2π fK τ
...

...
. . .

...

e−j2π f1(P−1)τ e−j2π f2(P−1)τ · · · e−j2π fK (P−1)τ

.
(5)

Then the p-th delay received data matrix with J snapshots is
written as

Zp = [zp(t1), zp(t2), . . . , zp(tJ )]

= ADp+1(F)ST + Np, (6)

where SJ×K = [s(t1), s(t2), . . . , s(tJ )]T and Np = [np(t1),
np(t2), . . . ,np(tJ )]. Stacking P delay outputs data into a new
matrix, we obtain the received data [18]

Z(M+N−1)P×J
=


Z0
Z1
...

ZP−1

 =

AD1(F)
AD2(F)

...

ADP(F)

ST +


N0
N1
...

NP−1


= [F ◦ A]ST + N, (7)

where N = [NT
0 ,N

T
1 , . . . ,N

T
P−1]

T .

III. JOINT 2D-DOA AND FREQUENCY ESTIMATION
ALGORITHM
After obtaining the received data model (7), the traditional
PARAFAC algorithm [18] usually performs the PARAFAC
decomposition directly on (7) to get the estimations of
angle and frequency. However, it suffers from a heavy
computational load, especially when the number of sen-
sors or snapshots are large. In order to resolve this drawback,
[23] combines the compressed sensing theory with
PARAFAC model and presents a joint angle and frequency
estimation algorithm with linear array. However, it com-
presses the whole received data model directly and can
only obtain one-dimensional DOA. In this paper, in order
to reduce the complexity of traditional PARAFAC algorithm
for L-shaped array and avoid construc- ting two-dimensional
overcomplete dictionary for signal recovery, we make some
changes of the compression process in [23] and compress the
received data model in (7) with partitioning before perform-
ing the PARAFAC decomposition, then the 2D-DOA and fre-
quency estimations can be obtained through sparse recovery.

A. COMPRESSION
In this subsection, we first take an elementary row transfor-
mation on the received data Z in (7) as

ZI = GZ = [A ◦ F]ST + NI , (8)

whereG ∈ C(M+N−1)P×(M+N−1)P is a transformation matrix
corres- ponding to the finite number of row interchanged
operations, and can be expressed as

G =



M+N−1︷ ︸︸ ︷
1 0 · · · 0

1 0 · · · 0
. . .

1 0 · · · 0


P

0 1 · · · 0
0 1 · · · 0

. . .

0 1 · · · 0

P

...

0 0 · · · 1
0 0 · · · 1

. . .

0 0 · · · 1

P


∈ C(M+N−1)P×(M+N−1)P. (9)

In noiseless case, the received data ZI in (8) can be written as
the PARAFAC model [15]

zm+n,j,p =
K∑
k=1

F(p, k)S(j, k)A(m+ n, k),

m = 1, . . . ,M; n = 1, . . . , N − 1;

j = 1, . . . , J ; p = 1, . . . ,P, (10)
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FIGURE 3. The compression process.

where F(p, k) is the (p, k) element of F, S(j, k) is the (j, k)
element of S and A(m + n, k) is the (m + n, k) element
of A. The structure feature of the PARAFAC model in (10)
indicates two other rearranged matrices [18]

ZII = [S ◦ A]FT + NII , (11)

ZIII = [F ◦ S]AT
+ NIII . (12)

Then, we compress the received data ZI ∈ C(M+N−1)×J×P

into a smaller matrix Z′I ∈ C(M ′+N ′)×J ′×P′ , where M < M ′,
N ′ < N−1, J ′ < J and P′ < P. Fig.3 shows the compression
process.

The four compression matrices U1 ∈ CM×M ′ (M ′ < M ),
U2 ∈ C(N−1)×N ′ (N ′ < N − 1), V ∈ CP×P′ (P′ < P)
and W ∈ CJ×J ′ (J ′ < J ), according to [30], should satisfy
the restricted isometry property (RIP), and we can construct
them through the Tucker3 decomposition [22] or random spe-
cial matrices such as random Gaussian, Bernoulli or partial
Fourier matrices [30].
The received data (8) can be divided into two parts as

