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ABSTRACT In this paper, a new robust adaptive control method has been proposed for nonlinear systems
with uncertainties. This method combines the advantages of self-tuning control and sliding mode control.
A simple parameterization model is first derived based on a linear dynamic model and unmodeled dynamics.
Based on a modified sliding surface, the design procedure is based on the indirect adaptive control concept.
This controller consists of four parts: 1) the system parameters estimation; 2) the unmodeled dynamics
estimation; 3) the weighting polynomials updating; and 4) the control law calculation. The key merits of
this controller are as follows: 1) the controller is applicable to non-minimum phase and open-loop unstable
systems; 2) the estimation of the unmodeled dynamics is introduced as a feedback compensation control to
improve the response; and 3) the strict stability condition is eliminated and a desirable performance is ensured
during a wide operation region. Moreover, the control problem of a shape memory alloy actuator system
is considered. In the literature, the mechanism model-based controllers have been extensively reported to
address this issue. As an alternative, we describe this plant as a gray-box model. The adaptation algorithm
and the control law have been implemented through the Beckhoff controller. The experimental results have
demonstrated that the proposed controller has wider applicability than some existing methods.

INDEX TERMS Adaptive control, unmodeled dynamics, stability, robustness, SMA actuator.

I. INTRODUCTION
Adaptive control theory has been an active research topic
since the last century. The key merit of an adaptive controller
is that it is effective to the control problem of systems with
uncertainties [1]. Self-tuning control [2] is one of the most
common adaptive control strategies. Major advances have
been made in the linear self-tuning control theory [3]–[7].
To meet the requirements of industrial plants, nonlinear self-
tuning control schemes are studied to address the inherent
nonlinear behaviors. Plenty of nonlinear models have been
suggested for self-tuning controller design, such as neural
networks [8], [9], fuzzy models [10], [11], multiple mod-
els [12], [13] and nonlinear autoregressive moving average
with exogenous models [14], [15]. Despite the progresses
achieved in the theoretical aspects, these interesting results
suffer from the following critical drawbacks: (i) due to the

complexities of nonlinear models and the uncertainties of
their adaptations, the closed-loop stability analysis of non-
linear self-tuning control systems has always been very dif-
ficult and even intractable; (ii) the effectiveness of the output
tracking is guaranteed by the assumption that the plants can
be precisely described by the nonlinear models, which is
difficult to satisfy in practice; (iii) the nonlinear self-tuning
controller designs are quite implicit and cumbersome, in
which the model structures are complicated, the identified
parameters are increased, and the computational burdens are
undesirable. Consequently, the theoretical results may have
less potential for applications.

In our view, there is still a long way from finding
increased applications for self-tuning adaptive control strate-
gies. Such a situation is mainly due to the lack of systematic
methodology that can enhance the robustness property of the
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overall system. Essentially, the robustness property has
always been a major concern, as important as the closed-
loop stability and the output tracking performance. It has
been a consensus that when there exist model mismatch,
unmodeled dynamics and non-Gaussian disturbances [16],
a conventional adaptive controller may cause undesirable per-
formance. Some reports have considered robust self-tuning
control problems by treating the modeling errors as bounded
disturbances [17], [18]. Though the robustness property has
increased, it also results in performance degradation since
the estimator is insensitive to uncertainties. Chen and Naren-
dra [19] have proposed a compensation control strategy by
the use of neural networks and multiple models. However,
the control design procedure seems to be costly. It would be
meaningful if we can find out an appropriate way to enhance
the robustness property without affecting the output tracking
performance.

The main issue addressed in this paper is: how could
system robustness be ensured in a self-tuning adaptive con-
trol system? Interestingly, the sliding mode control theory
exhibits excellent robustness to system uncertainties [20].
Thus to take advantage of the robustness of sliding mode
control, meanwhile cope with the uncertainties of industrial
plants, a favored approach is to combine the self-tuning
control with the sliding mode control [21]–[26]. Furuta [21]
presented a sliding mode adaptive control framework for
the systems with unknown parameters, where the control
signal is composed of a linear feedback term and a switching
term with the equivalent control region. Chen et al. [23]
proposed a non-switching adaptive sliding mode control for
uncertain systems. This elegant control scheme is extended
to a multivariable case [24] and cascade systems with hys-
teresis nonlinearities [25], [26]. Nevertheless, there remain
some issues to be addressed in this field: (i) a fundamental
assumption of these results is that the system is minimum
phase, which greatly confines the applicability of the results;
(ii) the sliding surface has fixed weighting terms which often
has to satisfy some strict stability conditions and requires a
trivial cut and try procedure; (iii) the methods are based on
the direct adaptive control, which defines an extended model
for controller design, which leads to a growth in the number
of parameters to be estimated; (iv) the robust sliding mode
control design may reduce the adaptive performance, and
deteriorate the output tracking property.

This paper develops a more practical self-tuning adaptive
slidingmode control strategy for nonlinear systems. Based on
a simple parameterizationmodel, the control strategy consists
of four parts: the system parameters estimation, the unmod-
eled dynamics estimation, the weighting polynomials updat-
ing and the control law calculation. The closed-loop system
stability is achieved under mild conditions. For the theoretical
aspects, the main contributions of this paper are summarized
as follows: (i) Based on a novel sliding surface, the controller
is applicable to non-minimum phase and open-loop unsta-
ble systems; (ii) The weighting polynomials of the sliding
surface are updated online such that the strict closed-loop

stability condition is eliminated and a desirable control per-
formance is guaranteed during the whole operation region;
(iii) The controller design is based on the indirect adaptive
control strategy [27], which identifies the controlled plant
directly and thus ensures good convergence of the weighing
polynomials updating; (iv) The estimation of the unmodeled
dynamics is introduced as a feedback compensation control to
improve the output tracking performance; (v) Taking all these
factors (i.e. the indirect adaptive control design, the updating
of weighing polynomials and the additional feedback com-
pensation control) into considerations, the manner in which
the closed-loop stability analysis is carried out forms a major
contribution.

What is more, the proposed adaptive controller is applied
to a shape memory alloy (SMA) actuator in the experimen-
tal study. SMA is a smart metallic material that happens
transformation from thermal energy to mechanical energy
when it is heated up to an appropriate temperature [28].
SMA actuators have some advantages such as high power to
mass ratio, maintainability, reliability, biocompatibility, light
weight, and silent actuation [29]. These remarkable electrical
and mechanical properties in solving engineering problems
enable SMAs to serve as an alternative to replace conven-
tional actuators. SMA achieves actuation via the transforma-
tion between the Martensite phase (cold) and the Austenite
phase (hot). The SMA shape can be easily deformed by
external stress in the Martensite phase, and the original shape
can be recovered by heating SMA to the Austenite phase. It is
reported that the SMAs have been used in plenty of practical
applications such as biomedical engineering [30], aerospace
applications [31], automotive applications [32], and robotic
applications [33]. Despite of the salient features, it is a
consensus that for SMA actuators there exist nonlinearities,
parameter uncertainties, hysteresis, slow response speed and
difficulty in measuring intermediate variables (i.e. temper-
ature). The above disadvantages have made SMA actuators
difficult to model and control.

