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ABSTRACT Continuous detection of social interactions from wearable sensor data streams has a range
of potential applications in domains, including health and social care, security, and assistive technology.
We contribute an annotated, multimodal data set capturing such interactions using video, audio, GPS, and
inertial sensing. We present methods for automatic detection and temporal segmentation of focused interac-
tions using support vector machines and recurrent neural networks with features extracted from both audio
and video streams. The focused interaction occurs when the co-present individuals, having the mutual focus
of attention, interact by first establishing the face-to-face engagement and direct conversation. We describe
an evaluation protocol, including framewise, extended framewise, and event-based measures, and provide
empirical evidence that the fusion of visual face track scores with audio voice activity scores provides an
effective combination. The methods, contributed data set, and protocol together provide a benchmark for the
future research on this problem. The data set is available at https://doi.org/10.15132/10000134.

INDEX TERMS Social interaction, egocentric sensing, multimodal analysis, temporal segmentation.

I. INTRODUCTION
We consider automatic detection of social interactions by
analysis of wearable sensor data. Specifically, we address
the problem of identifying periods during which the wearer
of the sensors, the subject, is involved in focused interac-
tion. To support work in this area, we provide an annotated,
multimodal dataset, an evaluation protocol, and results from
methods that sequentially parse audio-visual streams to serve
as a baseline for future research.

Focused interaction occurs when two or more co-present
individuals, having mutual focus of attention, interact by
establishing face-to-face engagement and direct conversa-
tion [1]. Face-to-face engagement is often not maintained
throughout the entirety of a focused interaction; for example
a group of people talking while in conversation will typically
look at each other only intermittently. This concept of focused
interaction is more specific than that of social interaction
which can be considered to occur whenever individuals com-
municate and interact with one another whether or not they
are physically co-present, e.g. by telephone [2]. In particular,
the category focused interaction excludes unfocused interac-
tions in which individuals, though co-present, do not establish

a direct engagement and conversation [1]. Individuals in an
unfocused interaction are aware of each others’ presence but
establish only indirect engagement which might involve brief
eye contact, or facial expressions for example.

Automatic identification of a subject’s focused interac-
tions has various potential applications such as in behaviour
understanding for health and social care [3], [4], evi-
dence management for security and law enforcement (video
‘badges’) [5]–[7], and as a precursor to more fine-grained
analysis of interactions. In order to facilitate and encourage
research on this problemwe provide amultimodal dataset that
includes one-to-one interactions as well as group interactions,
in a range of indoor and outdoor scenarios. All focused inter-
actions and unfocused interactions are annotated. We present
results on this dataset for one particular task, that of sequential
recognition of focused interactions based on audio and visual
data streams. Figure 1 shows video frames from four of the
focused interactions in the dataset. These examples highlight
the variability of viewpoint, location, and illumination, and
the fact that interaction partners are not always in the field
of view. Audio cues will be especially important in such
cases.
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FIGURE 1. Video frames from four focused interactions. (a) in view, outdoors. (b) in view, indoors. (c) not in view, outdoors. (d) not in view,
outdoors at night.

This paper extends our preliminary system for discrim-
inating interactions while walking and not walking using
audio-visual features [8]. We report results for detecting
focused interactions using more data, temporal filtering, and
Long Short-Term Memory (LSTM) recurrent neural net-
works as well as Support Vector Machines (SVMs) using
audio-only, video-only, and audio-visual features. Further-
more, we compare directly with an implementation of a
related system outlined by Hayden [9]. It is not an aim of this
paper to propose novel algorithms for sub-tasks such as face
detection, face tracking and voice activity detection per se;
rather we investigate their integration to form an effective
system. Additionally, we characterise performance in detail
using frame-wise, extended frame-wise and event-basedmea-
sures. The proposed methods, the contributed dataset and
the evaluation protocol together provide a benchmark for
detection and analysis of focused interactions in ego-centric
data. The dataset should also be useful for investigating tasks
such as location and person association.

II. RELATED WORK
Audio is an integral part of social interaction as voice activity
is prevalent during such interaction. Voice Activity Detec-
tion (VAD) is widely researched in audio signal processing
and useful for several applications such as audio confer-
encing, speech encoding, speech recognition, and speaker
recognition [10], [11]. VAD methods detect voice activ-
ity (primarily speech) from a noisy audio signal [12]–[14].

In real-world videos, VAD is a challenging task as the associ-
ated audio signals are usually degraded due to noise from the
surroundings.