ZI =
[(

Ax
Ay

)
◦ F
]
ST + NI =

[
(Ax ◦ F)ST

(Ay ◦ F)ST

]
+

[
NIx
NIy

]
=

[
ZIx
ZIy

]
(13)

where ZIx = (Ax ◦ F)ST + NIx and ZIy = (Ay ◦ F)ST + NIy
are the received data of the array on x-axis and y-axis, respec-
tively. Then the compressed receive data Z′I ∈ C(M ′+N ′)J ′×P′

can be obtained by

Z′I =
[
(UT

1 ⊗ VT )ZIxW
(UT

2 ⊗ VT )ZIyW

]
=

[
(UT

1 ⊗ VT )(Ax ◦ F)STW
(UT

2 ⊗ VT )(Ay ◦ F)STW

]
+

[
(UT

1 ⊗ VT )NIxW
(UT

2 ⊗ VT )NIyW

]
=

[
(UT

1Ax) ◦ (VTF)
(UT

2Ay) ◦ (VTF)

]
(WTS)T +

[
(UT

1 ⊗ VT )NIxW
(UT

2 ⊗ VT )NIyW

]
=

[(
UT
1Ax

UT
2Ay

)
◦ VTF

]
(WTS)T + N′I

= [A′ ◦ F′]S′T + N′I , (14)

where A′ =
[
UT
1Ax

UT
2Ay

]
, F′ = VTF and S′ = WTS. N′I is the

compressed noise.

The compressed received data Z′I also can be expressed as
the PARAFACmodel, and according to (11) and (12), we can
obtain two other arranged matrices

Z′II = [S′ ◦ A′]F′T + N′II , (15)

Z′III = [F′ ◦ S′]A′T + N′III , (16)

where N′II and N′III are the noise after compression.

B. PARAFAC DECOMPOSITION
TALS algorithm is a common method for the decompo-
sition of PARAFAC model [31]. And the basic idea of TALS
algorithm is to update one matrix in the PARAFAC model
each time until convergence. The detailed derivation is shown
as follows.
According to (14), the LS fitting is

min
A′,F′,S′

∥∥∥Z′I − [A′ ◦ F′]S′T
∥∥∥
F
, (17)

then the LS update for S′ is

Ŝ′
T
= [Â′ ◦ F̂′]†Z′I , (18)

where Â′ and F̂′ are the previous estimates of F′ and A′,
respectively.
Similarly, according to (15), the LS fitting is

min
A′,F′,S′

∥∥∥Z′II − [S′ ◦ A′]F′T
∥∥∥
F
, (19)

then the LS update for F′ is

F̂′
T
= [Ŝ′ ◦ Â′]†Z′II , (20)

where Â′ and Ŝ′ are the previous estimates of A′ and S′,
respectively.
And from (16), the LS fitting amounts to

min
A′,F′,S′

∥∥∥Z′III − [F′ ◦ S′]A′T
∥∥∥
F
, (21)

then the LS update for A′ is

Â′
T
= [F̂′ ◦ Ŝ′]†Z′III , (22)

where F̂′ and Ŝ′ are the previous estimates of F′ and S′,
respectively.
Now, we have demonstrated the derivation of TALS algo-

rithm for the decomposition of PARAFAC model above.
Define E = Z′I − [Â′ ◦ F̂′]Ŝ′

T
as the estimation error
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of the received data, where Â′, F̂′ and Ŝ′ stand for the
estimates of A′, F′ and S′, respectively. Define SSR =∑J ′

j=1
∑(M ′+N ′)P′

i=1

∣∣eij∣∣2 to be the sum of squared residu-
als (SSR) in PARAFAC decomposition, where eij stands for
the (i, j) element of E. According to (18), (20) and (22),
we repeatedly update the estimation matrices Ŝ′, F̂′ and
Â′ until SSR less than a certain pimping value. Ultimately,
we acquire the final estimates of S′, F′ and A′.
Theorem 1 [32]: For Z′I = [A′ ◦ F′]S′T , where A′ ∈

C(M ′+N ′)×K , F′ ∈ CP′×K and S′ ∈ CJ ′×K , if

kA′ + kS′ + kF′ ≥ 2K + 2, (23)

where kA′ , kS′ and kF′ are the k-rank [14] of A′, S′ and F′,
respectively, thenA′, S′ andF′ are unique if taking no account
of the permutation and scaling of columns.