In the literature, most of the successful controllers for
SMA actuators are based on the sliding mode control
approach. Romano and Tannuri [34] have designed a SMA
actuator with a cooling system, established a mathematical
model and derived a robust sliding mode controller. Ashrafi-
uon and Jala [35] have designed a novel sliding mode con-
troller incorporating with an extended Kalman filter, which
estimates the states of the plant. Pai et al. [36] have intro-
duced a novel strategy for precision control of SMA actu-
ator by combining a temperature controller and a sliding
mode controller. Tai and Ahn [37] have built up a radial
basis function neural network (RBFNN) based model for the
SMA actuator, and then based on the black-box model a NN
controller is developed. For an antagonistic SMA actuator,
Wiest and Bucker [38] have employed recurrent NNs for the
hysteresis compensation and proposed an indirect intelligent
slidingmode control scheme. Nikdel et al. [39] have designed
a new SMA based manipulator, and compared the sliding
mode controller with the NN model predictive controller.
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Meanwhile, adaptive control also provides a new look to
dealing with the nonlinearities of SMA actuators, such
as [40]–[42]. In sum, most of these schemes focus on mech-
anism models [34]–[36], [40], [41], which are inaccurate due
to severe uncertainties. Some other publications also intro-
duce neural networks models [37]–[39], [42], but the compu-
tational complexities are often high and the local minimum
value problems remain an issue.

In this research, an alternative modeling and control
scheme will be implemented to the SMA actuated system.
Based on the input current and the output displacement,
the SMA actuator is described as a gray-boxmodel. It is noted
that no intermediate variables (i.e. temperature) are required
to be measured. Then the model parameters together with the
unmodeled dynamics are updated by the recursive estimator,
which requires a quite low computational burden and thus is
usable for online control. Theweighing polynomials updating
will be employed for the purpose of fast response when the
operation condition changes, while the weighing polynomi-
als will keep unchanged for the robustness considerations
under load variations and stochastic disturbances. The recur-
sive algorithms and the control law have been implemented
through the Beckhoff controller (which is a real time indus-
trial PC-based controller and possesses several advantages
such as high reliability, satisfactory extensibility, excellent
compatibility and open platform). The experimental results
indicate that the proposed controller is effective, and has a
promising potential in many practical applications, which is
another contribution of this work.

II. PROBLEM FORMULATION
Consider the discrete-time, nonlinear dynamical system
described in the single-input-single-output (SISO) form

y(t + 1) = f [y(t), . . . , y(t+1−na), u(t), . . . , u(t+1−nb)]

(1)

where u(t) and y(t) are the system input and output signals;
na and nb are the system orders; f [·] is the smooth nonlinear
function. The origin is considered as an equilibrium point.

The nonlinear system (1) can be equivalently represented
as the following equation by linearization using Taylor’s
formula around the origin. Similar to [23], we consider the
system (2) described by

A(z−1)y(t + 1) = B(z−1)u(t)+ ζ [y(t), . . . , y(t + 1− na),

u(t), . . . , u(t + 1− nb)] (2)

where A(z−1) and B(z−1) are polynomials in the unit
time delay operator z−1

{
e.g. z−1u(t) = u(t − 1)

}
which are

defined as follows

A(z−1) = 1+ a1z−1 + a2z−2 + . . .+ anaz
−na

B(z−1) = b1 + b2z−1 + . . .+ bnbz
−nb+1

where a1, a2, . . . , ana , b1, b2, . . . , bnb are unknown parame-
ters; ζ [·] is the higher order smooth nonlinear function with
respect to y(t), . . . , y(t + 1 − na), u(t), . . . , u(t + 1 − nb).

For simplicity, the term ζ [y(t), . . . , y(t + 1 − na), u(t), . . . ,
u(t+1−nb)] is written as ζ (t), which will be called ‘‘unmod-
eled dynamics’’ in this work.

The objectives are to produce a control input such that
the system output tracks the reference, and to guarantee the
robust stability of the closed-loop system despite of uncer-
tainties.

The following assumptions are imposed on the system (2).
Assumption 1: The orders na and nb are known.
Assumption 2: The nonlinearity ζ (t) satisfies

|ζ (t)| ≤ σ (3)

where σ is an unknown positive coefficient.
Remark 1: Note that the plant is not restricted to be min-

imum phase. The robust stability of the proposed controller
will be proved based on the generalized minimum variance
control [2].

III. ADAPTIVE CONTROL ALGORITHMS
As depicted in Fig. 1, an indirect adaptive control scheme is
introduced. This strategy separates the control law calculation
from the online adaptation algorithm.

FIGURE 1. The robust indirect adaptive sliding mode control scheme.

A. SLIDING SURFACE FOR COMPLETELY KNOWN
SYSTEMS
The following sliding surface is usually employed for the
controller design [43]

s(t + 1) = P(z−1)y(t + 1)+ Q(z−1)u(t)− Ry∗(t + 1) (4)

where y∗(t) is a bounded reference; the user-chosen weight-
ing polynomials P(z−1) = p0 + p1z−1 + . . . + pnpz

−np and
Q(z−1) = q0+q1z−1+. . .+qnqz

−nq are with orders np and nq;
R is a weighting coefficient. The terms P(z−1), Q(z−1) and
R are pre-specified and fixed in the conventional adaptive
sliding mode controller [43]. In general, P(z−1) is chosen to
be a stable polynomial.
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For completely known plants, to achieve the desired con-
trol objective s(t + 1) = 0, the control law is as follow

T (z−1)u(t) = Ry∗(t + 1)− S(z−1)y(t)− p0ζ (t) (5)

where S(z−1) = s1 + s2z−1 + . . . + snsz
−ns+1 and

T (z−1) = t1 + t2z−1 + . . . + tnt z
−nt+1. Both of the parame-

ters
(
s1, s2, . . . , sns , t1, t2, . . . , tnt

)
and the orders (ns, nt) are

determined by P(z−1) = p0A(z−1)+z−1S(z−1) and T (z−1) =
p0B(z−1)+ Q(z−1).
By substituting the desired relationship s(t + 1) = 0 into

the system (5), we can obtain the closed-loop equation[
P(z−1)B(z−1)+ Q(z−1)A(z−1)

]
y(t + 1)

= B(z−1)Ry∗(t + 1)+ Q(z−1)ζ (t) (6)

The equation (6) indicates that, for a completely known
system, to achieve the closed-loop stability, the weighting
polynomials P(z−1) and Q(z−1) should be properly chosen to
guarantee that

[
P(z−1)B(z−1)+ Q(z−1)A(z−1)

]
is stable [43].