Social interaction detection has been investigated using
computer vision. Much of this is from a third-person per-
spective [15]–[17] but there is also work on detection and
analysis of interaction from a first-person perspective using
wearable cameras. Egocentric video is relatively uncon-
strained in nature as it is recorded from a non-static cam-
era worn on the head or body of a person [18]. In con-
trast with most third-person perspective video in which
the focus of attention is usually well captured within the
camera’s field of view, in first-person perspective video
the focus of attention may not always lie in the field of
view and the viewpoint varies a lot. Moreover, life-logging
style video is captured in varied environments in both
indoor and outdoor locations (e.g. parks, restaurants, offices,
cars, tourist attractions), at day or night, and in varied
weather conditions. These characteristics often make auto-
matic analysis of egocentric video more challenging. Meth-
ods developed for third-person perspective video are often
not directly applicable. Analysis of egocentric sensor data
has gained the attention of researchers for tasks such as
object recognition [19], [20], activity recognition [21], tem-
poral segmentation [22], [23], video summarisation for life-
logging [18], person-to-person (person-to-group) interaction
recognition [24]–[26] and person-to-object interaction recog-
nition [21], [27]. Audio-visual feature fusion has been used
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for applications such as speaker localisation and event detec-
tion in social gatherings using videos captured in highly con-
trolled indoor settings [28], [29], social interaction detection
in nursing homes using surveillance-type camera videos [30]
and scene change detection in life-logging videos [31].

Methods have been proposed to detect groups of indi-
viduals interacting with each other or with the camera
wearer [24], [26]. Fathi et al. [24] presented the first study
detecting different types of social interaction in egocentric
video and performed evaluation on data captured at a theme
park (see Table 1). They used amulti-label hidden conditional
random field model to detect discussion, monologue and dia-
logue based on estimates of faces’ locations and orientations.
Building on earlier work that used the concept of F-formation
in the analysis of third-person perspective videos captured
from static cameras [16], [32], Alleto et al. [25] applied that
concept to detecting social groups in ego-centric video using
the Ego-Group dataset (Table 1). They designed a pairwise
feature vector that describes spatial relationships between
two people based on distances and orientations. A correlation
clustering algorithm was used to merge people into socially
related groups and a structural SVM-based method was used
to learn the weight of each component of the clustering vector
depending on the social situation. Aghaei et al. [26] proposed
a method for detecting social interaction in low frame-rate
photo streams (UB social interaction dataset - not publicly
available). They trained an LSTM recurrent neural network
to detect social interaction based on estimates of the distance
of an individual from the camera wearer and their relative
orientation. They further extended this work [26] to social
style characterisation [33], in which distance, orientation and
facial emotion [34] were used for social interaction detection;
facial emotion and environmental (dimensionality-reduced
VGG-NET) features were used to classify an interaction as
formal or informal. These existing social interaction detection
methods [24], [26], [33] processed data offline and consid-
ered short video clips or photo streams captured from con-
strained perspectives that always contained people. In this
paper we process long, continuous sequences in which con-
versational partners are not always in the field-of-view during
interaction.

SVM classifiers are often used for human activity recogni-
tion based on spatio-temporal features [35], [36]. Recurrent
Neural Networks (RNNs) can represent and make use of arbi-
trarily lengthy historical data and are able to exhibit dynamic
temporal behaviour. They have also been used with some suc-
cess for human activity recognition [26], [33], [37]–[39]. For
example, Hammerla et al. [37] used RNNs to recognise activ-
ities from wearable device data, Abebe and Cavallaro [38]
used LSTM-RNN for egocentric ambulatory human activities
recognition from pre-segmented video clips of individual
activities, and DeepSense [39] integrated Convolutional Neu-
ral Networks (CNN) and RNN for solving both the regression
and classification oriented online mobile sensing problems.
By analysing the performance of both SVM and LSTM-RNN
with audio, visual, and audio-visual features, we aim to obtain

a deeper understanding of our application and dataset, and
to provide more comprehensive benchmarking for future
research.

III. FOCUSED INTERACTION DATASET
A. RELATED DATASETS
The number of annotated datasets publicly available for
research that capture social interactions using first-person
cameras and other body-worn sensors is limited. Several
datasets have been captured for related purposes such as
engagement detection [40] and object interaction [20]. Here
we report those datasets acquired with similar aims in mind
to ours (summarised in Table 1). The UT Ego dataset contains
recording of daily activities which include interactions with
friends [19]. However, only 4 of 10 videos without audio have
been made available with people anonymised by blurring
their faces for privacy reasons. The UB Social Interaction
dataset contains photo streams without audio captured at
2 frames per minute using a narrative camera [26]. Their
duration varied from 5 to 20 minutes (10 to 40 frames) and
each stream always contained at least one individual either
interacting or not interactingwith the camera wearer. The Ego
Group dataset contains multiple short photo streams without
audio totaling 2900 frames (116 secs) that capture multiple
people interacting as social groups in different situations:
in a laboratory, at coffee break, in a conference room and
in an outdoor setting [17]. The First-Person Social Interac-
tion dataset contains day-long videos of multiple peoples’
experience of visiting a theme park [24]. These videos are
labelled for three different types of social interaction (dia-
logue, discussion and monologue) and for activities such as
walking, waiting, gathering, sitting, buying something, and
eating. However, these activities and interactions occurred
in a relatively unusual setting; our everyday scenarios are
significantly different from activities performed in a theme
park.Moreover, this dataset has focused or unfocused interac-
tion throughout its entirety as the camera wearer was always
accompanied by a partner. In everyday scenarios, we are not
necessarily accompanied throughout the day. We meet and
interact with certain people often in some particular locations
(e.g. breakfast with family, greeting colleagues at workplace)
but these interactions do not last all day long.