Utilizing the PARAFAC decomposition, finally we can
obtain the estimates of F′, A′ and S′ as

F̂′ = F′511 +W1, (24)

Â′ = A′512 +W2, (25)

Ŝ′ = S′513 +W3, (26)

where 5 stands for the permutation matrix, 11, 12 and 13
are the diagonal scaling matrices which satisfy111213 = I.
W1, W2 and W3 are the estimation errors. We can eliminate
scale ambiguity by normalization effortlessly and as for the
permutation ambiguity, it makes no difference for the angle
and frequency estimation of our proposed algorithm.

C. 2D-DOA AND FREQUENCY ESTIMATION WITH
SPARSITY
Till now, we have gained the estimates of A′ and F′ via
PARAFAC decomposition, and the estimations of 2D-DOA
and frequency can be obtained from the compressed
matrices Â′ and F̂′ with sparsity.

1) FREQUENCY ESTIMATION
Denote the k-th column of F̂′ as f̂′k , then as F′ = VTF and
according to (24), we have

f̂′k = VT ∂fk fk + w1k , (27)

where fk is the k-th column of F and w1k is the
estimation error, ∂fk is the scaling coefficient. Let
{f̃1, f̃2, . . . , f̃r , . . . , f̃R}be a sampling grid of all possible fre-
quency, where R � K . Then we construct a Vander-
monde matrix F̃P×R = [f̃1, · · · , f̃r , · · · , f̃R] with f̃r =
[1, exp(−j2π f̃rτ ), . . . , exp(−j2π f̃r (P − 1)τ )]T . F̃ can be
regarded as a overcomplete dictionary for the frequency
estimation, and if there have fk = f̃r , then there exist a sparse
vector er ∈ CR×1, the r-th element of which is one and the
others are zero, that satisfies fk = F̃er . Then (27) can be
converted to

f̂′k = VT ∂fk F̃er + w1k . (28)

The estimate of er can be obtained via l0-norm constraint [23]

min
er

∥∥∥f̂′k − VT ∂fk F̃er
∥∥∥2
F
, s.t. ‖er‖0 = 1. (29)

(29) can be further simplified to

min
f̃r

∥∥∥f̂′k − VT f̃r∂fk
∥∥∥2
F
. (30)

According to (27), we can get the estimation of ∂fk =
(VT f̃r )† f̂′k , then the estimates of fk can be obtained via

f̂k = min
f̃r

∥∥∥f̂′k − VT f̃r (VT f̃r )+ f̂′k
∥∥∥2
F
,

r = 1, 2, . . . ,R, k = 1, 2, . . . ,K . (31)

2) 2D-DOA ESTIMATION
According to (14) and (25), we have

Â′ = A′512 +W2 =

[
UT
1Ax

UT
2Ay

]
512 +W2

=

[
UT
1Ax512 +W2x

UT
2Ay512 +W2y

]
=

[
Â′x
Â′y

]
, (32)

where Â′x = UT
1Ax512+W2x is the firstM ′ rows of Â′ and

Â′y = UT
2Ay512+W2y is the last N ′ rows of Â′. Denote the

k-th column of Â′x and Â′y as â
′
xk and â′yk , respectively, then

we have

â′xk = UT
1 ∂xkaxk + w2xk , (33)

â′yk = UT
2 ∂ykayk + w2yk , (34)

where axk and ayk is the k-th column of Ax and Ay, respec-
tively. w2xk and w2yk are the corresponding estimation error,
∂xk and ∂yk are the scaling coefficients.
Define uk cosϕk sin θk and vk sinϕk sin θk . Let {ũ1, ũ2, . . .,

ũg, . . . , ũG} and {ṽ1, ṽ2, . . . , ṽq, . . . , ṽQ} be a sampling
grid of all potential sources location, where G � K
and Q � K . Constructing two Vandermonde matrices
ÃM×G
xk = [ãxk1, · · · , ãxkg, · · · , ãxkG] and Ã(N−1)×Q

yk =

[ãyk1, · · · , ãykq, · · · , ãykQ], where ãxkg = [1, exp
(−j2πdx2 f̂k ũg/c), · · · , exp(−j2πd

x
M f̂k ũg/c)]

T and ãykq =
[exp(−j2πdy2 f̂k ṽq/c), · · · , exp(−j2πd

y
N f̂k ṽq/c)]