However, when system parameters are uncertain, it is dif-
ficult to offline choose appropriate P(z−1) and Q(z−1) to
ensure this restrict condition for distinct operation regions. To
remove the above assumption, a more favored treatment is to
update P(z−1) and Q(z−1) online based on some prescribed
poles [27]. In the Control Law Design subsection, we will
show that the choices of these weighing terms can be online
updated.

B. RECURSIVE ESTIMATOR
Online adaptation algorithmwill be introduced to identify the
uncertain system (2).
To construct an identification model, the system (2) can be

rewritten compactly as follow

y(t) = ϕT (t)θ + ζ (t) (7)

where the parameter vector θ and the regressor vector ϕ(t)
are defined as follows

θ =
[
b1, b2, . . . , bnb , a1, a2, . . . , ana

]T (8)

ϕ(t) = [u(t − 1), u(t − 2), . . . , u(t − nb), − y(t − 1),

−y(t − 2), . . . ,−y(t − na)]T (9)

Then we have the following identification model

y(t + 1) , ϕT (t + 1)θ̂ (t) (10)

with θ̂ (t) defined as the estimation of θ

θ̂ (t) =
[
b̂1(t), b̂2(t), . . . , b̂nb (t), â1(t), â2(t), . . . , âna (t)

]T
(11)

Let σ̂ (t) be the estimation of σ .
The uncertain parameters θ̂ (t) and σ̂ (t) are updated by the

following modified recursive stochastic gradient identifica-
tion algorithm with a deadzone weighted factor

e(t) = y(t)− ϕT (t)θ̂ (t − 1) (12)

r(t) = r(t − 1)+ ϕT (t)ϕ(t) (13)

λ(t) =

{
1− σ̂ (t − 1)/ |e(t)| , if |e(t)| > σ̂ (t − 1)
0, otherwise

(14)

θ̂ (t) = θ̂ (t − 1)+
ελ(t)ϕ(t)e(t)

r(t)
(15)

σ̂ (t) = σ̂ (t − 1)+
ελ(t) |e(t)|

r(t)
(16)

where r(0) = 1; σ̂ (t) is the estimation of the upper bound σ ;
e(t) is the model error; λ(t) is a nonnegative weighted factor;
ε is a user-designed adaptation gain and satisfies 0 < ε ≤ 2
(Lemma 1 will explain the reason).
Remark 2: In this recursive estimator, the weighted factor

λ(t) can effectively increase the system robustness especially
when the uncertainties cannot be neglected. But on the other
hand, the weighted factor λ(t) may also lead to undesirable
‘‘insensitivity’’ in the parameters updating. Thus a compro-
mise has to be made between the system robustness and the
control performance.

In order to achieve better control performance, efforts
should be made to compensate for the unmodeled dynam-
ics ζ (t). Let ζ̂ (t) be denoted as the estimation of ζ (t), which
is updated by

ζ̂ (t) = y(t)− ϕT (t)θ̂ (t) (17)

Then the estimation ζ̂ (t) will be employed as a compensation
in the controller design.
Remark 3:Note that the aims of the estimates σ̂ (t) and ζ̂ (t)

are different. The former one is for the robust identification of
system parameters, while the latter is to add an compensation
control when the estimator is insensitive to uncertainties.

C. CONTROL LAW DESIGN
Based on (11), the estimated polynomials at instant t can be
defined as

Â(t, z−1) = 1+ â1(t)z−1 + â2(t)z−2 + . . .+ âna (t)z
−na

B̂(t, z−1) = b̂1(t)+ b̂2(t)z−1 + . . .+ b̂nb (t)z
−nb+1

Along with (4), P̂(t, z−1), Q̂(t, z−1) and R̂(t) are defined in
replace ofP(z−1),Q(z−1) andR. The polynomials P̂(t, z−1) =
p̂0(t)+ p̂1(t)z−1 + . . .+ p̂np (t)z

−np and Q̂(t, z−1) = q̂0(t)+
q̂1(t)z−1 + . . . + q̂nq (t)z

−nq are online updated based on the
following equation [27]

0(z−1) = P̂(t, z−1)B̂(t, z−1)+ Q̂(t, z−1)Â(t, z−1) (18)

where 0(z−1) is a pre-specified stable polynomial. Now the
modified sliding surface is expressed as follow

s(t + 1) = P̂(t, z−1)y(t+1)+Q̂(t, z−1)u(t)−R̂(t)y∗(t + 1)

(19)

Then based on (5) and the adaptation algorithm (12)-(18),
the control law is as follow

T̂ (t, z−1)u(t) = R̂(t)y∗(t+1)−Ŝ(t, z−1)y(t)−p̂0(t)χ (t)ζ̂ (t)

(20)
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with Ŝ(t, z−1) = ŝ1(t) + ŝ2(t)z−1 + . . . + ŝns (t)z
−ns+1 and

T̂ (t, z−1) = t̂1(t)+ t̂2(t)z−1 + . . . + t̂nt (t)z
−nt+1 determined

by P̂(t, z−1) = p̂0(t)Â(t, z−1)+ z−1Ŝ(t, z−1) and T̂ (t, z−1) =
p̂0(t)B̂(t, z−1) + Q̂(t, z−1). In (20), the parameter χ (t) is
defined as

χ (t) =
{
0, if |e(t)| > χ̄ · η̂(t − 1)
1, otherwise

where χ̄ > 1 (21)

Remark 4: The modified sliding surface (19) is
updated online for the purpose of a better perfor-
mance. At each instant, the calculation of the elements(
p̂0(t), p̂1(t), . . . , q̂0(t), q̂1(t), . . .

)
is based on the pole

assignment concept [27].
Remark 5: To eliminate steady-state output tracking errors,

a straightforward way is to choose R̂(t) = P̂(t, 1) and
Q̂(t, 1) = 0. Clearly, the former relationship is easy to be met
by setting R̂(t) = p̂0(t)+p̂1(t)+. . .+p̂np (t). For the latter one,
Q̂(t, z−1) is suggested to be Q̂(t, z−1) = Q

′

(t, z−1)(1 − z−1)
for a polynomial Q

′

(t, z−1).
Remark 6: The parameter χ (t) is adopted to improve the

system response. Clearly, when the estimation is not precise,
no compensation is introduced for the unmodeled dynamics;
when the estimation error is within a certain region, the com-
pensation ζ̂ (t) is used for the feedback.