We contribute a Focused Interaction dataset that, unlike
existing datasets, continuously captures various interactions
interspersed naturally with periods of no interaction, in real-
world unconstrained scenarios and in varying environmen-
tal conditions (e.g. indoor/outdoor, day/night) using video,
audio, inertial sensing, and GPS.

B. SENSORS
We carried out initial feasibility trials with four differ-
ent wearable camera set-ups: an Edesix VB-300 camera2

with shirt pocket mount, a head-mounted GoPro Hero 4,

2Edesix VB-300: https://www.edesix.com/products/vb-300, last
accessed: 10062018.
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TABLE 1. Related egocentric datasets concerned with social interaction. Key: NS - not specified; RES - frame resolution; Vfps - video frame rate.

a shoulder-mounted GoPro Hero 4, and Vuzix M100 smart
glasses.3 All these camera set-ups captured video from an
ego-centric perspective. The M100 and VB-300 often failed
to capture the focus of interest due to narrow field of view
and had unwanted jitter motion when the camera wearer
was walking due to semi-rigid mounts and lack of optical
stablisation. GoPro, on the other hand, comes with an inbuilt
optical stabilisation which compensates for the unwanted
camera motions, and has a wider field-of-view. The recorded
video quality of GoPro is better than theM100 andVB-300 as
it captures sharp videos with high resolution. A head-mount
enabled capturing head motion along with the body motion
but its appearance was bulky making the camera wearer
uncomfortable both in terms of the added load on the head and
unnecessary attention from passers-by. A shoulder-mount
captured only the body motion but it was less obstructive
to the camera wearer and preferred in terms of comfort
and ease of use. Due to the wide-angle of the GoPro, even
with the shoulder-mount, the subject’s focus of interest was
captured most of the time. For these reasons we used a
shoulder-mounted GoPro Hero 4 to capture audio and video.
We also used a smartphone (placed in the camera wearer’s
right-hand trouser pocket) to capture GPS, accelerometer and
gyroscope data. The Androsensor4 android app was installed
on the smartphone logging sensory data to a csv file on the
SD card.

3Vuzix M100: https://www.vuzix.com/products/m100-smart-glasses, last
accessed: 10062018

4Androsensor: https://play.google.com/store/apps/details?id=com.
fivasim.androsensor (last accessed: 10062018)

C. DATASET COLLECTION PROCEDURE
We obtained ethical approval to record at a range of indoor
and outdoor locations on campus. Written consent was
obtained from each conversational partner. No children were
recorded, either intentionally or unintentionally. The subject
wore a badge stating that recording was being undertaken
for research purposes. Conversational partners were not given
any specific instructions to restrict their movement; they were
simply asked to have routine interactions.

At the beginning of each recording session, the AndroSen-
sor app and the camera record buttons were turned on. Since
these devices started recording at slightly different times,
the data streams from the two devices were not synchronised.
A synchronisation pulse was therefore generated with a clap
action performed by the subject while holding the smartphone
in the hand and in front of the camera. This pulse can be
used for alignment if data from both devices are to be used.
The smartphone was then placed in the subject’s trouser
pocket. The subject then walked around, meeting conversa-
tional partners at various indoor and outdoor locations. The
AndroSensor app and the camera were left on continuously
throughout each session.

D. DATASET DETAILS
Table 2 details characteristics of the collected focused inter-
action dataset. This dataset contains 377 minutes (including
566,000 video frames) of multimodal recording including
periods in which the wearer is engaged in focused inter-
actions, unfocused interactions, and no interaction. Experi-
ments in this paper use only video and audio data; data from
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TABLE 2. Details of the dataset. Key: CP - conversational partner;
FOV - field of view; fps - frames per second.

the other sensors was recorded so that it might be incorpo-
rated in future studies. In order to introduce diversity in the
dataset, recordings were captured while visiting 18 different
indoor and outdoor locations at different times of the day
and night, and in different environmental conditions (e.g.
sunny or cloudy, with background noise from nearby people
and cars). Videos were recorded at 25 fps with 1080p reso-
lution and 48 KHz audio sampling rate. In total, 19 separate
sessions were recorded. The duration of sessions varied and
depended on the will of the subject to record scenarios in
which they felt comfortable. The shortest session was 6 mins
and included one focused interaction. The longest session
was 52 mins and included 16 focused interactions. In total,
there are 240mins of focused interactions in which conversa-
tional partners are in the field-of-view most of the time (e.g.,
Figure 1(a) and (b)); their positions and face orientations vary
significantly. There are 50 mins of focused interactions in
which the conversational partners are not in the field-of-view
(e.g. while walking as in Figure 1(c) and (d)). The remaining
88mins contain either unfocused or no interaction. Variations
in background and face orientation as exemplified in Figure 1
present a challenge to face detectors and trackers.