T . Ãxk and
Ãyk can be regarded as the overcomplete dictionary for the
angle estimations, and when uk = ũg, vk = ṽq, there
exist two sparse vectors eg ∈ CG×1 and eq ∈ CQ×1 that
satisfy axk = Ãxkeg and ayk = Ãykeq, respectively. Then
(33) and (34) can be converted to

â′xk = UT
1 ∂xk Ãxkeg + w2xk , (35)

â′yk = UT
2 ∂yk Ãykeq + w2yk . (36)

Now, similarly, the estimates of uk and vk can be obtained by
l0-norm constraint as

ûk = min
ũg

∥∥∥â′xk − UT
1 ãxkg(U

T
1 ãxkg)

+â′xk
∥∥∥2
F
,

g = 1, 2, . . . ,G, k = 1, 2, . . . ,K . (37)
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v̂k = min
ṽq

∥∥∥â′yk − UT
2 ãykq(U

T
2 ãykq)

+â′yk
∥∥∥2
F
,

q = 1, 2, . . . ,Q, k = 1, 2, . . . ,K . (38)

Finally, we can get the estimates of θk and ϕk via

θ̂k = sin−1(abs(ûk + jv̂k )) k = 1, 2, . . . ,K , (39)

ϕ̂k = angle(ûk + jv̂k ) k = 1, 2, . . . ,K , (40)

where sin−1(·) is the arcsin function.
Remark 1: the estimates of elevation angles, azimuth

angles and frequency also achieve paired automatically,
due to the columns of the estimated compressed direction
matrix and delaymatrix automatically paired after PARAFAC
decomposition.
Remark 2: In this paper, as a prior assumption, the sources

number K is known, which can be attained by matrix decom-
position method or information theory [33].
Remark 3: The off-grid problem will arise if the signals

are not exactly located at the pre-defined grid points, which
will sap the performance of CS methods and it can be solved
via some self-adaption method like adaptive matching pursuit
with constrained total least squares (AMP-CTLS) [34]. In this
paper, we suppose that the grid for the angle and frequency
space are densely enough and sufficient fine, the sources
indeed fall on the 2D-DOA angles and frequency grids, so we
do not consider the off-grid problem.

D. THE PROCEDURE OF THE PROPOSED ALGORITHM
Since, we have acquired the 2D-DOA and frequency estima-
tions of received signals for L-shaped array and the major
procedure can be summarized as follows:
Step 1: According to (8), transform the received data

Z to ZI , then compress it into a small matrix Z′I and obtain
two other arranged matrices Z′II and Z′III .
Step 2 : Initialize the value of S′, F′ and A′ with Gaussian

random matrix, then according to (18), (20) and (22), update
the estimates of S′, F′ andA′ repeatedly until SSR is less-than
a certain tiny value.
Step 3: Construct the overcomplete dictionary of frequen-

cy and obtain the estimates of f̂k (k = 1, . . . ,K ) via (31).
Step 4: Utilize f̂k and according to (37)-(40), obtain the

estimates of elevation angles and azimuth angles.

IV. PERFORMANCE ANALYSIS
In this part, we analyze the computational complexity of the
proposed algorithm and present the derivation of the CRB,
as well as the advantages of the proposed algorithm.

A. COMPLEXITY ANALYSIS
For the proposed CS-PARAFAC algorithm in this paper, the
complexity of the compression process is O[P′(M ′ + N ′)
P(M +N − 1)J + JP′(M ′+N ′)J ′]. The complexity for each
iteration is O[3K 2

+ K 2(J ′ + M ′ + N ′ + P′) + 6K 2((M ′ +
N ′)(P′ + J ′) + J ′P′) + 3K (M ′ + N ′)J ′P′] and the complex-
ity for signal sparse recovery is O[K (MG + Q(N − 1) +
PR)] [23]. So the whole complexity of the proposed algorithm

is O[P′(M ′ + N ′) P(M + N − 1)J + JP′(M ′ + N ′)J ′ +
n1(3K 2

+ K 2(J ′ + M ′ + N ′ + P′) + 6K 2((M ′ + N ′)(P′ +
J ′)+ J ′P′)+3K (M ′+N ′)J ′P′)+K (MG+Q(N −1)+PR)],
where n1 is the number of iterations. While for the traditional
PARAFAC algorithm [18], the complexity is O(n2(3K 2