D. OVERALL ADAPTIVE CONTROL SCHEME
In short, the proposed robust indirect adaptive sliding mode
control (RIASMC) scheme is summarized as follows:
Step 1: Collect {u(t), y(t)} and construct ϕ(t) by (9);
Step 2: Update θ̂ (t), σ̂ (t), ζ̂ (t) by (12)-(17);
Step 3: Calculate P̂(t, z−1), Q̂(t, z−1), R̂(t) by (18);
Step 4: Calculate u(t) by solving the equation (20);
Step 5: Let t = t + 1 and apply u(t) to the system (1).

IV. THEORETICAL ANALYSIS
The time-varying operation is indispensable for analyzing
the closed-loop stability of an indirect adaptive control [27].
To simplify this concept, the following definition is intro-
duced.
Definition 1: For the given time-varying polynomials

L(t, z−1) = l0(t)+ l1(t)z−1 + . . .+ lnl (t)z
−nl ,

M (t, z−1) = m0(t)+ m1(t)z−1 + . . .+ mnm (t)z
−nm ,

we define

L(t, z−1)M (t, z−1) :=
nl∑
i=0

nm∑
j=0

li(t)mj(t)z−i−j,

L(t, z−1) •M (t, z−1) :=
nl∑
i=0

nm∑
j=0

li(t)mj(t − i)z−i−j.

Lemma 1: The adaptation algorithm (12)-(16) ensures the
following properties:

lim
t→∞

λ2(t)e2(t)
r(t)

= 0 (22)

lim
t→∞
||θ̂ (t)−θ̂ (t−1)|| = 0, lim

t→∞
||σ̂ (t)−σ̂ (t − 1)|| = 0

(23)

θ̂ (t), σ̂ (t) are bounded for any t. (24)

Proof: Define the function V (t) = θ̃T (t)θ̃ (t) + σ̃ 2(t),
where θ̃ (t) = θ̂ (t)− θ , σ̃ (t) = σ̂ (t)− σ .

Then consider the equation (25)

V (t)− V (t − 1)

=

2ελ(t)
{
e(t)ϕT (t)θ̃ (t − 1)+ |e(t)| σ̃ (t − 1)

}
r(t)

+
ε2λ2(t)

{
e(t)ϕT (t)ϕ(t)e(t)+ e2(t)

}
r2(t)

(25)

From (14), there exists V (t) = V (t − 1) when |e(t)| ≤
σ̂ (t−1). Now let us consider the case when |e(t)| > σ̂ (t−1).
From (7) and (12), it is seen that ϕT (t)θ̃ (t−1) = ζ (t)−e(t).

Further based on (3), we have

V (t)− V (t − 1) ≤
2ελ(t)

{
−e2(t)+ |e(t)| σ̂ (t − 1)

}
r(t)

+
ε2λ2(t)e2(t)

{
ϕT (t)ϕ(t)+ 1

}
r2(t)

(26)

From (13), we have r(t) = 1 +
t∑

k=1
ϕT (k)ϕ(k) ≥

1 + ϕT (t)ϕ(t). Meanwhile from (14), it is known |e(t)| −
σ̂ (t − 1) ≤ λ(t) |e(t)|. Based on these facts, the equation (26)
can be written as

V (t)− V (t − 1) ≤ −
2ελ2(t)e2(t)

r(t)
+
ε2λ2(t)e2(t)

r(t)

= −
(2− ε)ελ2(t)e2(t)

r(t)
(27)

Thus in order to ensure V (t)−V (t−1) ≤ 0, the coefficient
ε must satisfy 0 < ε ≤ 2.
Then there exists that
t∑

k=1

(V (k)− V (k − 1)) ≤ −(2− ε)ε
t∑

k=1

λ2(k)e2(k)
r(k)

(28)

Now combining (28) with the fact V (t) ≥ 0 and following
the same line as that in [2], the conclusions (22)-(24) can be
proven. �
Lemma 2:Let Assumptions 1-2 hold and apply the adaptive

control algorithms (12)-(18) and (20) to the nonlinear sys-
tem (1), then there exist positive constants K1, K2 such that

max
0≤τ≤t

||ϕ(τ )|| ≤ K1 + K2 max
0≤τ≤t

{λ(τ ) |e(τ )|} (29)

Proof: From (9), (11) and (12), it is derived that

e(t + 1)

= y(t + 1)−
{[

1− Â(t, z−1)
]
y(t + 1) +B̂(t, z−1)u(t)

}
= Â(t, z−1)y(t + 1)− B̂(t, z−1)u(t) (30)
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Further combining (30) with (20) yields that

p̂0(t)e(t + 1) = p̂0(t)Â(t, z−1)y(t + 1)+ Q̂(t, z−1)u(t)

− T̂ (t, z−1)u(t)

= P̂(t, z−1)y(t + 1)+ Q̂(t, z−1)u(t)

− R̂(t)y∗(t + 1)+ p̂0(t)χ (t)ζ̂ (t)

= s(t + 1)+ p̂0(t)χ (t)ζ̂ (t) (31)

Meanwhile, from (7) and (17), it is obtained that

ζ̂ (t) = ζ (t)+ ϕT (t)
[
θ − θ̂ (t)

]
(32)

Then from (31) and (32), we have

p̂0(t)e(t + 1)

= P̂(t, z−1)y(t + 1)+ Q̂(t, z−1)u(t)− R̂(t)y∗(t + 1)

+ 5̂(t)+ p̂0(t)χ (t)ζ (t) (33)

where 5̂(t) = p̂0(t)χ (t)ϕT (t)
[
θ − θ̂ (t)

]
.