E. DATASET ANNOTATION
Annotation was performed by the subject; having been
involved directly in all interactions we believe the subject
is the best person to judge when interactions begin and
end. A sample video was also annotated by an indepen-
dent observer for calibration purposes. The subject used the
ELAN tool5 to label all focused and unfocused interactions.
This entailed marking the points in time at which a per-
son joins or leaves an interaction. Additionally, transitions
between stationary interactions and interactions while walk-
ing were marked. Anonymised IDs for people involved in
each focused interaction were also provided.

5ELAN: https://tla.mpi.nl/tools/tla-tools/elan/, last accessed: 10062018.

IV. METHODS
We perform sequential processing of both audio and video
streams simultaneously to obtain audio-visual feature vectors
(see Figure 2) upon which our models are trained for online
detection of focused interaction in continuous data streams.

A. VISUAL FEATURE EXTRACTION
We use a Histogram of Oriented Gradient (HOG)-based face
detector in each frame [41]. Given the relatively uncon-
strained nature of egocentric video, some false face detec-
tions and missed detections are inevitable. Therefore, we use
Kanade-Lucas-Tomasi (KLT) point tracking to refine face
detection results. KLT tracking is more precise than alter-
natives such as mean-shift face tracking because it tracks
multiple corner features which provides a certain robustness
against tracking failures [42]. As soon as a face is detected,
tracking is initiated to track points on the face in subsequent
frames. The points to be tracked are refreshed by getting input
from the face detector every tenth frame. If the face detector
outputs a face bounding box that overlaps with the tracker
bounding box, the points are updated and tracking continues.
Alternatively, the track is terminated if no face is detected at
the same position as that of the tracker or if all points that
were tracked are lost.

The KLT tracker returns confidence scores for the point
tracks. These scores are computed based on the similarity
of the neighborhood of a tracked point in the current frame
with its neighbourhood in the previous frame. We compute a
face tracker score (denoted as T ) by summing the confidence
scores of all points tracked on a face [8]. In the absence of
a track this score is zero whereas in the presence of a track
it takes the value obtained by accumulating the confidence
scores. It depends on the number of points tracked per face
(and is certainly no larger than the number of pixels in the
face detection box). The track score is high if lots of face
points are tracked with confidence. Where multiple faces
are tracked, only the face with the longest track duration
is selected for inclusion in the current feature set as short
duration tracks often correspond to false detections or brief
unfocused interactions (e.g., walking past another person).
Although our approach gave reliable face tracks, it is worth
mentioning that a library such as OpenPose6 can also be
useful for solving this problem.

In addition to track score, we experimented with two other
visual features extracted from the face track of longest dura-
tion. These were the face detection score (F) returned by the
frame-wise face detector and the height (H ) of the tracked
face bounding box. Clearly height carries information about
the distance of the tracked face from the subject.

B. VOICE ACTIVITY DETECTION
We utilise the method and implementation of
Segbroeck et al. [13] for Voice Activity Detection (VAD).
It combines four types of discriminative audio features

6https://github.com/CMU-Perceptual-Computing-Lab/openpose
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FIGURE 2. Overview of audio and visual feature extraction, temporal windowing and feature fusion. (Best viewed in colour.)

to detect voice activity in noisy real-world environments,
specifically, spectral shape, spectro-temporal modulations,
harmonicity (presence of pitch harmonics) and long-term
spectral variability. The resulting VAD scores (denoted as V )
range from 0 to 1; a score at 0 indicates no voice activity
while a score close to 1 indicates with high confidence the
occurrence of voice activity.

C. AUDIO-VISUAL FEATURE FUSION
Visual and audio features are obtained at different sampling
rates; visual features are updated once every video frame, i.e.
at 25 Hz, whereas VAD scores are computed every 10 ms, i.e.
at 100 Hz, given an input audio stream with sampling rate of
8 kHz (the default setting proposed by [13]). The captured
audio stream is down-sampled from 48 kHz to 8 kHz for
input to the VAD algorithm. In order to fuse these features
we resample the audio features. Specifically, we average four
consecutive VAD scores, with a step size of four, to get the
score at the same rate as that of the video features.