+

K 2(J + M + N − 1 + P) + 6K 2((M + N − 1)(P + J ) +
JP) + 3K (M + N − 1)JP) + 2K 2(M + N − 1 + P) + 9K 3)
[23], where n2 is the number of iterations. To make a clear
complexity comparison of these two algorithms, we consider
M = N = P = 10 and K = 3. The number of iterations
of these two methods are about dozens and we set n1 =
n2 = 30 and assume that G = Q = 200, R = 300
and M ′/M = N ′/N = J ′/J = 0.5. Fig. 4 shows the
complexity comparison versus different snapshots J , and we
can conclude that our proposed algorithm owns much lower
computational load than traditional PARAFAC algorithm.

FIGURE 4. complexity comparison versus different snapshots (J).

B. CRAMER-RAO BOUND
In this subsection, we derive the CRB of the 2D-DOA and
frequency estimations for L-shaped array. Define

B = F ◦ A. (41)

Then according to [23]–[26], the CRB matrix can be repre-
sented by

CRB =
σ 2

2J

{
Re
[
DH5⊥BD⊕ PT

]}−1
, (42)

where D =

[
∂b1
∂ϕ1
, . . . , ∂bK

∂ϕK
, ∂b1
∂θ1
, . . . , ∂bK

∂θK
, ∂b1
∂f1
, . . . , ∂bK

∂fK

]
,

bk is the k-th column of B. 5⊥B = I − B
(
BHB

)−1 BH ,
P = 13×3⊗Ps where 13×3 is a 3×3 matrix with all elements

being one and P̂s = 1
J

J∑
t=1

s (t) sH (t).

C. ADVANTAGES OF THE PROPOSED ALGORITHM
The advantages of the proposed algorithm, parts of which are
verified in section V, can be summarized as follows:

1) The proposed algorithm brings much lower computa-
tional complexity and need smaller data storage capacity,
owing to its combination of PARAFAC model and com-
pressed sensing theory.
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2) The proposed algorithm is resultful for joint 2D-DOA
and frequency estimation and is effective for both uniform
and non-uniform L-shaped array, while the ESPRIT algo-
rithm in [8] and PM algorithm in [9] are only resultful for
uniform array.

3) The proposed algorithm can achieve paired elevation
angles, azimuth angles and frequency automatically.

4) The 2D-DOA and frequency estimation performance
of our algorithm is close to the traditional PARAFAC
method [18], and better than that of ESPRIT algorithm in [8]
and PM algorithm in [9].

V. SIMULATION RESULTS
We assume that there are three far-field incoherent sources
impinge on a L-shaped array, the 2D-DOA and fre-
quency of the sources are (ϕ1, θ1, f1) = (10◦, 15◦, 1MHz),
(ϕ2, θ2, f2) = (20◦, 25◦, 2MHz) and (ϕ3, θ3, f3) =

(30◦, 35◦, 3MHz), respectively. J is the snapshots and P is
the number of delays. M and N are the sensor numbers of
x-axis and y-axis, respectively. In the following simulations,
the propagation speed of the signals are c = 3 × 108m/s
and the sampling rate is twice of the biggest frequency of
the frequency grid. The compression matrices are obtained
via random Gaussian matrix, as well as the initialization of
the PARAFAC model. we employ the root mean square error
(RMSE) to assess the 2D-DOA and frequency estimation
performance of our proposed algorithm and define RMSE as

RMSEDOA =
1
K

K∑
k=1

√√√√ 1
L

L∑
l=1

[(ϕ̂k,l−ϕk )2+(θ̂k,l−θk )2],

(43)

FIGURE 5. Angle and frequency estimation for uniform L-shaped array.

FIGURE 6. Angle and frequency estimation for non-uniform L-shaped
array.

FIGURE 7. 2D-DOA and frequency estimation performance comparison.

RMSEfrequency =
1
K

K∑
k=1

√√√√ 1
L

L∑
l=1

(f̂k,l − fk )2, (44)

where ϕk , θk and fk are the precise elevation angle,
azimuth angle and frequency of the k-th source, respectively.
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FIGURE 8. Angle and frequency estimation performance under
different h.

FIGURE 9. Angle and frequency estimation performance under different J .

ϕ̂k,l , θ̂k,l , f̂k,l are the estimates of ϕk , θk and fk in l-th simu-
lation. L indicates the total times of Monte-Carlo simulation
trials and we set L = 1000 in this paper.