Combining (33) with (30) yields the following equations[
P̂(t, z−1)B̂(t, z−1)+ Q̂(t, z−1)Â(t, z−1)

]
y(t + 1)

= 0(z−1)y(t + 1)

=

[
B̂(t, z−1)p̂0(t)+ Q̂(t, z−1)

]
e(t + 1)

+ B̂(t, z−1)R̂(t)y∗(t + 1)

+

{
B̂(t, z−1)P̂(t, z−1)− B̂(t, z−1) • P̂(t, z−1)

}
y(t + 1)

+

{
Q̂(t, z−1)Â(t, z−1)− Q̂(t, z−1) • Â(t, z−1)

}
y(t + 1)

+

{
Q̂(t, z−1) • B̂(t, z−1)− B̂(t, z−1) • Q̂(t, z−1)

}
u(t)

− B̂(t, z−1)5̂(t)− B̂(t, z−1)p̂0(t)χ (t)ζ (t) (34)[
P̂(t, z−1)B̂(t, z−1)+ Q̂(t, z−1)Â(t, z−1)

]
u(t)

= 0(z−1)u(t)

=

[
Â(t, z−1)p̂0(t)− P̂(t, z−1)

]
e(t + 1)

+ Â(t, z−1)R̂(t)y∗(t + 1)

+

{
P̂(t, z−1)B̂(t, z−1)− P̂(t, z−1) • B̂(t, z−1)

}
u(t)

+

{
Â(t, z−1)Q̂(t, z−1)− Â(t, z−1) • Q̂(t, z−1)

}
u(t)

+

{
P̂(t, z−1) • Â(t, z−1)− Â(t, z−1) • P̂(t, z−1)

}
y(t+1)

− Â(t, z−1)5̂(t)− Â(t, z−1)p̂0(t)χ (t)ζ (t) (35)

From Lemma 1, it is clear that all the polynomials
Â(t, z−1), B̂(t, z−1), P̂(t, z−1), Q̂(t, z−1) and R̂(t) must have
bounded coefficients. Meanwhile, when t → ∞, the ele-
ments in the braces on the right-hand side of (34)-(35) tend
to zero.

Then we left-multiple 0−1(z−1) on both sides of (34)-(35)
and use the fact that 0(z−1) is a stable polynomial for fur-
ther results. It is a concensus that the reference signal y∗(t)
must be bounded, and the growth rates [2] of |y(t + 1)|
and |u(t)| are not faster than the regressor vector ||ϕ(t)||.

By Lemma 1, we can conclude that 5̂(t) has the same growth
rate with ||ϕ(t)||.
Let us first consider the case when χ (t) = 1 in (20).
Based on (34), (35) and the above analysis, we know that

there exist positive constants K
′

3, K
′

4, K
′

5, K
′

6, K
′′

3 , K
′′

4 , K
′′

5 , K
′′

6
such that

|y(t)| ≤ K
′

3 + K
′

4 max
0≤τ≤t

|e(τ )|

+K
′

5 max
0≤τ≤t

‖ϕ(τ )‖ + K
′

6 max
0≤τ≤t

|ζ (τ )| (36)

|u(t − 1)| ≤ K
′′

3 + K
′′

4 max
0≤τ≤t

|e(τ )|

+K
′′

5 max
0≤τ≤t

‖ϕ(τ )‖ + K
′′

6 max
0≤τ≤t

|ζ (τ )| (37)

Based on (9), it can be concluded that there exist positive
constants K3, K4, K5, K6 such that

max
0≤τ≤t

||ϕ(τ )|| ≤ K3 + K4 max
0≤τ≤t

|e(τ )|

+K5 max
0≤τ≤t

‖ϕ(τ )‖ + K6 max
0≤τ≤t

|ζ (τ )| (38)

Thus if we denote K̄5 = 1, then for any 0 < K5 < K̄5, it is
concluded that there exist positive constants K7, K8, K9 such
that

max
0≤τ≤t

||ϕ(τ )||

≤
K3

1− K5
+

K4

1− K5
max
0≤τ≤t

|e(τ )| +
K6

1− K5
max
0≤τ≤t

|ζ (τ )|

= K7 + K8 max
0≤τ≤t

|e(τ )| + K9 max
0≤τ≤t

|ζ (τ )| (39)

Then from Assumption 2, it is concluded that there exist
positive constants K8, K10 such that

max
0≤τ≤t

||ϕ(τ )|| ≤ (K7 + K9σ )+ K8 max
0≤τ≤t

|e(τ )|

= K10 + K8 max
0≤τ≤t

|e(τ )| (40)

By using the property |e(t)|− σ̂ (t−1) ≤ λ(t) |e(t)| defined
in (14) again, it is obvious that

max
0≤τ≤t

||ϕ(τ )||

≤ K10 + K8 max
0≤τ≤t

{
|e(τ )| − σ̂ (t − 1)+ σ̂ (t − 1)

}
≤ K10 + K8 max

0≤τ≤t
{λ(τ ) |e(τ )|} + K8 max

0≤τ≤t
σ̂ (t − 1) (41)

From (24), it is known that there exist positive constants
K1, K2 such that

max
0≤τ≤t

||ϕ(τ )|| ≤ K1 + K2 max
0≤τ≤t

{λ(τ ) |e(τ )|} (42)

Obviously, Lemma 3 is also guaranteed under the case
when χ (t) = 0. The corresponding proof is similar
to (36)-(42). �
Theorem 1: Assume that the nonlinear system (1) satis-

fies Assumptions 1-2. For the closed-loop system (7) with
the adaptation algorithm (12)-(18) and the control law (20),
the following conclusions are obtained.
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(i) The closed-loop system is stable in the sense that all
the signals are uniformly bounded. There also exists a small
upper bound 1̄ such that the output tracking error satisfies

lim
t→∞

∣∣y(t)− y∗(t)∣∣ ≤ 1̄ (43)

(ii) Moreover, if at the steady state, the ummodeled dynam-
ics ζ (t) and the reference y∗(t) are slowly varyingwith respect
to the sampling frequency such that [24]

ζ (t) ≈ ζ (t − 1) ≈ . . . ≈ ζ (t − N ) (44)

y∗(t) ≈ y∗(t − 1) ≈ . . . ≈ y∗(t − N ) (45)

can hold for a large integer N , then the output tracking error
satisfies

lim
t→∞

∣∣y(t)− y∗(t)∣∣ ≈ 0 (46)

Proof:
(i) Using (22), (29) and the ‘‘key technical Lemma’’

of [2, Lemma 6.2.1], two propositions can be obtained as
follows: 1) {λ(t) |e(t)|} is a bounded sequence and
2) lim

t→∞
λ(t) |e(t)| = 0.

From (42), the first proposition can be further extended to
the following conclusions: {||ϕ(t)||} is a bounded sequence,
all the signals must be bounded and the closed-loop system
is stable.