In order to fuse the different audio and video features, each
feature is normalised to have zero-mean and unit variance
based on estimates of its mean and variance obtained from
training data. The features are then concatenated to form a
feature vector for each frame.

D. TEMPORAL SEGMENTATION OF FOCUSED
INTERACTION
The task to be performed is to sequentially process the input
audio-visual data stream in order to identify temporal seg-
ments corresponding to periods of focused interaction. One
way to formulate a solution is to classify each frame as either
belonging or not belonging to a focused interaction. We tried

two methods to achieve this binary classification of frames:
(i) classification using a Support Vector Machine (SVM)
based on features extracted from a fixed-length temporal
window, and (ii) classification using a recurrent neural net-
work with Long Short-Term Memory (LSTM-RNN) based
on relevant information remembered from features extracted
from frames up until the current frame.

1) SLIDING WINDOW SVM CLASSIFICATION
We train linear SVMs on feature vectors which are the con-
catenation of the audio and video features extracted from
each of M consecutive frames. The goal is to assign to each
such temporal window the class label of the last frame of
that window. We choose to predict the label for the last
frame (rather than the middle frame) in order to obtain a low
latency method; this is however more challenging and likely
to increase fragmentation errors. Windows are extracted with
a stride of S frames resulting in a classification at every H th

frame (Figure 2). We used the Matlab implementation of
L2-regularised SVM (calibrated) with dual solver.

2) LSTM-RNN CLASSIFICATION
In order to train an LSTM-RNN, we construct batches of
size k = 4 as in [37]. A training set consists of multiple
videos of various durations. We begin by selecting k training
videos at random. Audio-visual feature vectors are extracted
from temporal windows of length M at the beginning of
these videos and form the first training batch, b1. Subsequent
batches are formed by moving the temporal windows forward
in time by M frames for each new batch. Whenever the end
of a video is reached, it is replaced by another video selected
at random from those not yet used for training in the current
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FIGURE 3. Batch formation for LSTM-RNN training from multiple videos.
Feature vectors are extracted from temporal windows of length M. The
windows move by M frames at each new batch to form bi . Dk denotes
the kth training video.

epoch. This batch formation process continues until batches
have been formed across all the training data; training on all
these batches constitutes an epoch.

Whenever the end of a video is reached and replaced by
another video from which windows begin to be processed,
the state of the LSTM is reset; this avoids learning across the
discontinuous transition from one video to another. Training
an RNN on a long sequence can result in it essentially mem-
orizing the whole sequence. The method described above
avoids this by resetting the state of the RNN at the end of
a video. At the start of RNN training we used a learning rate
of 0.1 and decreased this by a factor of 10 in each epoch. The
network typically reached convergence after 3 epochs. The
batch formation process is illustrated in Figure 3.

3) TEMPORAL FILTERING
Directly thresholding classifier output at a predefined thresh-
old can result in classification errors due to the short-term
fluctuations in the output. We experiment with applying a
temporal median filter (with empirically selected window
size of 145 frames) to smooth such fluctuations.

E. BASELINE METHOD
We implemented the method of [9] as faithfully as the level
of detail provided in that thesis allowed. Note that the dataset
used in [9] has not been made available. This method is
similar in that it uses both audio and video features and is
motivated by continuous life-logging in real-world scenar-
ios. In contrast, methods such as [25] and [26] used only
visual features, were designed for evaluation on short photo
streams or video clips always containing people, and rely on
face tracks being present during interaction [26] or emphasise
analysis of groups of several people interacting [25].

Face presence, size, and head pose features were obtained
using the method of Zhu and Ramanan [43]. Head pose
estimation returned head orientation quantised to 15 degree
intervals in the range−90 degrees to+90 degrees. The audio
stream was divided into intervals such that each interval
contained audio samples equivalent to one video frame. For
each interval, basic energy statistics [44] were computed
such as mean, standard deviation, average absolute difference
(between the sample values in each interval) and the 10-
binned distribution of the sample values in each interval. For
the 10-binned distribution, the range (maximum-minimum)

of the whole audio stream was first computed and then
divided into equal bins. These visual and audio features were
normalised and temporal segmentation of focused interaction
was performed as detailed in Sec. IV-D using an SVM with a
linear kernel.

V. EVALUATION PROTOCOL
We perform 6-fold cross-validation to estimate expected per-
formance. Since sessions are of varying duration it is not
possible to have exactly equal numbers of frames in each fold
without breaking up sessions arbitrarily into smaller parts.
Instead sessions are assigned to folds in such a way as to
obtain folds of approximately equal total size (c. 60 mins).
We use standard framewise, extended framewise, and event
measures.