FIGURE 10. Angle and frequency estimation performance under
different K .

Simulation 1: Fig. 5 and Fig. 6 show the 2D-DOA and
frequency estimation results of our proposed algorithm with
SNR=10dB. Define the size of PARAFAC model as (M +
N − 1) × P × J . In simulation 1, the initial size of the
received data is (10 + 10 − 1) × 10 × 200, which becomes
(5 + 5) × 5 × 100 ((M ′ + N ′) × P′ × J ′) after com-
pression. Fig. 5 is the simulation result of uniform L-shaped
array and the distance between every adjacent sensor is
d = 50m. While in Fig. 6, the array is non-uniform and
the distance between every sensor and the reference element
are dx = [0, 60, 100, 162, 190, 265, 298, 364, 410, 450] and
dy = [0, 50, 95, 150, 210, 256, 294, 360, 410, 455]. We can
conclude from Fig. 5 and Fig. 6 that our algorithm is efficient
for both uniform and non-uniform L-shaped array.
Simulation 2: Fig.7 depicts the angle and frequency esti-

mation performance comparison of our proposed algorithm,
traditional PARAFAC algorithm [18], ESPRIT algorithm [8]
and PM algorithm [9]. The original size of the receive data
is (10 + 10 − 1) × 10 × 200,which is compressed into
(8 + 8) × 8 × 160 in this simulation. Fig.7 manifests that
the performance of our proposed algorithm is close to the
traditional PARAFAC algorithm, and outperforms ESPRIT
and PM algorithm.
Simulation 3: Fig.8 presents the 2D-DOA and frequency

estimation performance of our proposed algorithm under dif-
ferent compression ratio. The compression ratio is defined
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as h = M ′/M = N ′/N = J ′/J = P′/P. In simulation 3,
the original PARAFAC model size is (10 + 10 − 1) × 10 ×
200 with h = 0.4, h = 0.6 and h = 0.8, respectively.
Fig.8 indicates that the 2D-DOA and frequency estimation
performance of our approach improves when h gets larger.
Simulation 4: Fig.9 shows the 2D-DOA and frequency

estimation performance of our proposed algorithm versus
different snapshots (J ). In this simulation, the size of the
rectangular array is M = 10, N = 10 and P = 10, set the
snapshots J = 100, J = 200 andJ = 300, respectively.
Assume that M ′ = N ′ = P′ = 8 and J ′/J = 0.5.
Fig.9 demonstrates that the angle and frequency estimation
performance of our approach gets better with the increase of
snapshots (J ).
Simulation 5: Fig.10 illustrates the angle and fre-

quency estimation performance of our proposed algo-
rithm with different source numbers. In simulation 5, fix
M = N = P = 10, J = 200 and N ′ = M ′ = P′ = 5,
J ′ = 100. Set K = 1, K = 2 and K = 3, respectively.
Fig.10 attests that the angle and frequency estimation perfor-
mance of our approach will get worse for larger number of
received sources.
Simulation 6: Fig.11 presents the 2D-DOA and frequency

estimation performance of our proposed algorithm of dif-
ferent number of delays. In simulation 6, M = N = 10
and M ′/M = N ′/N = 0.8, J = 200 and J ′ = 100. Set
P = 6, P = 10 and P = 14 with P′/P = 0.5, respectively.

FIGURE 11. Angle and frequency estimation performance under
different P .

Fig.11 indicates that the angle and frequency estimation per-
formance of our approach improves with the increase of P.
In addition, as we obtain the frequency estimation from the
delay matrix, P shows bigger influence on the frequency
estimation than angle estimation. If we want more accurate
frequency estimation, it’s better to choose a larger value for P.

VI. CONCLUSIONS
In this paper, we have combined the compressed sensing
theory with the PARAFAC model to propose an effective
2D-DOA and frequency estimation algorithm for L-shaped
array. The proposed method could obtain the automatically
paired 2D-DOA and frequency estimation and owing to the
compression, it exhibited smaller computational complexity
remarkably as well as smaller demand for storage capacity,
compared with traditional PARAFAC algorithm. The simula-
tion results verified that the angle and frequency estimation
performance of our approach was close to the traditional
PARAFAC algorithm, and better than ESPRIT algorithm and
PM algorithm.
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