Based on the definition in (14), the second proposition
means that lim

t→∞
sup

{
|e(t)| − σ̂ (t − 1)

}
≤ 0. From (25), it is

known that lim
t→∞

χ (t) = 1. Combining (12) with (17) yields
that

ζ̂ (t) = e(t)+ ϕT (t)
[
θ̂ (t − 1)− θ̂ (t)

]
(47)

Applying (47) to (31) yields that

p̂0(t) [e(t + 1)− e(t)]

= P̂(t, z−1)y(t + 1)+ Q̂(t, z−1)u(t)− R̂(t)y∗(t + 1)

+ p̂0(t)ϕT (t)
[
θ̂ (t − 1)− θ̂ (t)

]
= s(t + 1)+ p̂0(t)ϕT (t)

[
θ̂ (t − 1)− θ̂ (t)

]
(48)

Then based on (23), (24), (48), R̂(t) = P̂(t, 1), Q̂(t, 1) = 0,
and the fact that lim

t→∞
sup

{
|e(t)| − σ̂ (t − 1)

}
≤ 0, we con-

clude that

lim
t→∞

p̂0(t) [e(t + 1)− e(t)]

= lim
t→∞

[
P̂(t, 1)y(t + 1)− R̂(t)y∗(t + 1)

]
+ lim

t→∞
Q̂(t, 1)u(t)+ lim

t→∞
p̂0(t)ϕT (t)

[
θ̂ (t − 1)− θ̂ (t)

]
= lim

t→∞

[
P̂(t, 1)y(t + 1)− R̂(t)y∗(t + 1)

]
⇒ lim

t→∞

∣∣y(t)− y∗(t)∣∣ ≤ 1̄ (49)

(ii) If the ummodeled dynamics ζ (t) and the reference
y∗(t) satisfy (44)-(45) at the steady state, then the system is
governed by the external input u(t), which indicates that the
regressor vector ϕ(t) is also slowly varying with respect to

FIGURE 2. The output tracking y (t) and control input u(t).

the samples [24]. Based on (7) and (12), it is concluded that
e(t) is also slowly varying with respect to the samples at the
steady state, i.e., e(t) ≈ e(t − 1) ≈ . . . ≈ e(t − N ).
Then based on (23), (24), (48), R̂(t) = P̂(t, 1), Q̂(t, 1) = 0

and the fact that lim
t→∞

e(t) ≈ lim
t→∞

e(t − 1), we conclude that

lim
t→∞

p̂0(t) [e(t + 1)− e(t)]

= lim
t→∞

[
P̂(t, 1)y(t + 1)− R̂(t)y∗(t + 1)

]
+ lim

t→∞
Q̂(t, 1)u(t)+ lim

t→∞
p̂0(t)ϕT (t)

[
θ̂ (t − 1)− θ̂ (t)

]
= lim

t→∞

[
P̂(t, 1)y(t + 1)− R̂(t)y∗(t + 1)

]
≈ 0

⇒ lim
t→∞

∣∣y(t)− y∗(t)∣∣ ≈ 0 (50)

From (50), it is also found that the desired control objective
s(t + 1) = 0 is approximately achieved in the sense that

lim
t→∞

p̂0(t) [e(t + 1)− e(t)]

= lim
t→∞

s(t + 1)+ lim
t→∞

p̂0(t)ϕT (t)
[
θ̂ (t − 1)− θ̂ (t)

]
≈ 0

⇒ lim
t→∞

s(t + 1) ≈ 0 (51)

Meanwhile, from (16), (21) and (28), it is derived that

lim
t→∞
|ζ̂ (t)| = lim

t→∞
|e(t)| (52)

It is known that the model error e(t) is actually induced by
the unmodeled dynamics ζ (t). Equation (52) indicates that
the control law (20) can gradually compensate this influence.

This proves Theorem 1. �

V. APPLICATION TO A SYNTHETIC NONLINEAR SYSTEM
Consider the following single-input-single-output discrete-
time nonlinear dynamical system:

A(z−1)y(t + 1) = B(z−1)u(t)+ ζ (t) (53)

where A(z−1) = 1 − 2z−1 + 0.8z−2 and B(z−1) = 0.25 +
0.3z−1. The system (53) contains unstable poles and zeros.
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FIGURE 3. The parameter estimates θ̂(t).

FIGURE 4. The values of p̂0(t), p̂1(t), p̂2(t) and q̂0(t).

The unmodeled dynamics consists of two parts ζ (t) = ζ1(t)+
ζ2(t), where ζ1(t) =

0.1u(t)+0.05y(t)
√

1+u(t)2+y(t)2
and ζ2(t) ∼ N (0, 0.052).

It is clear that ζ (t) is bounded.
The proposed RIASMC method is applied to control this

nonlinear system. The orders are na = nb = 2. The weighting
polynomials are P̂(t, z−1) = p̂0(t) + p̂1(t)z−1 + p̂2(t)z−2,
Q̂(t, z−1) = q̂0(t)(1− z−1) and R̂(t) = p̂0(t)+ p̂1(t)+ p̂2(t).
The initializations are ε = 1.5, χ̄ = 1.05, r(0) = 1,
σ̂ (0) = 0, θ̂ (0) =

[
0.2, 0.2 , −1.5 , 0.5

]T and 0(z−1) =(
1− 0.4z−1

)2
. The reference is designed to be

y∗(t) =
{
1, 0 < t ≤ 50, 100 < t ≤ 150
−1, otherwise

Fig. 2 shows the output response y(t) versus the reference
y∗(t), and the control input u(t). Fig. 3 shows the estimation
results of θ̂ (t). Fig. 4 shows the updates of p̂0(t), p̂1(t), p̂2(t)
and q̂0(t). Fig. 5 shows the estimates of the upper bound σ̂ (t),
the estimates of ζ̂ (t), and the actual model error e(t).

Overall, it can be seen that the closed-loop system is stable,
the system output tracks the reference rapidly, all the esti-
mates approach a bounded interval, and the noise rejection
ability is reliable.

The results have confirmed Theorem 1 since all the signals
are uniformly bounded and the system output y(t) approaches
a small region of the reference y∗(t) under stochastic noises.
Although θ̂ (0) =

[
0.2, 0.2 , −1.5 , 0.5

]T is not equal to the
system parameter θ =

[
0.25, 0.3 , −2 , 0.8

]T , the recursive
estimator is able to cope with the uncertainties by updating
the controller parameters online. However, it is a consensus
that adaptations need enough excitations. Thus it is also found
that there exist undesirable overshoot and oscillation at the
beginning period, which is inevitable and acceptable.

The relation lim
t→∞

sup
{
|e(t)| − σ̂ (t − 1)

}
≤ 0 is reflected

in Fig. 5, which demonstrates that although the upper bound
of the unmodeled dynamics is unknown, the recursive estima-
tor with a deadzone factor can still be constructed. When the
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FIGURE 5. The estimates σ̂ (t) and ζ̂ (t) versus the model error e(t).

operation condition is changed, the relation |e(t)| > σ̂ (t − 1)
is satisfied and therefore the recursive estimator works; while
at the steady state, the model error e(t) is gradually governed
by the upper bound σ̂ (t) and then the recursive estimator stops
working.