A. STANDARD FRAMEWISE MEASURES
At a chosen operating point (obtained by thresholding the
output at 0.5 for both SVM and LSTM), precision - P , recall
- R (true positive rate), F1-score - F and fall-out - O (false
positive rate) are computed from the confusion matrix. We
plot the Receiver Operating Characteristic (ROC) curve and
compute the Area Under the Curve (AUC).We also report the
Equal Error Rate (EER).

B. EXTENDED FRAMEWISE MEASURES
Extended framewise measures are computed by first dividing
the ground-truth and predicted label streams into segments
such that a new segment is marked whenever a change occurs
in either stream. False positive segments are categorised as
insertion errors, merge errors (joining two true positive seg-
ments), overfill at start errors (a detection starts too early),
and overfill at end errors (a detection ends too late). Extended
framewise measures corresponding to these categories can
then be defined as the proportion of negative frames in each
category [45]:

ir =
If
N
, mr =

Mf

N
, oα =

Oαf
N
, oω =

Oωf
N

(1)

where If , Mf , Oαf and Oωf are the numbers of frames in
the insertion, merge, overfill at start, and overfill at end
categories, and N is the total number of negative labels,
i.e., N = If + Mf + Oαf + Oωf + TN . Similarly, false neg-
ative errors are categorised as deletion errors, fragmentation
errors (between two true positive segments), underfill at start
errors (a detection starts too late), and underfill at end errors
(a detection ends too early). The corresponding extended
framewise measures for false negatives are:

dr =
Df
P
, fr =

Ff
P
, uα =

Uα
f

P
, uω =

Uω
f

P
(2)

where Df , Ff , Uα
f and Uω

f are the number of frames in the
deletion, fragmentation, underfill at start and underfill at
end categories, and P is the total number of positive labels,
i.e., P = Df + Ff + Uα

f + U
ω
f + TP.
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FIGURE 4. (a) Event-based annotation of the ground-truth and predicted label streams. (b) Event Analysis Diagram (EAD). (Adapted
from [45]).

FIGURE 5. (a) Tracker scores and (b) VAD scores from an example sequence. Video frames at times indicated with vertical
dashed lines are shown in (i)-(x). A focused interaction starts at (iii) and ends at (vi). Another focused interaction starts
at (viii).

C. EVENT MEASURES
An event is a contiguous segment of positive frames,
in either the ground-truth labelling or in the predicted
labelling. Ground-truth and prediction events can be cat-
egorised with respect to one another, as insertions (I ),
deletions (D), fragmentations (F), merges (M ), fragmented
merges (FM ), or correct matches (C), as illustrated by the
schematic in Figure 4(a). These event-based measures can be
visually summarised in an Event Analysis Diagram (EAD)
(Figure 4(b)).

VI. EXPERIMENTAL RESULTS AND DISCUSSION
A. QUALITATIVE EXAMPLE
Audio and video data complement each other. There are
times during focsued interactionwhen visual cues aremissing
(e.g. when walking side-by-side) or audio cues are missing
(e.g. when pausing for thought). Fusion of visual and audio
cues facilitates detection of such interaction.

Figure 5(a) shows an example tracker score sequence.
Representative frames from that video are shown and labelled
(i) - (x). Correct face tracks occur between (iii) to (v) and
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from (ix) to (x). The true face tracks have greater duration
than the false ones, as tends to be the case more generally.
At (v), KLT loses track as the person moves out of view but
shortly afterwards a new track is generated once the person
moves back into view. Likewise, at (x) the track is lost due to
full face occlusion but is recovered once the face is detected
again after a short while.

Figure 5 (b) shows estimated VAD scores. Voice activity
from nearby people is picked up by the detector at (i). At (ii),
a focused interaction begins and voice activity is detected
but no face is detected until (iii) due to motion blur and
distance of the participant from the camera. Another focused
interaction begins at (viii); although there is no face present
in the field-of-view of the camera at this point, voice activity
is detected. Note that even when the tracker is lost at (v) and
(x), voice activity is still detected. Due to environmental noise
(recording on a windy day), voice activity is falsely detected
between (vi) and (viii) albeit with relatively low scores. Auto-
matic doors opening and closing and environmental noise
influenced the VAD scores before (i).

B. SINGLE-FRAME CLASS-CONDITIONAL DENSITIES
If the temporal window is set to a single frame (M = 1)
and the feature set is restricted to VAD and track scores,
the resulting two-dimensional feature space can be easily
visualised. Figure 6 shows plots of class-conditional densities
in this case, estimated from the entire Focused Interaction
dataset. The density for the positive class is bimodal, reflect-
ing the natural ebb and flow of conversations occuring during
focused interactions with pauses and turn-taking between the
subject and conversational partners more distant from the
sensor. The negative class density shows a spread of track and
VAD scores with a clear peak at low VAD and track score.