Moreover, the property lim
t→∞
|ζ̂ (t)| = lim

t→∞
|e(t)| has also

been verified in Fig. 5, which indicates that the effects of
the unmodeled dynamics ζ (t) can be compensated by ζ̂ (t).
Even though the robust design may reduce the adaptive per-
formance, this additional compensation control can improve
the output tracking performance in time.

VI. APPLICATION TO THE CONTROL PROBLEM
OF A SMA ACTUATOR SYSTEM
A. EXPERIMENTAL SETUP
The experimental platform diagram of the SMA actuator
is displayed in Fig. 6, and the picture of the experimental
setup is given in Fig. 7. The structure of this SMA actuated
system is similar to the ones in [34] and [37] but without a
cooling device. The wire of SMA is the Flexinol actuator wire
which is produced by Dynalloy, Inc. For this type of wire,
the diameter is 0.00025m, the length is 0.34m, the deforma-
tions are up to 4%, and the Austenite finish temperature is
90ř. In this experiment, the system output is the displacement
(unit: m) and the input signal is the current (unit: A), which is
constrained to the range 0 ∼ 0.4. The control current applied
to the SMA actuator is obtained from a V/I converter. The
SMAwire then generates significant strains in response to the
temperature changes which is caused by the current heating
effect. The displacement of the SMA wire is measured by a
high precision potentiometer. The Beckhoff ethercat termi-
nals are used for the transformation and the conversion of
data, and the sample frequency is 200Hz. In order to deform
the SMA and achieve actuations, various loads are added to
this system. The nominal models are established under the
condition that the load is fixed as 500g.

FIGURE 6. The experimental platform diagram of the SMA actuator.

FIGURE 7. The experimental setup of the SMA actuated system.

B. A MECHANISM MODEL BASED CONTROLLER DESIGN
In the literature, the nonlinear modeling strategy of a SMA
actuator has long been an open problem. In [34]–[36], [40],
and [41], nonlinear dynamics of SMA actuators have been
successfully described by some mechanism models.

In the comparison study, the utilized model is based on the
mechanismmodel in [28] which has been recently established
by our research team. This model is consisted of the following
parts: a thermal model, a phase transformation model, and
a description of the mechanical properties and dynamics of
the system. Due to lack of space, the analysis procedure is
omitted here and please refer to [28, Sec. 2] for details.

The mechanism model is described as follow

ẋ = f (x)+ g(x)_u (54)

y = x2 (55)

where x = [x1, x2, x3]T ; x1 = T − Tamb; x2 is the dis-
placement of the SMA wire; x3 is the instantaneous velocity,
i.e.x3 = ẋ2; the functions f (x) and g(x) contain uncertain
coefficients; y is the output; _u is the auxiliary control signal,
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which is defined as the square of the current signal _u = i2

and is constrained to the range 0 ∼ 0.16.
The feedback linearization control (FLC) approach has

been designed based on the mechanism model (54)-(55).
Firstly, by the definition of the extended state variable
z = [x2, x3, ẋ3]T , the nonlinear system is transformed to
the equivalent linear system ż = Acz + Bcv. Then based on
this linear system, the control law for the extended control
signal v can be designed. Finally, by the use of the inverse
transformation, the auxiliary control signal _u and the actual
control signal i can be easily calculated. This mechanism
model based FLC scheme will be used for the following
experiments as a comparison.

C. A GRAY-BOX MODEL BASED CONTROLLER DESIGN
As an alternative, the proposed RIASMC method requires
no mechanism model. Instead, a gray-box model (2) is used
to simplify the controller design procedure. Interestingly, for
this scheme, only the input current and the output displace-
ment are measured, and no other information is needed.

For the model (2), the orders are na = nb = 2. The weight-
ing polynomials are P̂(t, z−1) = p̂0(t)+ p̂1(t)z−1+ p̂2(t)z−2,
Q̂(t, z−1) = q̂0(t)(1− z−1) and R̂(t) = p̂0(t)+ p̂1(t)+ p̂2(t).
The initializations are as follows: ε = 0.3, χ̄ = 1.01,
r(0) = 1, σ̂ (0) = 0 and 0(z−1) = 1− 0.97z−1.
An important issue is to determine θ̂ (0) prior to the

online implementation. The excitations come from some
input-output data around different operating points. The
identified model is defined as y(t + 1) , ϕT (t + 1)θ̂ (t).
The recursive identification algorithms θ̂ (t) = θ̂ (t − 1) +
P(t−1)ϕ(t)

[
y(t)−ϕT (t)θ̂ (t−1)

]
1+ϕT (t)P(t−1)ϕ(t) and P(t) = P(t − 1) −

P(t−1)ϕ(t)ϕT (t)P(t−1)
1+ϕT (t)P(t−1)ϕ(t) are used. Then a good initializa-

tion is obtained and the convergent result is θ̂ (0) =[
−0.00934, 0.00921, −0.499 ,−0.499

]T . Note that this pro-
cedure is offline realized in the Matlab software.

Based on the above initializations, the RIASMC method
now can be applied to control this system. The parameter
adjusting is (12)-(18), and the control law adaptation is (20).
Some remarks are as follows: (i) It is clear that the dimension
of ϕ(t) and θ̂ (t) is 4. The recursive identification algorithm
is based on a stochastic gradient algorithm which requires
no inverse matrix calculation. Therefore the recursive esti-
mator requires low computational burden and is usable for
the online control; (ii) The weighing polynomials updating
is employed for the purpose of fast output response when
the operation condition changes, while the coefficients of the
weighing polynomials is fixed as p̂0(t) = 1.035, p̂1(t) =
−0.5125, p̂2(t) = −0.5144and q̂0(t) = 0.01for robustness
considerations under load variations and stochastic distur-
bances.

D. SET-POINT TRACKING
Two groups of set-point tracking experiments are conducted
based on different loads. In Fig. 8, the load is fixed as 500g;
while for Fig. 9, the load is fixed as 700g.

FIGURE 8. The set-point tracking results by these two control schemes
(the load is 500g). (a) The system output. (b) The control input.

From the results, it is seen that the performance of the FLC
method is poorer, especially for the tracking errors. It indi-
cates that there exists unmodeled dynamics in the nonlinear
model (54)-(55), but the FLC method cannot compensate the
negative effects. In general, it is a consensus that mechanism
models can hardly describe the nonlinear dynamics of com-
plex industrial processes.

On the other hand, the RIASMC method can ensure desir-
able performance in the sense that the closed-loop system is
stable, the tracking error is very small, the response is fast
enough, the overshoot and oscillation are limited, and the
control input is reasonable. These results have verified the
effectiveness of the proposed control scheme.

The performance of the RIASMC method is better than
the FLC method except for the continuous fluctuations of the
input signals. The oscillations aremainly caused by the robust
design concept, which have made the RIASMC scheme

35818 VOLUME 6, 2018



B. Zhang et al.: Robust Indirect Adaptive Control for a Class of Nonlinear Systems

FIGURE 9. The set-point tracking results by these two control schemes
(the load is 700g). (a) The system output. (b) The control input.

become a bit more conservative. For many specific applica-
tions in the field of rehabilitation robots [44], which demand
reliable robustness property for safety considerations, such
kind of compromise is reasonable and necessary.

It is found that the same set-point corresponds to different
control input signals. This is caused by the inherent hysteresis
phenomena of SMAs. Moreover, it is also found that the
control input signals vary a lot. This is because that the
actuations are affected by the ambient temperatures, which
are uncertain and unmeasurable.

E. LOAD VARIATIONS
Three groups of load variations experiments are conducted.
in which there exist different levels of parametric uncer-
tainties. In Figs. 10-11, additional loads are added to the
SMA actuator system at 10th second, and removed at 30th
second. In Fig. 12, instantaneous forces are imposed on this
system. The regulation results are tested at the set-point
y∗(t) = 0.005m.

FIGURE 10. The regulation results under the load variations by these
two control schemes (an additional 200g load is added to this system
at 10th second and removed at 30th second). (a) The system output.
(b) The control input.

Although the FLC method ensures the closed-loop system
stability, this controller seems ineffective for the load varia-
tions experiments. In Figs. 10-11, when the load increases to
700g or 1000g, this system corresponds to a different mech-
anism model. It is obvious that, during the 10th second to
30th second, there exist unsatisfactory regulation errors. This
is because that the FLC method is non-adaptive and thus can
hardly cope with the parametric uncertainties caused by load
variations. While for Fig. 12, when unknown instantaneous
vertical forces are added, the mathematical description of this
system remains unchanged. But there appear pulse signals
at 10th second and 30th second, which induce sudden track-
ing errors into this system. From the results, it is seen that
the overshoot is severe and the regulation time is long, which
indicates that the robustness property of the FLC method is
poor.
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FIGURE 11. The regulation results under the load variations by these
two control schemes (an additional 500g load is added to this system at
10th second and removed at 30th second). (a) The system output.
(b) The control input.

On the other hand, the RIACMC method is effective under
load variations. It is found that the closed-loop system is
stable, the regulation time is acceptable, and the overshoot
is small. The results indicate that the RIASMC method has
made a more reasonable compromise between the adaptive
performance and the system robustness. Thanks to the dead-
zone weighted factor (14), this controller is more reliable.
Meanwhile, the additional compensation control increases
the response speed.

It is a fact that load variations can cause uncertainties in
most robotic manipulators [45]. However, many mechanism
models based strategies have fixed controller parameters,
which cause inevitable performance deteriorations. Alterna-
tively, adaptive controllers address the uncertainties effec-
tively and seem to be more favorable.

FIGURE 12. The regulation results under instantaneous forces by these
two control schemes (an downward vertical force is instantaneously
added to this system at 10th second, and later an upward vertical force is
instantaneously added to this system at 30th second). (a) The system
output. (b) The control input.

F. STOCHASTIC DISTURBANCES
In order to test the disturbance rejection ability, an unknown
lateral force is suddenly imposed to the load. This can cause
a continuous non-Gaussian stochastic noise to the system
output over a period of time.

Figs. 13-14 show the noise rejection results. The root

mean square errors (RMSE)
{

1
N

N∑
t=1

(y (t)− y∗ (t))2
}1/2

and

the mean absolute difference (MAD) 1
N

N∑
t=1
|y (t)− y∗ (t)|

have also been given in Figs. 13-14.
It can be found that the RIASMC method is still stable

under a continuous non-Gaussian noise, and the disturbance
rejection ability is reliable. It also indicates that the robust
estimator and the compensation control not only improve the
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FIGURE 13. The disturbance rejection results under the continuous
stochastic noise by the FLC control scheme. (a) The system output.
(b) The control input.

performance in a deterministic case but also benefit the noise
rejection ability in a stochastic case.

On the other hand, the disturbance rejection performance
of the FLC method is limited. Plenty of experimental results
show that the regulations are often very sluggish and the
control input signals fluctuate severely.

G. SUMMARY
The FLC method is quite sensitive to unmodeled dynam-
ics, let alone load variations and stochastic disturbances.
Although the closed-loop stability can be guaranteed under
uncertainties, the control performance is unsatisfactory.

Generally speaking, the RIASMC method has much
wider applicability especially for its improved performance,
smoother adaptation and reliable robustness.

In addition, another salient feature of this gray-box model
based control strategy is that the design procedure is much

FIGURE 14. The disturbance rejection results under the continuous
stochastic noise by the RIASMC control scheme. (a) The system output.
(b) The control input.

more convenient than some existing mechanism model based
control schemes.

Note that the RIASMC method is also sensitive to the
initial condition θ̂ (0), which is the main limitation of this
controller. But this issue does not affect the applicability. In
general, for an unfamiliar plant, the system identification is
always possible to be conducted based on some historical
input-output data, prior to the controller implementation.
Consequently, a satisfactory initialization θ̂ (0) is available in
practice and can be applied to this adaptive controller.

VII. CONCLUSION
This paper introduces a novel robust indirect adaptive sliding
mode control strategy for nonlinear systems with uncertain-
ties. The controller is consisted of four parts: the system
parameters estimation, the unmodeled dynamics estimation,
the weighting polynomials updating and the control law
calculation. For the theoretical aspects, the main merits are
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summarized as follows: (i) the controller is applicable to
non-minimum phase and open- loop unstable systems; (ii) the
estimation of the unmodeled dynamics is introduced as a
feedback compensation control to improve the response;
(iii) the strict stability condition is eliminated and a desirable
closed-loop performance is ensured during a wide operation
region. For the practical application aspects, the proposed
controller is further applied to the control problem of a
SMA actuator. Without mechanism models, this controller
is designed based on a gray-box model, in which only the
input current and the output displacement are required. This
controller is explicit and reliable, and has been implemented
through the Beckhoff controller. The comparison results have
demonstrated that the proposed robust adaptive controller has
wider applicability than some existing methods, especially
for its improved performance, smoother adaptation and reli-
able robustness. In the future, it is desired that the obtained
results could find further applicability in SMA-actuated reha-
bilitation robots.
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