C. STANDARD EVALUATION
We report results using several different combinations of
feature sets and classifiers. The term TV-SVM denotes the
use of an SVM classifier with tracker (T) and VAD (V)
scores, for example, whereas FHTV-LSTM denotes an RNN
classifier with the complete feature set. F and H denote face
detection and face height scores, respectively (Sec. IV-A).
We refer to the method described in Sec. IV-E as either
Vid_MIT (visual feature-based), Aud_MIT (audio feature-
based) or Vid_Aud_MIT (audio-visual feature-based).

We select the window size (M) through experimentation
by varying it and observing SVM performance. The tracker
score exhibits a low frequency behaviour (Figure 5(a)) and
doesn’t require integration of many frames for reliable pre-
diction. On the other hand, the VAD score exhibits large
fluctuations with relatively high frequencies during conver-
sation (Figure 5(b)) and needs the integration of adjacent
frames for reliable prediction. We found that the performance
of TV-SVM remains stable when selecting window sizes
between 25 to 50 frames. Therefore, in subsequent experi-
ments we fixed M to 50. Note that this window duration is

FIGURE 6. Class-conditional densities estimated from tracker and VAD
scores at every frame. (a) Density plot for the positive class (focused
interaction). (b) Density plot for the negative class (no focused
interaction). (Best viewed in colour).

sufficient to span many of the gaps in voice activity that occur
and which result in short intervals of low VAD score.

Table 3 and Figure 7 report framewise measures. From
Figure 7, we observed that the performances of visual-only
methods were comparatively poor with AUCs of 0.80 and
0.72 for FHT-SVM and T-SVM, respectively. The baseline
Vid_MIT AUC (0.65) was the lowest among the different
video-based feature sets and T-LSTM AUC (0.81) was the
highest. Vid_MIT performance was low as it only consid-
ers spatial visual features which are not always present due
to missed face detection. The use of VAD alone (V-SVM)
performed better than the visual-only feature set giving an
AUC of 0.89 suggesting voice activity provides a strong cue
for the presence or absence of a focused interaction. The
baseline Aud_MIT, on the other hand, poorly performed with
an AUC of 0.51 due to the use of only basic statistical fea-
tures compared to VAD that incorporated spectro-temporal
behaviour of the human voice. The features in Aud_MIT
give the representation of sound in the audio stream and
are not capable of differentiating between human voice and
environmental noise (sounds from the background).

The best focused interaction detection results were
achieved using audio-video fusion: FHTV-SVM and
TV-SVM had AUCs of 0.94 and 0.93, respectively and
FHTV-LSTM and TV-LSTM had AUCs of 0.93 and 0.94.
This suggests that audio-visual fusion is beneficial for
focused interaction detection. The baseline Vid_Aud_MIT
AUC (0.62) was the lowest because of the poor perfor-
mance of the audio and visual features used in the method.
The F1-scores reinforce this with the best F1 of 0.94
obtained by TV-SVM, followed by FHTV-SVM, FHTV-
LSTM, TV-LSTM and V-SVM with F1-scores of 0.93, 0.93,
0.93 and 0.91, respectively. Audio and visual features such
as VAD and face track scores complement each other and
together provide an effective feature set; addition of face
detection score and face height did not help. The presence of
a reliable face track and voice activity together provide strong
evidence for a focused interaction. The lowest EER for a
visual-only feature set was 0.20 for T-LSTM, for audio-only it
was 0.18 for both V-SVM and V-LSTM, and for audio-visual
it was 0.13 for both TV-SVM and TV-LSTM. This shows that
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TABLE 3. Framewise classification measures pooled over validation folds. Key: P - precision; R - recall; F - F1-score; O - fall-out; AUC - area under
curve; EER - equal error rate.

FIGURE 7. ROC curves for (a) visual, (b) audio, and (c) audio-visual features.

EERwith the TV feature set is lower by 5% and 7% than with
V and T alone.

We compared results obtained using the SVM and LSTM
methods (as detailed in Sec. IV-D). The LSTM method did
not yield any significant improvement over the SVM. The
AUCs for FHTV-LSTM and TV-LSTM were 0.93 and 0.94,
and their F1-scores were 0.92 and 0.93, respectively. Com-
paring these values and the ROC curves in Figure 7 with
those of FHTV-SVM and TV-SVM, we can conclude that
the results from these two classifiers are similar. Considering
the successful TV feature set, we observe by visualising the
predicted stream against ground-truth stream that the errors
in SVM-based methods mainly occur due to the fluctuat-
ing response of the predicted stream at focused interaction
labels. This is because of the varying response of the features
at focused interaction (e.g. varying point trackers due to
movements during conversation, highs and lows of voice).
The LSTM-based method, on the other hand, overcame
such fluctuating responses but resulted in delayed detections.
The extended measures (discussed below) further helped in
analysing these errors.

As supplementary material, we provide example videos
visualising the predicted stream for TV-SVM. These videos
are short clips extracted from a 52 mins long video stream

and highlight the challenges associated with online focused
interaction detection in continuous egocentric videos.

D. EXTENDED EVALUATION
To get further insight into the nature of the temporal
segmentations produced by the best performing methods,
TV-SVM and TV-LSTM, we report extended framewise and
event-based measures with and without temporal filtering
(Sec. IV-D.3).

Figure 8 reports results for the unfiltered and filtered
TV-SVM. After filtering, the insertion (ir) and fragmen-
tation (fr) errors were reduced by 3% and 1.7% (see
Figure 8(a) and (b)); TNR and TPR were also improved
to 80.2% and 95.5%, respectively. From the event analysis
diagram (Figure 8(c)), it can be observed that only 21 events
were correctly predicted out of 64 actual events in unfiltered
TV-SVM. A great number of returned events are insertion
(1419) and fragmentation (1071). This is because SVM does
not consider temporal information beyond the temporal win-
dow ofM = 50 frames. These returned events were generally
of short duration. As a result, filtering TV-SVM reduced
the insertion returns to 62 and fragmentation returns to 105
(Figure 8(d)). Correct event count also improved to 42 events.
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FIGURE 8. Extended framewise evaluation for (a) TV-SVM (unfiltered) and (b) TV-SVM (filtered). Event-based evaluation for (c) TV-SVM (unfiltered)
and (d) TV-SVM (filtered). Filtering helps in reducing the fragmentation and insertion errors. Best viewed in colour. (a) TV-SVM (unfiltered). (b) TV-SVM
(filtered). (c) TV-SVM (unfiltered), FM = 2(3.1%), M = 1(1.6%), FM’ = 2(0.1%). (d) TV-SVM (filtered), D = 1(1.6%), M’ = 1(0.5%), FM’ = 3(1.4%).

FIGURE 9. Extended framewise evaluation for (a) TV-LSTM (unfiltered) and (b) TV-LSTM (filtered). Event-based evaluation for (c) TV-LSTM (unfiltered)
and (d) TV-LSTM (filtered). Filtering helps in reducing the fragmentation and insertion errors. Best viewed in colour. (a) TV-LSTM (unfiltered).
(b) TV-LSTM (filtered). (c) TV-LSTM (unfiltered), FM = 1(1.6%), M = 3(4.7%). (d) TV-LSTM (filtered), D = 1(1.6%), M’ = 0.8(2.0%), FM’ = 3(1.2%).

In the case of TV-LSTM, ir and fr were reduced by 2.6%
and 1.4% after filtering (see Figure 9(a) and (b)); TPR and
TNR were improved to 91.9% and 85%, respectively. From
the event analysis diagram (Figure 9(c)), we observe that
fragmentation (999) and insertion (310) returns were high but

not as high as the TV-SVM (unfiltered). Filtering reduced
these errors to 160 and 45, and improved the correct event
count to 35 (Figure 9(d)). The filtered fragmentation events
for TV-LSTM are higher than TV-SVM (filtered). This was
because some fragmentation events in the case of TV-LSTM
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were of long duration; filtering was unable to correct such
errors.

Overall, results from both TV-SVM and TV-LSTM
remained comparable even after filtering. This extended eval-
uation protocol allowed better understanding and visuali-
sation of the classification errors in sequential data. The
analysis highlighted additional challenges of this dataset
that include scenarios with background voices (from passing
individuals), relatively long pauses during a conversation
especially when the conversational partner is not facing the
camera wearer, and varied lighting conditions.

VII. CONCLUSION
We have contributed the Focused Interaction dataset captur-
ing everyday interactions from an egocentric perspective in
varying locations and environmental conditions. One camera
wearer performed all the recordings in this dataset. We pre-
sented and evaluated methods for the online detection of
focused interaction. In contrast to methods for detection of
social interaction that classify video clips we perform con-
tinuous segmentation. We processed both audio and visual
data streams to obtain audio-visual feature sets. Temporal
segmentation of focused interactions was achieved via clas-
sification using either SVMs or LSTM recurrent neural net-
works. Evaluation using various feature sets was performed
in terms of framewise and event-based measures and com-
parison was made with a baseline method. It was shown
that integrating audio cues with visual cues improved the
performance of focused interaction detection over the use of
audio or video alone. The SVM-based method gave more
missed-detection intervals of shorter duration compared to
the LSTM-based method which gave longer false-detection
intervals. The proposed method, the new dataset, and the
evaluation protocol provide a benchmark for future research
on focused interaction detection.

In the future, larger data sets with multiple subjects could
be captured to extend the scope of this work and allow testing
of generalisation across subjects. We plan to extend this
work to identify conversational partners and scene-specific
information during interactions in order to enhance assis-
tive technologies for non-speaking people. Other application
domains include behaviour understanding in care settings and
evidence management for law enforcement.
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